Experimental study of carbonate samples dissolution using X-ray microcomputer-based tomography

Cover Page

Cite item

Full Text

Abstract

Background: The study of the interaction of hydrochloric acid with carbonate materialsis important in the oil and gas industry. Carbonate rocks are common rock types, and half of all petroleum reserves worldwide are found in carbonate deposits. Understanding the mechanisms and characteristics of dissolution of carbonate rocks is of great practical importance in the production of hydrocarbons and the injection of carbon dioxide into formations.

Aim: The purpose of this article is to study the dissolution processes of carbonate samples in laboratory conditions using X-ray microcomputer-based tomography.

Materials and methods: The study used 5 cylindrical carbonate samples, which were tested during the injection of hydrochloric acid solutions. Additional experimental and digital data from 8 samples are also used. The three-dimensional pore space of the samples was obtained using specialized software based on tomographic images.

Results: The results obtained demonstrate the significance of the use of X-ray computed tomography for a deeper understanding of dissolution processes in geological and engineering studies. The study highlighted the complexity of the rock dissolution process, which depends on many factors. The created three-dimensional models of the samples allowed us to visualize wormholes, including branched and dominant wormholes. 3D imaging provided valuable information about changes in the pore structure of the samples before and after acid exposure.

Conclusion: The results of this study highlight the importance of considering physical and structural properties when analyzing dissolution processes in carbonate samples. These data can have practical applications in the oil and gas industry, contributing to a more accurate understanding and optimization of the processes of interaction of acid solutions with carbonate samples.

About the authors

Darezhat A. Bolysbek

Satbayev University; Al-Farabi Kazakh National University

Email: bolysbek.darezhat@gmail.com
ORCID iD: 0000-0001-8936-3921
Kazakhstan, Almaty; Almaty

Alibek B. Kulzhabekov

Satbayev University; KBTU BIGSoft

Email: alibek.kuljabekov@gmail.com
ORCID iD: 0000-0003-4384-6463
Kazakhstan, Almaty; Almaty

Bakbergen E. Bekbau

Satbayev University

Author for correspondence.
Email: bakbergen.bekbau@gmail.com
ORCID iD: 0000-0003-2410-1626
Kazakhstan, Almaty

References

  1. Maheshwari P, Maxey J, Balakotaiah V. Simulation and Analysis of Carbonate Acidization with Gelled and Emulsified Acids. Abu Dhabi International Petroleum Exhibition and Conference; 2014 Nov 10–13; Abu Dhabi, UAE. Available from: https://onepetro.org/SPEADIP/proceedings-abstract/14ADIP/2-14ADIP/210607. Cited 2023 July 20.
  2. Luo Z, Cheng L, Zhao L, Xie Y. Study on the mechanism of reactive acid transport in fractured two-mineral carbonate rocks. Journal of Natural Gas Science and Engineering. 2021;94:104118. doi: 10.1016/j.jngse.2021.104118.
  3. An S, Erfani H, Hellevang H, Niasar V. Lattice-Boltzmann simulation of dissolution of carbonate rock during CO2-saturated brine injection. Chemical Engineering Journal. 2021;408:127235. doi: 10.1016/j.cej.2020.127235.
  4. Luquot L, Rodriguez O, Gouze P. 2014. Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transport in Porous Media. 2014;101(3):507–532. doi: 10.1007/s11242-013-0257-4.
  5. Soltanbekova, K, Assilbekov B, Zolotukhin A, et al. Results of laboratory studies of acid treatment of low-permeability rock cores. Series of Geology and Technical Sciences. 2014;5(449):113–123. doi: 10.32014/2021.2518-170X.105.
  6. Qajar J, Arns C. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis – part 1: Assessment of pore-scale mineral dissolution and deposition. Journal of Contaminant Hydrology. 2016;192:60–86. doi: 10.1016/j.jconhyd.2016.06.005
  7. Smith MM, Sholokhova Y, Hao Y, Carroll SA. CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments. Advances in Water Resources, 2013;62:370–387. doi: 10.1016/j.advwatres.2013.09.008.
  8. Xie L, You Q, Wang E, et al. Quantitative characterization of pore size and structural features in ultra-low permeability reservoirs based on X-ray computed tomography. Journal of Petroleum Science and Engineering. 2022;208(Part E), 109733. doi: 10.1016/j.petrol.2021.109733
  9. Zhou X, Xu Z, Xia Y, et al. Pore-scale investigation on reactive flow in porous media with immiscible phase using lattice Boltzmann method. Journal of Petroleum Science and Engineering. 2020;191:107224. doi: 10.1016/j.petrol.2020.107224.
  10. Turegeldieva KA, Zhapbasbayev UK, Assilbekov BK, Zolotukhin AB. Matrix acidizing modeling of near-wellbore with reduced reservoir properties (part 2). Oil Industry. 2016;4:108–110. (In Russ).
  11. Assilbekov B, Akasheva Z, Bolysbek D, Kuljabekov А. Numerical study of carbonate rock dissolution: influence of domain scale. Bulletin Abai KazNPU. Series of Physics & Mathematical Sciences. 2022;3(79):63–72. doi: 10.51889/3035.2022.74.92.008.
  12. Liu S, Zhang L, Su X, et al. Micro-CT characterization on pore structure evolution of low-permeability sandstone under acid treatment. Applied Geochemistry. 2023;152:105633. doi: 10.1016/j.petrol.2021.108593.
  13. Al-Arji H, Al-Azman A, Le-Hussain F, Regenauer-Lieb K. Acid stimulation in carbonates: A laboratory test of a wormhole model based on Damköhler and Péclet numbers. Journal of Petroleum Science and Engineering. 2021;203:108593. doi: 10.1016/j.petrol.2021.108593.
  14. She M, Shou J, Shen A, et al. Experimental simulation of dissolution law and porosity evolution of carbonate rock. Petroleum Exploration and Development. 2016;43:616–625. doi: 10.1016/S1876-3804(16)30072-6.
  15. He Z, Ding Q, Wo Y, et al. Experiment of Carbonate Dissolution: Implication for High Quality Carbonate Reservoir Formation in Deep and Ultradeep Basins. Geofluids. 2017;2017:1–8. doi: 10.1155/2017/8439259.
  16. Meng J, Chen S, Wang J, et al. Development and Application of Carbonate Dissolution Test Equipment under Thermal – Hydraulic – Chemical Coupling Condition. Materials. 2022;15:7383. doi:10.3390/ ma15207383.
  17. Bolysbek D, Assilbekov B, Kuljabekov А. Numerical study of the effect of rock dissolution on the pore structure of carbonate samples based on experimental data. Bulletin Abai KazNPU. Series of Physics & Mathematical Sciences. 2023;82(2).
  18. Akasheva ZK, Bolysbek DA, Assilbekov BK. Study of carbonate rock dissolution using x-ray microcomputed tomography: impact of acid flow rate. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2023;1(457):20–32. doi: 10.32014/2023.2518-170Х.256. (In Russ).
  19. Amira-Avizo Software [Internet]. Thermo Fisher Scientific [cited 2023 April 28]. Available from: https://www.fei.com/software/amira-avizo/.
  20. Soulaine C, Gjetvaj F, Garing C, et al. A. The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability. Transport in Porous Media. 2016;113(1):227–243. doi.org/10.1007/s11242-016-0690-2.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Photos of samples

Download (139KB)
3. Figure 2. Equipment used to determine the mineral composition and scan samples

Download (153KB)
4. Figure 3. Equipment and Procedure of filtration experiments

Download (175KB)
5. Figure 4. Photos of samples after injection of acid solution

Download (117KB)
6. Figure 5. Raw images of samples before and after rock dissolution

Download (530KB)
7. Figure 6. Results of filtering and segmentation of sample 3 images

Download (320KB)
8. Figure 7. Pore spaces of samples and porosity distribution along the length of samples before and after dissolution when injecting a 12% HCl solution

Download (386KB)
9. Figure 8. Pore spaces of samples and porosity distribution along the length of samples before and after dissolution when injecting a 18% HCL solution

Download (215KB)

Copyright (c) 2023 Bolysbek D.A., Kulzhabekov A.B., Bekbau B.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».