О необходимости контроля миграции газа при цементировании скважин

Обложка

Цитировать

Полный текст

Аннотация

В процессе строительства скважин и их эксплуатации часто возникают проблемы, связанные с проявлениями пластовых флюидов и их движением по заколонному пространству в результате некачественного цементирования. Значительные затраты средств и времени на ликвидацию заколонных и межколонных перетоков возможно снизить за счет эффективного предупреждения этих явлений. Цель данного исследования заключалась в представлении результатов анализа факторов, приводящих к образованию каналов движения пластовых флюидов при цементировании, а также в поиске решения проблемы заколонных перетоков в скважине. В ходе исследований авторами были рассмотрены механизмы процессов, протекающих при эволюции цементного раствора в затрубном пространстве скважин во время крепления обсадных колонн, существующие способы решения проблемы миграции пластовых флюидов, а также способы их предупреждения. В качестве наиболее перспективного, с точки зрения авторов, способа избежания негативных последствий данной проблемы предлагается метод предупреждения образования каналов миграции. Для его реализации разобран принцип работы лабораторной установки OFITE и метод моделирования скважинных условий работы цементного раствора. Приведены графики, полученные в результате испытаний цемента, и их интерпретация. Установлено, что в большинстве случаев цементные системы без модификации соответствующими реагентами не способны сдерживать миграцию флюида в процессе перехода из жидкого состояния в твердое, а также что миграция флюида происходит в течение критического периода при схватывании цемента – спустя 3–8 часов твердения. В результате проведенных работ выявлено, что выбранный способ оценки и модифицирования цементных систем позволяет повысить потенциал эффективного решения проблемы миграции пластовых флюидов путем снижения вероятности образования заколонных перетоков.

Об авторах

Е. В. Аверкина

Иркутский национальный исследовательский технический университет

Email: averkina@ex.istu.edu
ORCID iD: 0000-0002-5492-4079

А. В. Коротков

Иркутский национальный исследовательский технический университет

Email: korotkov@ex.istu.edu
ORCID iD: 0009-0008-4293-7607

Л. С. Алабердин

Иркутский национальный исследовательский технический университет

Email: leffalab@gmail.com
ORCID iD: 0009-0007-2953-2405

Список литературы

  1. Гасумов Р.А., Гридин В.А., Овчаров С.Н., Гасумов Э.Р. Исследование причин заколонных проявлений при цементировании скважин эксплуатационной колонны // Наука. Инновации. Технологии. 2017. № 4. С. 125–136.
  2. Егорова Е.В., Выборнова Т.С. Анализ образования флюидопроявляющих каналов в зацементированном пространстве скважин и мероприятия по обеспечению качественной крепи // Деловой журнал Neftegaz.ru. 2017. № 2. С. 46–49. Режим доступа: https://neftegaz.ru/science/development/331551-analiz-obrazovaniya-flyuidoproyavlyayushchikhkanalov-v-zatsementirovannom-prostranstve-skvazhin-i-m/?ysclid=lw4d8kzzvq821251377 (дата обращения: 26.02.2024).
  3. Пискунов А.И. Заколонные перетоки и анализ причин их появления // Проблемы разработки месторождений углеводородных и рудных полезных ископаемых. 2014. № 1. С. 141–144. EDN: SVSDSV.
  4. Чжу Д.П. Анализатор миграции газа производства компании OFI Testing Equipment, Inc // Бурение и нефть. 2008. № 3. С. 49–51. EDN: KXUNBH.
  5. Булатов А.И., Макаренко П.П., Будников В.Ф. Теория и практика заканчивания скважин. В 5 т. Т. 3. М.: Недра, 1998. 410 с.
  6. Bonett A., Pafitis D. Getting to the root of gas migration // Oilfield Review. 1996. Iss. 8. P. 36–49.
  7. Tao C., Rosenbaum E., Kutchko B.G., Massoudi M. A brief review of gas migration in oilwell cement slurries // Energies. 2021. Vol. 14. Iss. 9. P. 2369. https://doi.org/10.3390/en14092369.
  8. Nelson E.B., Guillot D. Well cementing. Houston: Schlumberger, 2006. 774 p.
  9. Курбанов Я.М., Черемисина Н.А. Анализ технических решений по предотвращению поступления пластовых флюидов в заколонное пространство скважины в период ожидания затвердевания цемента // Известия высших учебных заведений. Нефть и газ. 2019. № 5. С. 64–71. https://doi.org/10.31660/0445-0108-2019-5-64-71. EDN: NTONBN.
  10. Лихушин А.М., Киршин В.И. Проектирование высокогерметичных подземных хранилищ газа для хранения гелия или гелиевого концентрата // Научно-технический сборник «Вести газовой науки». 2015. № 3. С. 68–72. EDN: WJGQCT.
  11. Кашкапеев С.В., Новиков С.С. Особенности образования межколонных давлений в скважине и комплекс исследований для их диагностики // Газовая промышленность. 2018. № 8. С. 54–59. EDN: XYUHPN.
  12. Буглов Н.А., Бутакова Л.А., Шакирова Э.В., Аверкина Е.В. Использование отходов кремниевого производства в качестве добавок, улучшающих технологические показатели тампонажных растворов // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 6. С. 122–130. https://doi.org/10.18799/24131830/2022/6/3428. EDN: HUPJMW.
  13. Курбанов Я.М., Черемисина Н.А. Анализ технических решений по предотвращению поступления пластовых флюидов в заколонное пространство скважины в период ожидания затвердевания цемента // Известия высших учебных заведений. Нефть и газ. 2019. № 5. С. 64–71. https://doi.org/10.31660/0445-0108-2019-5-64-71. EDN: NTONBN.
  14. Салахов Р.М., Нургалиев А.Р. Разработка рецептуры тампонажного раствора для предупреждения газопрорыва в период ожидания затвердевания цемента // Проблемы разработки месторождений углеводородных и рудных полезных ископаемых. 2019. Т. 1. С. 197–199. EDN: JXCQBZ.
  15. Аникеева Э.С. Проблема фильтрации флюида через цементный камень на газовых месторождениях с низкой проницаемостью коллектора // Актуальные проблемы нефти и газа. 2021. № 3. С. 61–75. https://doi.org/10.29222/ipng.2078-5712.2021-34.art5. EDN: BAAUIG.
  16. Al-Yami A.S., Nasr-El-Din H.A., Humaidi A.S. An innovative cement formula to prevent gas migration problems in HT/HP wells // SPE International Symposium on Oilfield Chemistry. The Woodlands: Society of Petroleum Engineers, 2009. https://doi.org/10.2118/120885-MS.
  17. Ozyurtkan M.H., Altun G., Mihcakan I.M., Serpen U. An experimental study on mitigation of oil well cement gas permeability // International Petroleum Technology Conference. Beijing, 2013. https://doi.org/10.2523/IPTC-16577-MS.
  18. Мухаметшин Д.М., Ваганов Ю.В., Билецкий А.А., Мухаметшин А.Д. Анализ причин возникновения межколонных давлений в нефтяных скважинах на месторождениях Тюменской области // Известия высших учебных заведений. Нефть и газ. 2022. № 4. С. 119–127. https://doi.org/10.31660/0445-0108-2022-4-119-127. EDN: QDWFIX.
  19. Блинов П.А., Шаньшеров А.В., Черемшанцев Д.М., Кузнецова Н.Ю., Никишин В.В. Анализ и выбор тампонажной смеси, устойчивой к динамическим нагрузкам, с целью повышения качества герметичности крепи в затрубном пространстве // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333. № 11. С. 115–123. https://doi.org/10.18799/24131830/2022/11/3726. EDN: HWELIO.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).