ON A GRID-CHARACTERISTIC SECOND ORDER SCHEME FOR SYSTEMS OF HYPERBOLIC EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS ON NON-FITTED MESHES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, a novel approach to increasing the accuracy of the grid-characteristic method in the area of a coefficient jump for cases of an non-fitted computational grid is presented.

About the authors

K. E. Shilnikov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Moscow Institute of Physics and Technology, MIPT, Phystech

Moscow, Russia

N. I. Khokhlov

Moscow Institute of Physics and Technology, MIPT, Phystech; Scientific Research Institute for System Analysis of the National Research Centre “Kurchatov Institute”; Autonomous noncommercial organization of higher education "Innopolis University

Email: khokhlov.ni@mipt.ru
Moscow, Russia

I. B. Petrov

Moscow Institute of Physics and Technology, MIPT, Phystech

Corresponding member of the RAS Moscow, Russia

References

  1. Peskin C.S. Numerical analysis of blood flow in the heart // J. Comput. Phys. 1977. № 25. P. 220–252.
  2. Golubel V. et al. Compact Grid-Characteristic Scheme for the Acoustic System with the Piece-Wise Constant Coefficients // Int. J. Appl. Mech. 2022. V. 14. № 02. P. 2250002.
  3. Khokhlov N.I., Petrov I.B. On one class of high-order compact grid-characteristic schemes for linear advection // Russ. J. Numer. Anal. Math. Model. 2016. V. 31. № 6. P. 355–368.
  4. Хохлов Н.И., Петров И.Б. Сеточно-характеристический метод повышенного порядка для систем гиперболических уравнений с кусочно-постоянными коэффициентами // Дифференциальные уравнения. 2023. T. 59. № 7. C. 983–995.
  5. Stogni P.V., Khokhlov N.I., Petrov I.B. The numerical solution of the problem of the contact interaction in models with gas pockets // J. Phys. Conf. Ser. 2021. V. 1715. № 1. P. 012058.
  6. Khokhlov N., Favorskaya A., Stetsyk V., Mitkovets I. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones // J. Comput. Phys. 2021. V. 446. P. 110637.
  7. Khokhlov N.I., Favorskaya A., Furgailo V. Grid-Characteristic Method on Overlapping Curvilinear Meshes for Modeling Elastic Waves Scattering on Geological Fractures // Minerals. 2022. V. 12. № 12. P. 1597.
  8. Кожемяченко А.А., Петров И.Б., Фаворская А.В., Хохлов Н.И Граничные условия для моделирования воздействия колес на железнодорожный путь // Ж. вычисл. матем. и матем. физ. 2020. T. 60. № 9. C. 1587–1603.
  9. Kaser M., Dumbser M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms // Geophys. J. Int. 2006. V. 166. № 2. P. 855–877.
  10. Lisitsa V., Podgornova O., Teheverda V. On the interface error analysis for finite difference wave simulation // Comput. Geosci. 2010. V. 14. № 4. P. 769–778.
  11. Feng Q., Han B., Minev P. Sixth-order hybrid finite difference methods for elliptic interface problems with mixed boundary conditions // J. Comput. Phys. 2024. V. 497. P. 112635.
  12. LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002. 558 p.
  13. Zhang C., LeVeque R.J. The immersed interface method for acoustic wave equations with discontinuous coefficients // Wave Motion. 1997. V. 25. № 3. P. 237–263.
  14. Тихонов А.Н., Самарский А.А. Однородные разностные схемы на неравномерных сетках // Ж. вычисл. матем. и матем. физ. 1962. T. 2. № 5. С. 812–832.
  15. Zhang C., Symes W.W. Fourth order, full-stencil immersed interface method for elastic waves with discontinuous coefficients // SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists. 1998. P. 1929–1932.
  16. Piraux J., Lombard B. A New Interface Method for Hyperbolic Problems with Discontinuous Coefficients: One-Dimensional Acoustic Example // J. Comput. Phys. 2001. V. 168. № 1. P. 227–248.
  17. Lombard B., Piraux J. Numerical treatment of two-dimensional interfaces for acoustic and elastic waves // J. Comput. Phys. 2004. V. 195. № 1. P. 90–116.
  18. Sabatini R. An arbitrary-order immersed interface method for the two-dimensional propagation of acoustic and elastic waves // Phys. Fluids. 2023. V. 35. № 10. P. 107106.
  19. Tsoutsanis P., Titarev V.A., Drikakis D. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions // J. Comput. Phys. 2011. V. 230. № 4. P. 1585–1601.
  20. Abraham D.S., Marques A.N., Nave J.C. A correction function method for the wave equation with interface jump conditions // J. Comput. Phys. 2018. V. 353. № 10. P. 281–299.
  21. Tong F. et al. How to obtain an accurate gradient for interface problems? // J. Comput. Phys. 2020. V. 405. P. 109070.
  22. Bilbao S. Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The one-dimensional case // J. Acoust. Soc. Am. 2023. V. 153. № 4. P. 2023.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).