QUANTIZATION OF ELECTRICAL CONDUCTANCE IN LAYERED Zr/ZrO2/Au MEMRISTIVE STRUCTURES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Anodic zirconia nanotubes are a promising functional medium for the formation of non-volatile resistive memory cells. The current-voltage characteristics in the region of low conductivity of the fabricated Zr/ZrO2/Au memristor structures have been studied in this work. For the first time, the reversible mechanisms of formation/destruction of single quantum conductors based on oxygen vacancies, which participate in processes of multiple resistive switching between low- and high-resistance states in a nanotubular dioxide layer, have been analyzed. An equivalent electrical circuit of a parallel resistor connection have been proposed and discussed to describe the observed memristive behavior of the studied layered structures.

About the authors

A. S. Vokhmintsev

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

I. A. Petrenyov

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

R. V. Kamalov

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

M. S. Karabanalov

NANOTECH Centre, Ural Federal University

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg

I. A. Weinstein

NANOTECH Centre, Ural Federal University; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg; Russian Federation, 620016, Ekaterinburg

A. A. Rempel

NANOTECH Centre, Ural Federal University; Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: i.a.weinstein@urfu.ru
Russian Federation, 620002, Ekaterinburg; Russian Federation, 620016, Ekaterinburg

References

  1. Yoo H., Kim M., Kim Y.-T., Lee K., Choi J. // Catalysts. 2018. V. 8. 555. https://doi.org/10.3390/catal8110555
  2. Park J., Cimpean A., Tesler A.B., Mazare A. // Nanomaterials. 2021. V. 11. 2359. https://doi.org/10.3390/nano11092359
  3. Bashirom N., Kian T.W., Kawamura G., Matsuda A., Razak K.A., Lockman Z. // Nanotechnology. 2018. V. 29. 375701. https://doi.org/10.1088/1361-6528/aaccbd
  4. Huai X., Girardi L., Lu R., Gao S., Zhao Y., Ling Y., Rizzi G.A., Granozzi G., Zhang Z. // Nano Energy. 2019. V. 65. 104020. https://doi.org/10.1016/ j.nanoen.2019.104020
  5. Ремпель А.А., Валеева А.А., Вохминцев А.С., Вайнштейн И.А. // Усп. хим. 2021. Т. 90. № 11. С. 1397–1414. https://doi.org/10.1070/RCR4991
  6. Hazra A., Jan A., Tripathi A., Kundu S., Boppidi P.K.R., Gangopadhyay S. // IEEE Trans. Electron Devices. 2020. V. 67. P. 2197–2204. https://doi.org/10.1109/TED.2020.2983755
  7. Vokhmintsev A., Petrenyov I., Kamalov R., Weinstein I. // Nanotechnology. 2022. V. 33. 075208. https://doi.org/10.1088/1361-6528/ac2e22
  8. Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L., Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. 214331. https://doi.org/10.1016/j.ccr.2021.214331
  9. Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2011. V. 111. P. 1596–1636. https://doi.org/10.1021/cr100347k
  10. Yoo J., Lee K., Tighineanu A., Schmuki P. // Electrochem. Comm. 2013. V. 34. P. 177–180. https://doi.org/10.1016/j.elecom.2013.05.038
  11. Вохминцев А.С., Вайнштейн И.А., Камалов Р.В., Дорошева И.Б. // Изв. РАН. Сер. Физ. 2014. Т. 78. № 9. С. 1176–1179. https://doi.org/10.7868/S0367676514090312
  12. Du G., Li H., Mao Q., Ji Z. // J. Phys. D: Appl. Phys. 2016. V. 49. 445105. https://doi.org/10.1088/0022-3727/49/44/445105
  13. Gao S., Zeng F., Chen C., Tang G., Lin Y., Zheng Z., Song C., Pan F. // Nanotechnol. 2013. V. 24. 335201. https://doi.org/10.1088/0957-4484/24/33/335201
  14. Milano G., Aono M., Boarino L., Celano U., Hasegawa T., Kozicki M., Majumdar S., Menghini M., Miranda E., Ricciardi C., Tappertzhofen S., Terabe K., Valov I. // Adv. Mater. 2022. V. 34 № 32. 2201248. https://doi.org/10.1002/adma.202201248
  15. Xue W., Gao S., Shang J., Yi X., Liu G., Li R.-W. // Adv. Electron. Mater. 2019. V. 5 № 9. 1800854. https://doi.org/10.1002/aelm.201800854
  16. Kuzmenko A.B., van Heumen E., Carbone F., van der Marel D. // Phys. Rev. Lett. 2008. V. 100. 117401. https://doi.org/10.1103/PhysRevLett.100.117401
  17. Вохминцев А.С., Камалов Р.В., Петренев И.А., Вайнштейн И.А. Способ получения нанотрубок диоксида циркония с квантовыми проводниками. Патент РФ 2758998. 2021.
  18. Carlos E., Branquinho R., Martins R., Kiazadeh A., Fortunato E. // Adv. Mater. 2021. V. 33. 2004328. https://doi.org/10.1002/adma.202004328
  19. Waser R., Dittmann R., Staikov G., Szot K. // Adv. Mater. 2009. V. 21. P. 2632–2663. https://doi.org/10.1002/adma.200900375
  20. Petrenyov I.A., Kamalov R.V., Vokhmintsev A.S., Martemyanov N.A., Weinstein I.A. // J. Phys. Conf. Ser. 2018. V. 1124. 022004. https://doi.org/10.1088/1742-6596/1124/2/022004
  21. Gryaznov A.O., Dorosheva I.B., Vokhmintsev A.S., Kamalov R.V., Weinstein I.A. Automatized complex for measuring the electrical properties of MIM structures // 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May, 2016. 7491772. https://doi.org/10.1109/SIBCON.2016.7491772
  22. Chen C.-C., Say W.C., Hsieh S.-J., Diau E.W.-G. // Appl. Phys. A. 2009. V. 95. P. 889–898. https://doi.org/10.1007/s00339-009-5093-6
  23. Zhao S., Xue J., Wang Y., Yan S. // J. Appl. Phys. 2012. V. 111. 043514. https://doi.org/10.1063/1.3682766
  24. Lyons J.L., Janotti A., Van de Walle C.G. // Microelectron. Eng. 2011. V. 88. P. 1452–1456. https://doi.org/10.1016/j.mee.2011.03.099
  25. Vokhmintsev A.S., Petrenyov I.A., Kamalov R.V., Karabanalov M.S., Weinstein I.A. // J. Lumin. 2022. V. 252. 119412. https://doi.org/10.1016/ j.jlumin.2022.119412

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (56KB)
4.

Download (206KB)

Copyright (c) 2023 А.С. Вохминцев, И.А. Петренёв, Р.В. Камалов, М.С. Карабаналов, И.А. Вайнштейн, А.А. Ремпель

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».