UNIQUE STRONG SOLVABILITY OF THE INITIAL BOUNDARY VALUE PROBLEM FOR THE INHOMOGENEOUS INCOMPRESSIBLE KELVIN–VOIGT FLUID MODEL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper proves the existence and uniqueness theorem of a strong solution for a inhomogeneous incompressible Kelvin-Voigt fluid motion model. It is not assumed that the initial condition for the fluid density is separated from zero. To prove the existence of a solution, an approximation problem is considered, its solvability and strong a priori estimates for its solutions, independent of the approximation parameter, are established. After that, a passage to the limit is carried out as the approximation parameter tends to zero and it is shown that solutions to the approximation problem converge to a strong solution of the original problem as the approximation parameter tends to zero. The uniqueness of the solution is established using the Gronwall–Bellman inequality.

About the authors

V. G. Zvyagin

Voronezh State University

Email: zvg_vsu@mail.ru
Voronezh, Russia

M. V. Turbin

Voronezh State University

Email: mrmike@mail.ru
Voronezh, Russia

References

  1. Кажихов А.В. Разрешимость начальнокраевой задачи для уравнений движения неоднородной вязкой несжимаемой жидкости // Докл. АН СССР. 1974. Т. 216. № 5. С. 1008–1010.
  2. Ладыженская О.А., Солонников В.А. Об однозначной разрешимости начально-краевой задачи для вязких несжимаемых неоднородных жидкостей // Записки научных семинаров ЛОМИ. 1975. Т. 52. С. 52–109.
  3. Simon J. Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure // SIAM Journal on Mathematical Analysis. 1990. V. 21. P. 1093–1117.
  4. Lions P.-L. Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models Oxford: Clarendon Press, 1996.
  5. Antontsev S.N., de Oliveira H.B., Khompysh Kh. Generalized Kelvin–Voigt equations for nonhomogeneous and incompressible fluids // Communications in Mathematical Sciences. 2019. V. 17. № 7. P. 1915–1948.
  6. Antontsev S.N., de Oliveira H.B., Khompysh Kh. The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity // Nonlinearity. 2021. V. 34. № 5. P. 3083–3111.
  7. Zvyagin V., Turbin M. Optimal feedback control problem for inhomogeneous Voigt fluid motion model // J. Fixed Point Theory Appl. 2021. V. 23. № 1. Article 4.
  8. Звягин В.Г., Турбин М.В. Разрешимость начально-краевой задачи для модели движения жидкости Кельвина–Фойгта с переменной плотностью // Докл. РАН. Матем., информ., проц. упр. 2023. Т. 509. С. 13–16.
  9. Zvyagin V., Turbin M. Weak solvability of the initial-boundary value problem for inhomogeneous incompressible Kelvin–Voigt fluid motion model of arbitrary finite order // J. Fixed Point Theory Appl. 2023. V. 25. № 3. Article 63.
  10. Giorgini A., Ndongmo Ngana A., Tachim Medjo T., Temam R. Existence and regularity of strong solutions to a nonhomogeneous Kelvin-VoigtCahn-Hilliard system // Journal of Differential Equations. 2023. V. 372. P. 612–656.
  11. Звягин В.Г., Турбин М.В. Теорема существования слабых решений начально-краевой задачи для неоднородной несжимаемой модели Кельвина–Фойгта без ограничения снизу на начальное значение плотности // Матем. заметки. 2023. Т. 114. № 4. С. 628–632.
  12. Zvyagin V., Turbin M. Weak solvability of the initial-boundary value problem for a finite-order model of the inhomogeneous incompressible Kelvin-Voigt fluid without a positive lower bound on the initial condition of fluid density // Evolution Equations and Control Theory. 2025. V. 14. № 4. P. 623–648.
  13. Солонников В.А. Оценки тензоров Грина для некоторых граничных задач // Доклады АН СССР. 1960. Т. 130. № 5. С. 988–991.
  14. Ворович И.И., Юдович В.И. Стационарные течения вязкой несжимаемой жидкости // Математический сборник. 1961. Т. 53. № 4. С. 393–428.
  15. Фурсиков А.В. Оптимальное управление распределенными системами. Теория и приложения. Новосибирск: Научная книга, 1999.
  16. Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970.
  17. Темам Р. Уравнения Навье–Стокса. Теория и численный анализ. М.: Мир, 1981.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».