Calculation of the characteristics of rock samples based on their images using deep machine learning algorithms

Cover Page

Cite item

Full Text

Abstract

Porosity, absolute permeability and diffusion coefficient are important characteristics of the flow of fluids in the pore space of rocks, the determination of which is resource-intensive and time-consuming. With the development of deep machine learning methods over the past 3–4 years, artificial neural networks have begun to be actively used in determining the transport properties of the “liquid-porous medium” system and the geometric characteristics of the pore space of samples based on their images. This method allows you to quickly determine the desired properties with acceptable accuracy. Therefore, the question arises about the effectiveness and adequacy of deep machine learning methods for these purposes.

This article provides a scientific review of open literature sources on the determination of absolute permeability, diffusion coefficient and porosity from images obtained by different scanning methods. We also used our own data, namely images for 4 carbonate samples, and presented the results of predicting the connected porosity of these samples based on their X-ray images using the convolutional neural network model we built.

The review showed that images of rock samples obtained using various scanning methods make it possible to calculate their transport properties with high reliability in a significantly short time. This means that deep machine learning can be a good alternative tool for calculating the properties of rock samples based on their images. The model we built showed the predictive ability of the porosity of 3 carbonate samples with a reliability coefficient of 0.936–0.976.

About the authors

Bakytzhan K. Assilbekov

U.A. Joldasbekov Institute of Mechanics and Engineering; Satbayev University

Email: assibekov.b@gmail.com
ORCID iD: 0000-0002-0368-0131

PhD

Kazakhstan, Almaty; Almaty

Nurlykhan E. Kalzhanov

KBTU BIGSoft; Al-Farabi Kazakh National University

Email: nurkal022@gmail.com
ORCID iD: 0009-0008-5776-0971
Kazakhstan, Almaty; Almaty

Bakbergen E. Bekbau

Satbayev University

Author for correspondence.
Email: bakbergen.bekbau@gmail.com
ORCID iD: 0000-0003-2410-1626

PhD

Kazakhstan, Almaty

Darezhat A. Bolysbek

U.A. Joldasbekov Institute of Mechanics and Engineering; Satbayev University

Email: bolysbek.darezhat@gmail.com
ORCID iD: 0000-0001-8936-3921
Kazakhstan, Almaty; Almaty

References

  1. Rajalingam B, Priya R. Multimodal Medical Image Fusion based on Deep Learning Neural Network for Clinical Treatment Analysis. Int J ChemTech Res. 2018;11(6):160–176. doi: 10.20902/IJCTR.2018.110621.
  2. Cicceri G, Inserra G, Limosani M. A Machine Learning Approach to Forecast Economic Recessions – An Italian Case Study. Mathematics. 2020;8(2). doi: 10.3390/math8020241.
  3. Yoon J. Forecasting of Real GDP Growth Using Machine Learning Models: Gradient Boosting and Random Forest Approach. Comput Econ. 2021;57(1):247–265. doi: 10.1007/s10614-020-10054-w.
  4. Gholami R, Shahraki AR, Jamali Paghaleh M. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine. Math Probl Eng. 2012:1–18. doi: 10.1155/2012/670723.
  5. Waszkiewicz S, Krakowska-Madejska P, Puskarczyk E. Estimation of absolute permeability using artificial neural networks (multilayer perceptrons) based on well logs and laboratory data from Silurian and Ordovician deposits in SE Poland. Acta Geophys. 2019;67:1885–1894. doi: 10.1007/s11600-019-00347-6.
  6. Tembely M, AlSumaiti AM, Alameri W. A deep learning perspective on predicting permeability in porous media from network modeling to direct simulation. Comput. Geosci. 2020;24(4):1541–1556. doi: 10.1007/s10596-020-09963-4.
  7. Xuan YM, Zhao K, Li Q. Investigation on mass diffusion process in porous media based on Lattice Boltzmann method. Heat Mass Transf. 2010;46(10):1039–1051. doi: 10.1007/s00231-010-0687-2.
  8. Wang Y, Lin G. Efficient deep learning techniques for multiphase flow simulation in heterogeneous porousc media. J Comput Phys. 2020;401. doi: 10.1016/j.jcp.2019.108968.
  9. Santos JE, Xu D, Jo H, et al. PoreFlow-Net: A 3D convolutional neural network to predict fluid flow through porous media. Adv Water Resour. 2020;138. doi: 10.1016/j.advwatres.2020.103539.
  10. Da Wang Y, Blunt MJ, Armstrong RT, Mostaghimi P. Deep learning in pore scale imaging and modeling. Earth-Science Rev. 2021;215. doi: 10.1016/j.earscirev.2021.103555.
  11. Bolysbek DA, Kulzhabekov AB, Bekbau B, Uzbekaliyev KS. Study of the pore structure and calculation of macroscopic characteristics of rocks based on X-ray microcomputed tomography images. Kazakhstan J oil gas Ind. 2023;5(2):17–30. doi: 10.54859/kjogi108647. (In Russ).
  12. Tian J, Qi C, Sun Y, et al. Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods. Eng Comput. 2021;37:3455–3471. doi: 10.1007/s00366-020-01012-z.
  13. Graczyk KM, Matyka M. Predicting porosity, permeability, and tortuosity of porous media from images by deep learning. Sci Rep. 2020;10. doi: 10.1038/s41598-020-78415-x.
  14. Caglar B, Broggi G, Ali MA, et al. Deep learning accelerated prediction of the permeability of fibrous microstructures. Compos Part A Appl Sci Manuf. 2022;158. doi: 10.1016/j.compositesa.2022.106973.
  15. Araya-Polo M, Alpak FO, Hunter S, et al. Deep learning–driven permeability estimation from 2D images. Comput Geosci. 2020;24:571–580. doi: 10.1007/s10596-019-09886-9.
  16. Wang H, Yin Y, Hui XY, et al. Prediction of effective diffusivity of porous media using deep learning method based on sample structure information self-amplification. Energy AI. 2020;2. doi: 10.1016/j.egyai.2020.100035.
  17. Tembely M, AlSumaiti AM, Alameri WS. Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography. Energy Reports. 2021;7:1460–1472. doi: 10.1016/j.egyr.2021.02.065.
  18. Wu H, Fang W-Z, Kang Q, et al. Predicting Effective Diffusivity of Porous Media from Images by Deep Learning. Sci Rep. 2019;9. doi: 10.1038/s41598-019-56309-x.
  19. Graczyk KM, Strzelczyk D, Matyka M. Deep learning for diffusion in porous media. Sci Rep. 2023;13. doi: 10.1038/s41598-023-36466-w.
  20. Tang P, Zhang D, Li H. Predicting permeability from 3D rock images based on CNN with physical information. J Hydrol. 2022;606. doi: 10.1016/j.jhydrol.2022.127473.
  21. Zhang H, Yu H, Yuan X, et al. Permeability prediction of low-resolution porous media images using autoencoder-based convolutional neural network. J Pet Sci Eng. 2022;208. doi: 10.1016/j.petrol.2021.109589.
  22. Alqahtani N, Alzubaidi F, Armstrong RT, et al. Machine learning for predicting properties of porous media from 2d X-ray images. J Pet Sci Eng. 2020;184. doi: 10.1016/j.petrol.2019.106514.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Generated porous media and their diffusion coefficient [18]

Download (237KB)
3. Figure 2. Diffusion coefficients obtained by different methods [18]

Download (225KB)
4. Figure 3. Generated porous media with different porosity [16]

Download (437KB)
5. Figure 4. Diffusion coefficient calculated by different methods [16]

Download (99KB)
6. Figure 5. Generated porous media with different porosity [19]

Download (449KB)
7. Figure 6. 3D image of a carbonate sample [17]

Download (235KB)
8. Figure 7. Comparison of predicted permeability of carbonate and sandstone samples with permeability calculated using LBM [17]

Download (231KB)
9. Figure 8. CNN model architecture [20]

Download (333KB)
10. Figure 9. Predicted permeabilities by conventional and proposed CNN model architecture vs. LBM calculated permeability [21]

Download (211KB)
11. Figure 10. Predicted permeabilities using the conventional and proposed methodologies compared with the true permeability [21]

Download (143KB)
12. Figure 11. Predicted porosities from processed and unprocessed images compared with true porosities [22]

Download (97KB)
13. Figure 12. Schematic representation of the extraction process of rectangular sample

Download (1MB)
14. Figure 13. Pore space of extracted rectangular samples

Download (299KB)
15. Figure 14. Distribution of porosity averaged over the cross section of the considered samples along their length

Download (94KB)
16. Figure 15. CNN architecture

Download (102KB)
17. Figure 16. Changing the loss function during test and validation

Download (69KB)
18. Figure 17. Predicted and true porosity of samples

Download (79KB)

Copyright (c) 2024 Assilbekov B.K., Kalzhanov N.E., Bekbau B.E., Bolysbek D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».