CONSTRUCTION OF SMOOTH “SOURCE-SINK” ARCS IN THE SPACE OF DIFFEOMORPHISMS OF A TWO-DIMENSIONAL SPHERE

Cover Page

Cite item

Full Text

Abstract

It is well known that the mapping class group of the two-dimensional sphere 𝕊2 is isomorphic to the group ℤ2 = {−1, +1}. At the same time, the class +1 (−1) contains all orientation-preserving (orientationreversing) diffeomorphisms and any two diffeomorphisms of the same class are diffeotopic, that is, they are connected by a smooth arc of diffeomorphisms. On the other hand, each class of maps contains structurally stable diffeomorphisms. It is obvious that in the general case, the arc connecting two diffeotopic structurally stable diffeomorphisms undergoes bifurcations that destroy structural stability. In this direction, it is particular interesting in the question of the existence of a connecting them stable arc ”— an arc pointwise conjugate to arcs in some of its neighborhood. In general, diffeotopic structurally stable diffeomorphisms of the 2-sphere are not connected by a stable arc. In this paper, the simplest structurally stable diffeomorphisms (“source-sink” diffeomorphisms) of the 2-sphere are considered. The non-wandering set of such diffeomorphisms consists of two hyperbolic points: the source and the sink. In this paper, the existence of an arc connecting two such orientation-preserving (orientation-reversing) diffeomorphisms and consisting entirely of “source-sink” diffeomorphisms is constructively proved.

About the authors

Е. V. Nozdrinova

National Research University Higher School of Economics

Email: maati@mail.ru
Nizhny Novgorod, Russia

О. V. Pochinka

National Research University Higher School of Economics

Email: olga-pochinka@yandex.ru
Nizhny Novgorod, Russia

E. V. Tsaplina

National Research University Higher School of Economics

Email: ktsaplina11@mail.ru
Nizhny Novgorod, Russia

References

  1. Munkres J. Differentiable isotopies on the 2sphere // Michigan Mathematical Journal. 1960. V. 7. № 3. P. 193–197.
  2. Palis J., Pugh C. Fifty problems in dynamical systems // Dynamical Systems—Warwick 1974: Proceedings of a Symposium Held at the University of Warwick 1973/74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. P. 345–353.
  3. Newhouse S., Palis J., Takens F. Stable arcs of diffeomorphisms // Bull. Amer. Math. Soc. 1976. V. 82. № 3. P. 499–502.
  4. Medvedev T. V., Nozdrinova E., Pochinka O. Components of Stable Isotopy Connectedness of Morse ”— Smale Diffeomorphisms // Regular and Chaotic Dynamics. 2022. V. 27. № 1. P. 77–97.
  5. Grines V. Z., Medvedev T. V., Pochinka O. V. Dynamical systems on 2-and 3-manifolds // Cham: Springer. 2016. V. 46.
  6. Bonatti C., Grines V. Z., Medvedev V. S., Pochinka O. V. Bifurcations of Morse-Smale diffeomorphisms with wildly embedded separatrices // Proceedings of the Steklov Institute of Mathematics. 2007. V. 256. P. 47–61.
  7. Милнор Дж. Теорема об ℎ-кобордизме. 1969.
  8. Banyaga A. On the structure of the group of equivariant diffeomorphisms // Topology. 1977. V. 16. № 3. P. 279–283.
  9. Rolfsen D. Knots and links // American Mathematical Soc., 2003. P. 346.
  10. Lickorish W. B. R. Homeomorphisms of nonorientable two-manifolds // Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1963. V. 59. № 2. P. 307–317.
  11. Косневски Ч. Начальный курс алгебраической топологии // М.: Изд-во Мир. 1983. Т. 304.
  12. Hirsch M. W. Differential topology // Springer Science Business Media, 2012. V. 33.
  13. Franks J. Necessary conditions for stability of diffeomorphisms // Transactions of the American Mathematical Society. 1971. V. 158. № 2. P. 301–308.
  14. Gourmelon N. A Franks’ lemma that preserves invariant manifolds // Ergodic Theory and Dynamical Systems. 2016. V. 36. № 4. P. 1167–1203
  15. Палис Ж., Ди Мелу В. Геометрическая теория динамических систем. 1986.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).