Effect of surface microstructure for corrosion resistance and magnetic properties of an amorphous cobalt-based Co-Si-Fe-Cr-Al ALLOY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The surface of an amorphous cobalt-based alloy of nominal composition Co75Si15Fe5Cr4.5Al0.5 was modified by nanostructures at anodizing in an ionic liquid – bis(trifluoromethane sulfonyl)imide 1-butyl-3-methyl- imidazolium. The magnetic (saturation specific magnetization and coercive force) and corrosion (corrosion potential and resistance) characteristics of an amorphous alloy before and after electrochemical modification of the surface by nanostructures are compared. Modification of the alloy surface partially changes its magnetic properties. After corrosion tests, an increase in the value of coercive force is observed. Corrosion tests were carried out by the method of polarization curves in Ringer’s solution. The corrosion resistance of alloys modified by oxide nanostructures is higher than the corrosion resistance of a polished alloy. The increase in corrosion resistance is mainly determined by the presence of nanostructures.

Full Text

Restricted Access

About the authors

I. I. Kuznetsova

Lomonosov Moscow State University

Author for correspondence.
Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, 119991 Moscow

O. K. Lebedeva

Lomonosov Moscow State University

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, 119991 Moscow

D. Yu. Kultin

Lomonosov Moscow State University

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, 119991 Moscow

N. S. Perov

Lomonosov Moscow State University

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, 119991 Moscow

L. M. Kustov

Lomonosov Moscow State University; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: lmkustov@mail.ru

Department of Chemistry

Russian Federation, 119991 Moscow; 119991 Moscow

References

  1. Chiriac H., Herea D.-D., Corodeanu S. // J. Magn. Magn. Mater. 2007. V. 311. № 1. P. 425–428. https://doi .org/10.1016/j.jmmm.2006.11.207
  2. Louzguine-Luzgin D.V., Ketov S.V., Trifonov A.S., Churymov A.Yu. // J. Alloys Compd. 2018. V. 742. P. 512–517. https://doi .org/10.1016/j.jallcom.2018.01.290
  3. Ackland K., Masood A., Kulkarni S., Stamenov P. // AIP Advances. 2018. V. 8. № 5. P. 056129. https://doi .org/10.1063/1.5007707
  4. Xu D.D., Zhou B.L., Wang Q.Q., Zhou J., Yang W.M., Yuan C.C., Xue L., Fan X.D., Ma L.Q., Shen B.L. // Corros. Sci. 2018. V. 138. P. 20–27. https://doi .org/10.1016/j.corsci.2018.04.006
  5. Xu J., Yang Y., Li W., Xie Z., Chen X. // Mater. Res. Bull. 2018. V. 97. P. 452–456. https://doi .org/10.1016/j.materresbull.2017.09.042
  6. Permyakova I.E., Glezer A.M., Savchenko E.S., Shchetinin I.V. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. № 11. P. 1310–1316. https://doi .org/10.3103/S1062873817110144
  7. Han J., Hong J., Kwon S., Choi-Yim H. // Metals. 2021. V. 11. № 2. P. 304. https://doi .org/10.3390/met11020304
  8. Lone S.A., Mardare C.C., Mardare A.I., Hassel A.W. // Meet. Abstr. 2021. V. MA2021-01. № 18. P. 797. https://doi .org/10.1149/MA2021-0118797mtgabs
  9. Hu J., Zhang X., Liu H., Fu B., Dong Z., Wang Y. // J. Supercond. Nov. Magn. 2022. V. 35. № 6. P. 1569–1574.
  10. Nyby C., Guo X., Saal J.E., Chien S.-C., Gerard A.Y., Ke H., Li T., Lu P., Oberdorfer C., Sahu S., Li S., Taylor C.D., Windl W., Scully J.R., Frankel G.S. // Sci. Data. 2021. V. 8. № 1. P. 58. https://doi .org/10.1038/s41597-021-00840-y
  11. Hu J., Dong C., Li X., Xiao K. // J. Mater. Sci. Technol. 2010. V. 26. № 4. P. 355–361. https://doi .org/10.1016/S1005-0302(10)60058-8
  12. Chernavsky P.A., Kim N.V., Andrianov V.A., Perfiliev Y.D., Novakova A.A., Perov N.S. // RSC Adv. 2021. V. 11. № 25. P. 15422–15427. https://doi .org/10.1039/D1RA01200B
  13. Lebedeva O., Kultin D., Kustov L. // Nanomaterials. 2021. V. 11. № 12. P. 3270. https://doi .org/10.3390/nano11123270
  14. Lebedeva O., Kultin D., Zakharov A., Кustov L. // Surf. Interfaces. 2022. V. 34. P. 102345. https://doi .org/10.1016/j.surfin.2022.102345
  15. Lebedeva O., Snytko V., Kuznetsova I., Kalmykov K., Kultin D., Root N., Philippova S., Dunaev S., Zakharov A., Kustov L. // Metals. 2020. V. 10. № 5. P. 583. https://doi .org/10.3390/met10050583
  16. Lebedeva O., Kultin D., Kalmykov K., Snytko V., Kuznetsova I., Orekhov A., Zakharov A., Kustov L. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 1. P. 2025–2032. https://doi .org/10.1021/acsami.0c19392
  17. Gaikar P.S., Angre A.P., Wadhawa G., Ledade P.V., Mahmood S.H., Lambat T.L. // Curr. Res. Green Sustainable Chem. 2022. V. 5. P. 100265. https://doi .org/10.1016/j.crgsc.2022.100265
  18. Saverina E.A., Zinchenko D.Y., Farafonova S.D., Galushko A.S., Novikov A.A., Gorbachevskii M.V., Ananikov V.P., Egorov M.P., Jouikov V.V., Syroeshkin M.A. // ACS Sustainable Chem. Eng. 2020. V. 8. № 27. P. 10259–10264. https://doi .org/10.1021/acssuschemeng.0c03133
  19. Uran S., Veal B., Grimsditch M., Pearson J., Berger A. // Oxid. Met. 2000. V. 54. № 1/2. P. 73–85. https://doi .org/10.1023/A:1004650612791
  20. Osei-Agyemang E., Balasubramanian G. // npj Mater. Degrad. 2019. V. 3. № 1. P. 20. https://doi .org/10.1038/s41529-019-0082-5
  21. Pontinha M., Faty S., Walls M.G., Ferreira M.G.S., Cunha Belo M.D. // Corros. Sci. 2006. V. 48. № 10. P. 2971–2986. https://doi .org/10.1016/j.corsci.2005.10.007
  22. Chang A.S., Tahira A., Chang F., Solangi A.G., Bhatti M.A., Vigolo B., Nafady A., Ibupoto Z.H. // Biosensors. 2023. V. 13. № 1. P. 147. https://doi .org/10.3390/bios13010147
  23. Kuznetsova I., Lebedeva O., Kultin D., Kalmykov K., Philippova S., Leonov A., Kustov L. // ECS Trans. 2022. V. 109. № 14. P. 87–94. https://doi .org/10.1149/10914.0087ecst
  24. Zhang L., Xiong X., Yan Y., Gao K., Qiao L., Su Y. // Int. J. Miner. Metall. Mater. 2019. V. 26. № 6. P. 732–739. https://doi .org/10.1007/s12613-019-1803-z
  25. Garcia-Falcon C.M., Gil-Lopez T., Verdu-Vazquez A., Mirza-Rosca J.C. // Mater. Chem. Phys. 2021. V. 260. P. 124164. https://doi .org/10.1016/j.matchemphys.2020.124164
  26. Souza C.A.C., Ribeiro D.V., Kiminami C.S. // J. Non Cryst. Solids. 2016. V. 442. P. 56–66. https://doi .org/10.1016/j.jnoncrysol.2016.04.009
  27. Skulkina N.A., Ivanov O.A., Stepanova E.A., Shubina L.N., Kuznetsov P.A., Mazeeva A.K. // Phys. Metals Metallogr. 2015. V. 116. № 12. P. 1182–1189. https://doi .org/10.1134/S0031918X1512011X
  28. Vakhitov R.M., Shapayeva T.B., Solonetskiy R.V., Yumaguzin A.R. // Phys. Metals Metallogr. 2017. V. 118. № 6. P. 541–545. https://doi .org/10.1134/S0031918X17040111
  29. Шалыгина Е.Е., Агапонова А.В., Тараканов О.Н., Рыжиков И.А., Шалыгин А.Н. // Письма в ЖТФ. 2011. Т. 37. № 9. С. 37–44. https://doi .org/10.1134/S1063785011050154
  30. Агапонова А.В., Шалыгина Е.Е., Тараканов О.Н., Быков И.В., Маклаков С.А., Пухов А.А., Рыжиков И.А., Седова М.В., Якубов И.Т. // Изв. РАН. Сер. физ. 2011. Т. 75. № 2. С. 200–202. https://doi .org/10.3103/S1062873811020031
  31. Dokukin M.E., Perov N.S., Dokukin E.B., Beskrovnyi A.I., Zaichenko S.G. // Physica B: Condens. Matter. 2005. V. 368. № 1–4. P. 267–272. https://doi .org/10.1016/j.physb.2005.07.020

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images of the surface of samples 1-6 of the amorphous alloy Co75Si15Fe5Cr4.5Al0.5: (a) before and (b) after corrosion tests in Ringer's solution.

Download (701KB)
3. Fig. 2. Linear polarization curves of samples 1-6 of the amorphous alloy Co75Si15Fe5Cr4.5Al0.5 obtained in Ringer solution at the potential sweep rate 1 mV s–1. All measurements were performed using both the anode and cathode regions. The curve numbers correspond to the sample numbers.

Download (255KB)
4. Fig. 3. (a) Magnetic hysteresis loops of samples 1, 2 and 4 of the amorphous alloy Co75Si15Fe5Cr4.5Al0.5 before conducting corrosion tests at temperatures T = 298 and 100 K. (b) Magnetic hysteresis loops of samples at T = 298 K after corrosion. The curve numbers correspond to the numbers of the alloy samples.

Download (437KB)
5. Fig. 4. The central part of the hysteresis loops of samples of amorphous alloy Co75Si15Fe5Cr4.5Al0.5 before (1, 2 and 4) and after (1k, 2k and 4k) corrosion tests at a temperature of T = 298 K. The curve numbers correspond to the numbers of the alloy samples.

Download (265KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».