NANOSCALE STRANTRONIC MAGNETOELETRIC CELL FOR NEUROMORPHIC SYSTEMS
- Authors: Krutyansky L.M.1, Preobrazhensky V.L.1
-
Affiliations:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Issue: Vol 524, No 1 (2025)
- Pages: 15-22
- Section: ФИЗИКА
- URL: https://journal-vniispk.ru/2686-7400/article/view/356207
- DOI: https://doi.org/10.7868/S3034508125050034
- ID: 356207
Cite item
Abstract
Results are reported on numerical-analytic modelling of functional characteristics of a nanoscale neuron-like magnetoelectric cell. Nonlinear transfer activation functions of a composite cell and conditions of their formation in spin-reorientation processes in the magnet sub-system were determined. As applied to the transformation of random pulsed signals, threshold modes of generation of inverse polarity spikes were demonstrated as well as phenomena of potential accumulation followed by an abrupt change of the system’s state of the Integrate-and-Fire type. Magnitude of signals at input and output of the nanoscale cell values few millivolts. The activation function type and the threshold values of input signals are controlled by magnetizing field, which permits to expand the functional capabilities of components for analog neuromorphic systems.
About the authors
L. M. Krutyansky
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: leonid.krut@kapella.gpi.ru
Moscow, Russia
V. L. Preobrazhensky
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: vlp@yandex.ru
Moscow, Russia
References
- Uhrig R.E. Introduction to artificial neural networks // Proc. IECON '95–21st Annual Conference on IEEE Industrial Electronics. 1995. № 1. P. 33–37. https://doi.org/10.1109/IECON.1995.483329
- Montesinos López O.A., Montesinos López A., Crossa J. Fundamentals of Artificial Neural Networks and Deep Learning // Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham: Springer, 2022. P. 379–425. https://doi.org/10.1007/978-3-030-89010-0_10
- Depertioglu O., Kose U. An educational tool for artificial neural networks // Comput. Electr. Eng. 2011. V. 37. Iss. 3. P. 392–402. https://doi.org/10.1016/j.compeleceng.2011.03.010
- Clevert D-A., Unterthiner T., Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUs). ICLR2016. arXiv:1511.07289v5 [cs.LG]. https://doi.org/10.48550/arXiv.1511.07289
- Elfwing S., Uchibe E., Doya K. Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning. arXiv:1702.03118v3 [cs.LG]. 2 Nov., 2017.
- Kimhi M., Kashani I., Mendelson A., Baskin C. Hysteresis Activation Function for Efficient Inference. 4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024). arXiv:2411.10573v2 [cs.LG]. 11 Mar., 2025.
- Ponulak F., Kasinski A. Introduction to spiking neural networks: Information processing, learning and applications Acta Neurobiol. Exp. 2011. V. 71. P. 409–433. https://doi.org/10.55782/ane-2011-1862
- Grüning A., Bohie S. M. Spiking Neural Networks: Principles and Challenges. European Symposium on Artificial Neural Networks (ESANN). Computational Intelligence and Machine Learning. Bruges: ESANN, 2014.
- Pfeiffer M., Pfeil T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Front. Neurosci., Sec. Neuromorphic Engineering. 2018. V. 12. 774. https://doi.org/10.3389/fnins.2018.00774
- Hendy H., Merkel C. Review of spike-based neuromorphic computing for brain-inspired vision: Biology, algorithms, and hardware // J. Electronic Imaging. 2022. V. 3 (1). 010901. https://doi.org/10.1117/1.JEI.31.1.010901
- Tuma T., Pantazi A., Le Gallo M., Sebastian A., Eleftheriou E. Stochastic phase-change neurons // Nat. Nanotechnol. 2016. V. 11. P. 693–699. https://doi.org/10.1038/NNANO.2016.70
- Liu H., Wu T., Yan X., Wu J., Wang N., Du Z., Yang H., Chen B., Zhang Z., Liu F., Wu W., Guo J., Wang H. A Tantalum Disulfide Charge-Density-Wave Stochastic Artificial Neuron for Emulating Neural Statistical Properties // Nano Lett. 2021. V. 21. P. 3465–3472. https://doi.org/10.1021/acs.nanolett.1c00108
- Wang J.J., Hu S.G., Zhan X.T., Yu Q., Liu Z., Chen T.P., Yin Y., Hosaka S., Liu Y. Handwritten-Digit Recognition by Hybrid Convolutional Neural Network based on HfO2 Memristive Spiking-Neuron // Sci. Rep. 2018. V. 8. 12546. https://doi.org/10.1038/s41598-018-30768-0
- Chakraborty I., Saha G., Sengupta A., Roy K. Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons // Sci. Rep. 2018. V. 8. 12980. https://doi.org/10.1038/s41598-018-31365-x
- Li Z., Geng X., Wang J., Zhuge F. Emerging Artificial Neuron Devices for Probabilistic Computing // Front. Neurosci. 2021. V. 15. 717947. https://doi.org/10.3389/fnins.2021.717947
- Burkitt A.N. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input // Biol Cybern. 2006. V. 95. P. 1–19. https://doi.org/10.1007/s00422-006-0068-6
- Stoltzer P., Tranchant J., Corraze B., Janod E., Besland M-P., Tesler F., Rozenberg M., Cario L. A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator // Adv. Funct. Mater. 2017. 1604740. https://doi.org/10.1002/adfm.201604740
- Крутянский Л.М., Преображенский В.Л. Функциональный преобразователь сигналов на основе композитного мультиферроика // Письма в ЖТФ. 2023. Т. 49. Вып. 15. С. 33–38. https://doi.org/10.21883/PJTF.2023.15.55862.19594
- Крутянский Л.М., Преображенский В.Л. Функциональное преобразование случайных сигналов в композитной магнитоэлектрической ячейке // Письма в ЖТФ. 2025. Т. 51. В печати.
- Tiercelin N., Preobrazhensky V., Pernod P., Ostaschenko A. Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition // Appl. Phys. Lett. 2008. V. 92. 062904. https://doi.org/10.1063/1.2841656
- Dusch Y., Tiercelin N., Klimov A., Giordano S., Preobrazhensky V., Pernod P. Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor // J. Appl. Phys. 2013. V. 113. 17C719. https://doi.org/10.1063/1.4795440
- Tiercelin N., Preobrazhensky V., Mortet V., Talbi A., Soltani A., Haenen K., Pernod P. Thin film magnetoelectric composites near spin reorientation transition // J. Magn. & Magn. Mat. 2009. V. 321. P. 1803–1807. https://doi.org/10.1016/j.jmmm.2009.02.026
- Wang F., Luo L., Zhou D., Zhao X., Luo H. Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71 Pb (Mg1/3Nb2/3) O3–0.29 Pb TiO3 single crystal // Appl. Phys. Lett. 2007. V. 90. 212903. https://doi.org/10.1063/1.2743393
- Borders W.A., Pervaiz A.Z., Fukami S., Camsari K.Y., Ohno H., Datta S. Integer factorization using stochastic magnetic tunnel junctions // Nature. 2019. V. 573. P. 390–393. https://doi.org/10.1038/s41586-019-1557-9
- Pervaiz A.Z., Ghantasala L.A., Camsari K.Y., Datta S. Hardware emulation of stochastic p-bits for invertible logic // Scientific Reports. 2017. V. 7. 10994 https://doi.org/10.1038/s41598-017-11011-8
Supplementary files


