Geomechanical modeling aspects in support of hydraulic fracturing operations
- Authors: Iastrebov P.V.1, Prodan A.S.1, Rodionov V.V.1, Ugryumov A.S.1
-
Affiliations:
- Gazpromneft – Technology Partnerships LLC
- Issue: Vol 6, No 3 (2024)
- Pages: 59-71
- Section: Oil and gas field development and exploitation
- URL: https://journal-vniispk.ru/2707-4226/article/view/266873
- DOI: https://doi.org/10.54859/kjogi108708
- ID: 266873
Cite item
Full Text
Abstract
This paper describes the main aspects and nuances of geomechanical modeling that must be considered when supporting hydraulic fracturing operations and providing engineering support of projects. A key feature of geomechanical modeling for hydraulic fractures aims or self-induced fracturing in mature fields is the estimation of reservoir pressure, particularly in the vicinity of production and injection wells. In addition, this has a significant impact on stress anisotropy, which is the primary factor affecting the geometry of the hydraulic fracture and the surrounding induced stress field. It is also crucial to monitor geomechanical core studies, ensure quality control of samples, and accurately process research results since the profiles of elastic-strength properties and stresses depend on these factors. This paper also addresses fracturing, including its measurement, calculations, and the prediction of its spatial orientation and intensity.
Full Text
##article.viewOnOriginalSite##About the authors
Pavel V. Iastrebov
Gazpromneft – Technology Partnerships LLC
Author for correspondence.
Email: yastrebov.pv@gazprom-neft.ru
ORCID iD: 0009-0000-0032-8864
Russian Federation, Saint Petersburg
Artem S. Prodan
Gazpromneft – Technology Partnerships LLC
Email: prodan.as@gazprom-neft.ru
ORCID iD: 0009-0009-4543-3866
Russian Federation, Saint Petersburg
Viktor V. Rodionov
Gazpromneft – Technology Partnerships LLC
Email: rodionov.vvl@gazprom-neft.ru
ORCID iD: 0000-0001-6253-2115
Russian Federation, Saint Petersburg
Alexander S. Ugryumov
Gazpromneft – Technology Partnerships LLC
Email: ugryumov.as@gazprom-neft.ru
ORCID iD: 0009-0005-1109-7148
Russian Federation, Saint Petersburg
References
- Morrill JC, Miskimins JL. Optimizing Hydraulic Fracture Spacing in Unconventional Shales. SPE Hydraulic Fracturing Technology Conference. 2012 Feb 6–8; The Woodlands, Texas. Available from: https://onepetro.org/SPEHFTC/proceedings-abstract/12HFTC/All-12HFTC/SPE-152595-MS/157555.
- Sneddon N, Elliott, H. The Opening of a Griffith Crack Under Internal Pressure. Quarterly of Applied Mathematics. 1946;4(3):262–267. doi: 10.1093/qjmam/14.3.283.
- Eaton B. Fracture gradient prediction and its application in oilfield operations. Journal of Petroleum Technology. 1969;246:1353–1360. doi: 10.2118/2163-PA.
- Dinnik A. O davlenii gornykh porod i raschyot krepi krugloy shakhty // Inzhenernyi rabotnik. 1925;7:1–12. (In Russ).
- Jaeger J, Cook N. Fundamentals of Rock Mechanics 2nd edn. New York: Capman and Hall; 1979. 475 p.
- Zoback M. Reservoir Geomechanics. Cambridge: Cambridge University Press; 2010. 502 p.
- Kiryukhin A. Geotermoflyuidodinamika gidrotermal'nykh, vulkanicheskikh i uglevodorodnykh sistem. Saint-Petersburg: Eco-Vector; 2020. 431 p. (In Russ).
- Wiprut D, Zoback M. Constraining the full stress tensor for observations of drilling-induced tensile fractures and leak-off tests: Application to borehole stability and sand production on the Norwegian margin. Int. J. Rock Mech. & Min. Sci. 2000;37:317–336. doi: 10.1016/S1365-1609(97)00157-3.
- Barton CA, Zoback MD, Burns KL. In situ stress orientation and magnitude at the Fenton Geothermal site, New Mexico, determined from wellbore breakouts. Geophysical Research Letters. 1988;15(5):467–470. doi: 10.1029/GL015i005p00467.
- Peška P, Zoback M. Compressive and tensile failure of inclined wellbores and determination of in-situ stress and rock strength. Journal of Geophysical Research. 1995;100(B7):12791–12811. doi: 10.1029/95JB00319.
- Arhipov AI, Yastrebov PV. Analiticheskoe resheniye problemy ustoychivosti stvola skvazhiny. Inzhener-neftyanik. 2023;4:59–66. (In Russ).
- Zimmer M. Controls on the seismic velocities of unconsolidated sands: Measurements of pressure, porosity and compaction effects. Stanford, CA: Stanford University; 2004. 204 p.
- Zoback MD, Kohli AH. Unconventional Reservoir Geomechanics. Cambridge, United Kingdom: Cambridge University Press; 2019.
- Aliyev MM, Lutfullin AA, Ismagilova ZF. Neftegazovaya geomekhanika : uchebnoe posobiye. Moscow: Infra-Engineria; 2020. 492 p. (In Russ).
- Zhang JJ. Applied Petroleum Geomechanics, Cambridge. MA: Elsevier; 2019. 532 p.
- Fjaer E, Holt R, Horsrud P, et al. Petroleum Related Rock Mechanics. Amsterdam: Elsevier; 1992. 514 p.
Supplementary files
