Ramond, Neveu–Schwarz algebras and narrow Lie superalgebras

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two one-parameter families of positively graded Lie superalgebras generated by two elements and two relations that are narrow in the sense of Zelmanov and Shalev are considered. The first family contains the positive part R+ of the Ramon algebra, the second one contains the positive part NS+ of the Neveu-Schwarz algebra. The results of the article are super analogues of Benoist’s theorem on defining the positive part of the Witt algebra by generators and relations.

About the authors

D. V. Millionshchikov

Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: dmitry.millionschikov@math.msu.ru
Russian Federation, Moscow

Th. I. Pokrovsky

Bauman Moscow State Technical University

Email: fedya-57@yandex.ru
Russian Federation, Moscow

References

  1. Benoist Y. Une nilvariété non affine // J. Diff. Geom. 1995. Vol. 41. P. 21–52.
  2. Фиаловски А. Классификация градуированных алгебр Ли с двумя образующими // Вестн. МГУ. Сер. 1. Матем., мех. 1983. Т. 38. № 2. P. 62–64.
  3. Bouarroudj S., Navarro R.M. Cohomologically rigid solvable Lie superalgebras with model filiform and model nilpotent nilradical // Communications in Algebra. 2021. Vol. 49. No. 12. P. 5061–5072.
  4. Camacho L.M., Navarro R.M., Sánchez J.M. On Naturally Graded Lie and Leibniz Superalgebras // Bull. Malays. Math. Sci. Soc. 2020. Vol. 43. P. 3411–3435.
  5. Миллионщиков Д.В. Филиформные -градуированные алгебры Ли // УМН. 2002. Т. 57. № 2. С. 197–198.
  6. Миллионщиков Д.В. Естественно градуированные алгебры Ли медленного роста // Матем. сб. 2019. Т. 210. № 6. С. 111–160.
  7. Миллионщиков Д.В. Узкие положительно градуированные алгебры Ли // Доклады Академии наук. 2018. Т. 483. № 5. С. 492–494.
  8. Milnor J. On fundamental groups of complete affinely flat manifolds // Adv. Math. 1977. Vol. 25. P. 178–187.
  9. Shalev A., Zelmanov E.I. Narrow Lie algebras: A coclass theory and a characterization of the Witt algebra // J. Algebra. 1997. Vol. 189. P. 294–331.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».