Construction and applications of knowledge graph of porphyry copper deposits
- Authors: Zhou Y.1,2, Zhang Q.1,2, Shen W.1,2, Xiao F.1,2, Zhang Y.2, Zhou S.2, Huang Y.3, Ji J.1,2, Tang L.1,2, Ouyang C.1,2
-
Affiliations:
- Sun Yat-sen University
- Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
- Guangdong Xuanyuan Network Tech. Inc.
- Issue: Vol 44, No 3 (2021)
- Pages: 204-218
- Section: Geoinformatics
- URL: https://journal-vniispk.ru/2686-9993/article/view/358670
- DOI: https://doi.org/10.21285/2686-9993-2021-44-3-204-218
- ID: 358670
Cite item
Full Text
Abstract
About the authors
Yongzhang Zhou
Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Email: zhouyz@mail.sysu.edu.cn
ORCID iD: 0000-0002-8572-5849
Qianlong Zhang
Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Email: zhouyz@mail.sysu.edu.cn
ORCID iD: 0000-0002-8572-5849
Wenjie Shen
Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Email: zhouyz@mail.sysu.edu.cn
ORCID iD: 0000-0002-8572-5849
Fan Xiao
Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Yanlong Zhang
Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Shiwu Zhou
Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Yongjian Huang
Guangdong Xuanyuan Network Tech. Inc.
Junjie Ji
Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Lei Tang
Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
Chong Ouyang
Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey
References
Zhang Q., Zhou Y. Big data helps geology develop rapidly // Acta Petrologica Sinica. 2018. Vol. 34. Iss. 11. P. 3167–3172. Zhou Y., Wang J., Zuo R., Xiao F., Shen W., Wang S. Machine learning, deep learning and Python language // Acta Petrologica Sinica. 2018. Vol. 34. Iss. 11. P. 3173–3178. Zhou Y., Zhang L., Zhang O., Wang J. Big data mining & machine learning in geoscience. GuangZhou: Sun Yat-sen University Press, 2018. 269 p. Singhal A. Introducing the Knowledge Graph: things, not strings // Blog.google. URL: https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ (28.02.2021). Wu W., Li H., Wang H., Zhu K. Q. Probase: a probabilistic taxonomy for text understanding // Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. 2012. P. 481–492. https://doi.org/10.1145/2213836.2213891. Hoffart J., Suchanek F. M., Berberich K., Weikum G. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia // Artificial Intelligence. 2013. Vol. 194. P. 28–61. https://doi.org/10.1016/j.artint.2012.06.001. Lukovnikov D., Fischer A., Lehmann J., Auer S. Neural network-based question answering over knowledge graphs on word and character level // WWW'17: Proceedings of the 26th International Conference on World Wide Web. 2017. P. 1211–1220. https://doi.org/10.1145/3038912.3052675. Xu B., Xu Y., Liang J., Xie C., Liang B., Cui W., et al. CN-DBpedia: a never-ending Chinese Knowledge extraction system // Advances in Artificial Intelligence: From Theory to Practice. 2017. P. 428–438. https://doi.org/10.1007/978-3-319-60045-1_44. Palumbo E., Rizzo G., Troncy R., Baralis E., Osella M., Ferro E. An empirical comparison of knowledge graph embeddings for item recommendation // Istituzionale della Ricerca. 2018.. URL: https://iris.polito.it/retrieve/handle/11583/2710124/203256/paper2.pdf (28.02.2021). Wang C., Yu H., Wan F. Information retrieval technology based on knowledge graph // Proceedings of the 2018 3rd International Conference on Advances in Materials, Mechatronics and Civil Engineering (ICAMMCE 2018). 2018. https://doi.org/10.2991/icammce-18.2018.65. Qi H., Dong S., Zhang L., Hu H., Fan J. Construction of Earth science knowledge graph and its future perspectives // Geological Journal of China Universities. 2020. Vol. 26. Iss. 1. P. 2–10. https://doi.org/10.16108/j.issn1006-7493.2019099. Zhou Y., Zhang Q., Huang Y., Yang W., Xiao F. Construction of knowledge graph of porphyry copper deposit from Qingzhou Bay – Hangzhou Bay and insight into knowledge graph based mineral resource prediction and evaluation // Earth Sciences Frontiers. 2021. Vol. 28. Iss. 3. P. 67–75. Liu Q., Li Y., Duan H., Liu Y., Qin Z. Knowledge graph construction techniques // Journal of Computer Research and Development. 2016. Vol. 53. Iss. 3. P. 582–600. https://doi.org/10.7544/issn1000-1239.2016.20148228. Sahoo S., Halb W., Hellmann S., Idehen K., Thibodeau Jr T., Auer S., et al. A survey of current approaches for mapping of relational databases to RDF: W3C RDB2RDF Incubator Group report // W3.org. URL: https://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf (28.02.2021). Chen Y., Chen C., Liu Z., Hu Z., Wang X. The methodology function of CiteSpace mapping knowledge domains // Studies in Science of Science. 2015. Vol. 2. P. 243–252. https://doi.org/10.16192/j.cnki.1003-2053.2015.02.009. Knublauch H., Fergerson R.W., Noy N.F., Musen M.A. The Protégé OWL plugin: an open development environment for semantic web applications // The Semantic Web – ISWC 2004. 2004. P. 229–243. https://doi.org/10.1007/978-3-540-30475-3_17. Zhao P. Quantitative mineral prediction and deep mineral exploration // Earth Science Frontiers. 2007. Vol. 14. Iss. 5. P. 1–10. Agterberg F. Geomathematics: theoretical foundations, applications and future developments. Springer International Publishing, 2014. 553 p.. URL: https://www.springer.com/gp/book/9783319068732(28.02.2021).
Supplementary files


