Alternative Methods of thermal Oil Recovery: A Review

Cover Page

Cite item

Full Text

Abstract

Oil production from fields with hard-to-recover reserves always remains a challenge for the oil and gas industry, mainly due to one special factor – the high viscosity of oil, which implies low mobility of oil in a porous medium. Over time, traditional methods of increasing oil recovery become less effective due to a decrease in readily available oil reserves and the complexity of geological conditions for field development. In this regard, the need to use innovative methods to increase oil recovery is becoming more urgent. In recent decades, research in this area has shown significant progress, various methods have been introduced to reduce the viscosity of oil. One of the most effective and actively developing approaches in this area is thermal methods of enhanced oil recovery. They are based on the injection of thermal energy into the reservoir in order to reduce the viscosity of oil and, consequently, increase mobility, which in turn will greatly facilitate the displacement of oil from the rock to the surface.

Despite certain successes achieved in the use of various methods of increasing oil recovery in the production of heavy oil, the problem of finding alternative methods remains relevant.

This article presents the review of alternative methods of enhanced oil recovery, including principle of operation of electromagnetic heating of the reservoir, the influence and effectiveness of radio waves and microwave frequencies on the reservoir and the properties of oil, ultrasonic exposure, advantages and disadvantages of alternative methods, comparing them with traditional methods, analyzing the productivity of fields where alternative methods of enhanced oil recovery were used.

About the authors

Leya K. Kairgeldina

Kazakh-British Technical University

Author for correspondence.
Email: k.leya424@gmail.com
ORCID iD: 0009-0003-9189-0124
Kazakhstan, Almaty

Bauyrzhan Sarsenbekuly

Kazakh-British Technical University

Email: b.sarsenbekuly@kbtu.kz
ORCID iD: 0000-0002-8145-0542

PhD

Kazakhstan, Almaty

References

  1. Janzen R, Davis M, Kumar A. An assessment of opportunities for cogenerating electricity to reduce greenhouse gas emissions in the oil sands. Energy Conversion and Management. 2020;211. doi: 10.1016/j.enconman.2020.112755.
  2. Rezk MY, Allam NK. Impact of nanotechnology on enhanced oil recovery: a mini-review. Industrial & engineering chemistry research. 2019;58(36):16287–16295. doi: 10.1021/acs.iecr.9b03693.
  3. Dong X, Liu H, Chen Z, et al. Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection. Applied energy. 2019;239:1190–1211. doi: 10.1016/j.apenergy.2019.01.244.
  4. Rehman MM, Meribout M. Conventional versus electrical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology. 2012;2(4):169–179. doi: 10.1007/s13202-012-0035-9.
  5. Akhmetov RT, Mukhametshin VV, Kuleshova LS. Simulation of the absolute permeability based on the capillary pressure curves using the dumbbell model. Journal of Physics: Conference Series. 2019;1333(3): 1–8. doi: 10.1088/1742–6596/1333/3/032001.
  6. Bikbulatova GI, Galeev AS, Boltneva YA, et al. Optimization of pumping fixed volume of liquid on two directions. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2019;330(1):134–144. doi: 10.18799/24131830/2019/1/57.
  7. Galiullina IF, Kadyrov RR. Technical and economic background for siting production of well-killing liquid at oil fields. IOP Conference Series: Earth and Environmental Science. 2018;194(8). doi: 10.1088/1755-1315/194/8/082013.
  8. Filimonov OV, Galiullina IF. Area of reservoir heating during steam cyclic treatment of oil wells. IOP Conference Series: Earth and Environmental Science. 2018;194(8). doi: 10.1088/1755-1315/194/8/082010.
  9. Abernethy E. Production increase of heavy oils by electromagnetic heating. Journal of Canadian Petroleum Technology. 1976;15(03). doi: 10.2118/76-03-12.
  10. Kasevich RS, Price SL, Albertson A. Numerical modelling of radio frequency heating process for enhanced oil production. SPE Western Regional Meeting; 1997 June 25–27; Long Beach, California. Available from: https://onepetro.org/SPEWRM/proceedings-abstract/97WRM/All-97WRM/SPE-38311-MS/188693?redirectedFrom=PDF.
  11. Islam MR, Wadadar SS, Bansal A. Enhanced oil recovery of Ugnu tar sands of Alaska using electromagnetic heating with horizontal wells. International Arctic Technology Conference; 1991 May 29–31; Anchorage, Alaska. Available from: https://onepetro.org/speiatc/proceedings-abstract/91IATC/All-91IATC/SPE-22177-MS/52767.
  12. Ferri RP, Uthe MT. Hydrocarbon Remediation Using Microwaves // SPE/EPA/DOE Exploration and Production Environmental Conference; 2001 Feb 26–28; San Antonio, Texas. Available from: https://onepetro.org/SPEHSSE/proceedings-abstract/01EPEC/All-01EPEC/SPE-66519-MS/134691.
  13. Sahni A, Kumar M, Knapp RB. Electromagnetic Heating Methods for Heavy Oil Reservoirs. 2000 Society of Petroleum Engineers SPE/AAPG Western Regional Meeting; 2000 June 19–23; Long Beach, California. Available from: https://digital.library.unt.edu/ark:/67531/metadc719772/m2/1/high_res_d/790586.pdf.
  14. Fanchi JR. Feasibility of reservoir heating by electromagnetic irradiation. SPE Annual Technical Conference and Exhibition; 1990 Sept 23–26; New Orleans, Louisiana. Available from: https://onepetro.org/SPEATCE/proceedings-abstract/90SPE/All-90SPE/SPE-20483-MS/67836.
  15. Das S. Electro-magnetic heating in viscous oil reservoir. International Thermal Operations and Heavy Oil Symposium; 2008 Oct 20–23; Calgary, Alberta, Canada. Available from: https://onepetro.org/SPEITOHOS/proceedings-abstract/08ITOHOS/All-08ITOHOS/SPE-117693-MS/145905?redirectedFrom=PDF.
  16. Carrizales MA, Lake LW, Johns RT. Production improvement of heavy oil recovery by using electromagnetic heating. SPE Annual Technical Conference and Exhibition held; 2008 Sept 21–24; Denver, Colorado. Available from: f https://onepetro.org/SPEATCE/proceedings-abstract/08ATCE/All-08ATCE/SPE-115723-MS/144877.
  17. Ovalles C, Fonseca A, Lara A, et al. Opportunities of downhole dielectric heating in venezuela: Three case studies involving medium, heavy and extra-heavy crude oil reservoirs. SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference; 2002 Nov 4–7, 2002; Calgary, Alberta, Canada. Available from: https://onepetro.org/SPEITOHOS/proceedings-abstract/02ITOHOS/All-02ITOHOS/SPE-78980-MS/136634.
  18. Sarathi PS, Olsen DK. Practical aspects of steam injection processes: a handbook for independent operators. Bartlesville: National Inst. for Petroleum and Energy Research; 1992. 425 p.
  19. Hascakir B. Introduction to thermal Enhanced Oil Recovery (EOR) special issue. Journal of Petroleum Science and Engineering. 2017;154:438–441. doi: 10.1016/j.petrol.2017.05.026.
  20. Butler RM, Stephens DJ. The Gravity Drainage on Steam Heated Heavy Oil to Parallel Horizontal Wells. Journal of Canadian Petroleum Technology. 1981;20(02):90–96. doi: 10.2118/81-02-07.
  21. Hernandez OE, Farouq Ali SM. Oil Recovery From Athabasca Tar Sand By Miscible – Thermal Methods // Annual Technical Meeting; 1972 May 15–18; Calgary, Alberta. Available from: https://onepetro.org/PETSOCATM/proceedings-abstract/72ATM/All-72ATM/PETSOC-7249/5371.
  22. Farouq Ali SF, Abad B. Bitumen recovery from oil sands, using solvents in conjunction with steam. Journal of Canadian Petroleum Technology. 1976;15(03). doi: 10.2118/76-03-11.
  23. Hascakir B. How to select the right solvent for solvent-aided steam injection processes. Journal of Petroleum Science and Engineering. 2016;146:746–751. doi: 10.1016/j.petrol.2016.07.038.
  24. Turta AT, Chattopadhyay SK, Bhattacharya RN, et al. Current status of the commercial in situ combustion projects and new approaches to apply ISC. J Can Pet Technol. 2007;46(11). doi: 10.2118/07-11-GE.
  25. Burger JG. Chemical aspects of in-situ combustion-heat of combustion and kinetics. Society of Petroleum Engineers Journal. 1972;12(05):410–422. doi: 10.2118/3599-PA.
  26. Vishnumolakala N, Zhang J, Ismail NB. A Comprehensive Review of Enhanced Oil Recovery Projects in Canada and Recommendations for Planning Successful Future EOR projects // SPE Canada Heavy Oil Conference; 2020 Sept, 28 – Oct 2. Available from: https://onepetro.org/SPECHOC/proceedings-abstract/20CHOC/4-20CHOC/D041S009R001/448335.
  27. Hascakir B, Babadagli T, Akin S. Field-scale analysis of heavy-oil recovery by electrical heating. SPE Reservoir Evaluation & Engineering. 2010;13(01):131–142. doi: 10.2118/117669-PA.
  28. Hascakir B., Babadagli T., Akin S. Experimental and numerical modeling of heavy-oil recovery by electrical heating. Energy & Fuels. 2008;22:3976–3985. doi: 10.2118/117669-MS.
  29. Patent USA №4219 361/ 26.08.80. Sutton WH, Johnson WE. Method of improving the susceptibility of a material to microwave energy heating.
  30. Liu C, Sheen D. Analysis and control of the thermal runaway of ceramic slab under microwave heating. Science in China Series E: Technological Sciences. 2008;51:2233–2241. doi: 10.1007/s11431-008-0221-7.
  31. Wu X. Experimental and theoretical Study of Microwave Heating of thermal Runaway Materials [dissertation]. Blacksburg, Virginia: Polytechnic institute and state university; 2002.
  32. Leiser KS, Di Fiore RR, Cozzi AD, Clark DE. Microwave Heating Rates of Silicon Carbide/Alumina Cement Susceptors. Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures – B: Ceramic Engineering and Science Proceedings. 2008;18(4):551–556. doi: 10.1002/9780470294444.ch65.
  33. Peraser V, Patil SL, Khataniar S, et al. Evaluation of Electromagnetic Heating for Heavy Oil Recovery from Alaskan Reservoirs. SPE Western Regional Meeting; 2012 March 21–23; Bakersfield, California. Available from: https://onepetro.org/SPEWRM/proceedings-abstract/12WRM/All-12WRM/SPE-154123-MS/157976.
  34. Gibbs JW. Termodinamicheskiye raboty. М–L: Gostechizdat; 1950. 492 p. (In Russ).
  35. Abdullin AA, et al. editors. Mestorozhdeniya nefti I gaza. Almaty: Ministry of Natural Resources and Environmental Protection; 1999. 323 p.
  36. Hasanvand MZ, Golparvar A. A critical review of improved oil recovery by electromagnetic heating. Petroleum Science and Technology. 2014;32(6):631–637. doi: 10.1080/10916466.2011.592896.
  37. Wang Z, Xu Y, Gu Y. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery. Ultrasonics Sonochemistry. 2015;27:171–177. doi:org/10.1016/j.ultsonch.2015.05.017.
  38. Hamidi H, Mohammandian E, Junin R, et al. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium. Ultrasonics. 2014;54(2):655–662. doi:org/10.1016/j.ultras.2013.09.006.
  39. Palaev AG, Shammazov IA, Dzhemilev ER. Research of the impact of ultrasonic and thermal effects on oil to reduce its viscosity. Journal of Physics: Conference Series. 2020;1679(5). doi: 10.1088/1742-6596/1679/5/052073.
  40. Ershov MA, Mullakayev MS, Baranov DA. Snizheniye vyazkosti nefti s primeneniyem ul'trazvukovoy obrabotki i khimicheskikh reagentov. Equipment and technologies for oil and gas complex. 2011;4:22–26. (In Russ).
  41. Mullakayev MS, Saltykov YA, Saltykov AA, Mullakayev RM. Ul'trazvukovye tekhnologii vosstanovleniya produktivnosti nizkodebitnykh skvazhin. Neftegaz.RU. 2020. Vol. 2.
  42. Agi A, Junin R, Chong AS. Intermittent ultrasonic wave to improve oil recovery. Journal of Petroleum Science and Engineering. 2018;166:577–591. doi: 10.1016/j.petrol.2018.03.097.
  43. Sivakumar P, Krishna S, Hari S, Vij RK. Electromagnetic heating, an eco-friendly method to enhance heavy oil production: a review of recent advancements. Environmental Technology & Innovation. 2020;20. doi: 10.1016/j.eti.2020.101100.
  44. Singh R, Bahga SS, Gupta A. Electric field induced droplet deformation and breakup in confined shear flows. Physical Review Fluids. 2019;4(3). doi: 10.1103/PhysRevFluids.4.033701.
  45. Sahni A, Kumar M, Knapp RB. Electromagnetic heating methods for heavy oil reservoirs. SPE/AAPG Western Regional Meeting; 2000 June 19–22; Long Beach, California. Available from: https://onepetro.org/SPEWRM/proceedings-abstract/00WRM/All-00WRM/SPE-62550-MS/131783.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Temperature (oF) profile after 1 year of EM heating

Download (150KB)
3. Figure 2. Viscosity (Pa*s, 1Pa*s = 1000 cp) Profile After 1 Year of EM Heating

Download (182KB)
4. Figure 3. Oil Production Rate After 1 Year

Download (10KB)
5. Figure 4. Results of the experiment

Download (10KB)

Copyright (c) 2024 Kairgeldina L.K., Sarsenbekuly B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».