A study of adsorption characteristics of activated carbon material for typical organic and inorganic pollutants

Cover Page

Cite item

Full Text

Abstract

The paper presents the results of adsorption studies on the developed activated carbon material (AM), obtained by two activation methods – with one (AM1) and two activators (AM2), respectively, as well as its compacted versions (AMK) using polyvinyl alcohol (PVА), polyvinyl acetate (PVAС) and basalt fiber (BF) as binders, with regard to typical pollutants of aquatic environments – organic dyes and heavy metals. The carbon materials sorption capacity was assessed by the ability to remove dye molecules – “methylene blue” (MB) and “sunset yellow” (SY) using spectrophotometric analysis, as well as by the ability to remove heavy metal salts – lead (Pb2+) using X-ray fluorescence spectrometry. As a result of adsorption kinetic studies, the absorption capacity of the starting material, activated and compacted materials was determined. The sorption capacity for lead for the materials carbonisate and AMK1 was 71 and 65 mg×g–1, respectively, the optimal sorption time was 30 minutes; for the materials AM1, AM2, AMK1/PVА, AMK1/PVAС and AMK1/BF 65, 66, 49, 45, 42 mg×g–1 accordingly, the optimal sorption time was 15 min. For MB and SY dyes, the parameters were 1000 – 2010 mg×g–1, 66 – 972 mg×g–1 and 15 min, respectively. To analyze the adsorption mechanisms using kinetic relationships and sorption isotherms, empirical equations of pseudo-first and pseudo-second order, Elovich equation and intraparticle diffusion model were used. The presented results show the possibility of using the developed activated carbon material as an effective sorbent of organic and inorganic pollutants from aqueous solutions.

About the authors

Igor N. Shubin

Tambov State Technical University

Author for correspondence.
Email: i.shubin77@yandex.ru
ORCID iD: 0009-0007-3235-5702

Cand. Sc. (Eng.), Associate Professor

Russian Federation, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

Oksana A. Ananyeva

Tambov State Technical University

Email: oksana.a9993471@gmail.com
ORCID iD: 0000-0002-1188-9402

Postgraduate Student

Russian Federation, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

References

  1. Krasnikova EM, Moiseenko NV. Adsorption and structural characteristics of carbon-containing adsorbents from plant raw material modified with oxidizers. «Actual physical and chemical problems of adsorption and synthesis of nanoporous materials: All-Russian symposium with international participation, dedicated to the memory of Corresponding Member of the Russian Academy of Sciences V.A. Avramenko. Proceedings of the symposium. Moscow: IPChE RAS; 2022. p. 219-221. (In Russ.)
  2. Razmara RS, Daneshfar A, Sahrai R. Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid–liquid extraction. Journal of Industrial and Engineering Chemistry. 2011;17(3):533-536. doi: 10.1016/j.jiec.2010.10.028
  3. Auta M, Hameed BH. Coalesced chitosan activated carbon composite for batch and fix-bed adsorption of cationic and anionic dyes. Colloids and Surfaces B: Biointerfaces. 2013;105:199-206. doi: 10.1016/j.colsurfb.2012.12.021
  4. Ruan X, Liu H, Chang C-Y, Fan X-Y. Preparation of organobentonite by a novel semidry-method and its adsorption of 2,4 edichlorophenol from aqueous solution. International Biodeterioration & Biodegradation. 2014;95:212-218. doi: 10.1016/j.ibiod.2014.06.007
  5. Lillo-Ródenas A, Cazoria-Amorós D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon. 2005;43:1758-1767. doi: 10.1016/j.carbon.2005.02.023
  6. Fomkin AA. Synthesis, properties and application of carbon adsorbents. Moscow: Granitsa; 2021. 312 p. (In Russ.)
  7. Kadum AHK, Burakova IV, Mkrtchyan ES, Ananyeva OА, Yarkin VO at al. Sorption kinetics of organic dyes methylene blue and malachite green on highly porous carbon material. Journal of Advanced Materials and Technologies. 2023;2:130-140. doi: 10.17277/jamt.2023.02.pp.130-140
  8. Fenelonov VB. Porous carbon. Novosibirsk: Institute of Catalysis SB RAS; 1995. 518 p. (In Russ.)
  9. Plaksin GV. Porous carbon materials of sibunite type. Khimiya v interesakh ustoychivogo razvitiya = Chemistry for Sustainable Development. 2001;9(5):609-620. (In Russ.)
  10. Jafari S, Ghorbani-Shahna F, Bahrami A, Kazemian H. Adsorptive removal of toluene and carbon tetrachloride from gas phase using zeolitic imidazolate framework-8: effects of synthesis method, particle size, and pretreatment of the adsorbent. Microporous and Mesoporous Materials. 2018;268:58-68. doi: 10.1016/j.micromeso.2018.04.013
  11. Kucherova AE, Shubin IN, Pasko TV. Perspective sorbents based on zeolite modified with nanostructures for the purification of aqueous media from organic impurities purification of aqueous media from organic impurities. Nanotechnologies in Russia. 2018;13(5-6):1-5. doi: 10.1134/S1995078018030096
  12. Sui H, An P, Li X, Cong S, He L. Removal and recovery of o-xylene by silica gel using vacuum swing adsorption. Chemical Engineering Journal. 2017;316:232-242. doi: 10.1016/j.cej.2017.01.061
  13. Popova АА, Shubin IN. Technology for modifying sorbents based on zeolite with carbon nanotubes. Vestnik tambovskogo gosudarstvennogo tekhnicheskogo universiteta. 2021;27(4):656-663. doi: 10.17277/vestnik.2021.04.pp.656-663 (In Russ.)
  14. Liu F, Jin YJ, Liao HB, Cai L, Tong MP, Hou YL. Facile self-assembly synthesis of titanate/Fe3O4 nanocomposites for the efficient removal of Pb2+ from aqueous systems. Journal of Materials Chemistry A. 2013;1(3):805-813. doi: 10.1039/C2TA00099G
  15. Olontsev VF, Farberova EA, Minkova AA, Generalova KN, Belousov KS. Optimization of porous structure of absorbent carbon in the course of technological production. Vestnik permskogo natsional′nogo issledovatel′skogo politekhnicheskogo universiteta. Khimicheskaya tekhnologiya i biotekhnologiya. 2015;4:9-23. (In Russ.)
  16. Mishchenko SV. Carbon nanomaterials: production, properties and application. Moscow: Mashinostroenie; 2008. 320 p. (In Russ.)
  17. Dyachkova TP, Tkachev AG. Methods of functionalisation and modification of the carbon nanotubes. Moscow: “Spektr” Publ. house; 2013. 152 p. (In Russ.)
  18. Shubin IN, Popova AA. Features of implementation options for the process of high-temperature activation of carbon material. Journal of Advanced Materials and Technologies. 2023;8(1):041-048. doi: 10.17277/jamt.2023.01.pp.041-048.
  19. Carvalho AP, Cardoso B, Pires J, Carvalho MB. Preparation of activated carbons from cork waste by chemical activation with KOH. Carbon. 2003;41(14): 2873-2876. doi: 10.1016/S0008-6223(03)00323-3
  20. Yoon SH, Lim S, Song Y, Ota Y et al. KOH activation of carbon nanofibers. Carbon. 2004;42(8-9): 1723-1729. doi: 10.1016/j.carbon.2004.03.006
  21. Chesnokov NV, Mikova NM, Ivanov IP, Kuznetsov BN. Synthesis of carbon sorbents by chemical modification of fossil coals and plant biomass. Zhurnal Sibirskogo federal′nogo universiteta. Khimiya. 2014;7(1): 42-53. (In Russ.)
  22. Dong W, Xia W, Xie K, Peng B at al. Synergistic effect of potassium hydroxide and steam co-treatment on the functionalization of carbon nanotubes applied as basic support in the Pd-catalyzed liquid-phase oxidation of ethanol. Carbon. 2017;121:452-462. doi: 10.1016/j.carbon.2017.06.019
  23. Raymundo-Pinero E, Azaıs P, Cacciaguerra T, Cazorla-Amoros D at al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon. 2005;43(4):786-795. doi: 10.1016/j.carbon.2004.11.005
  24. Popova АА, Shubin IN. Investigation of the process of high-temperature alkaline activation of carbon material with additional action of water vapor. Vestnik tambovskogo gosudarstvennogo tekhnicheskogo universiteta. 2022;28(3):476-486. doi: 10.17277/vestnik.2022.03.pp.476-486.9 (In Russ.)
  25. Ouyang J, Zhou L, Liu Z, Heng JYY, Chen W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: a review. Separation and Purification Technology. 2020;253: 117536. doi: 10.1016/j.seppur.2020.117536
  26. Han X, Wang H, Zhang L. Efficient removal of methyl blue using nanoporous carbon from the waste biomass. Water, Air, and Soil Pollution. 2018;229(2):26. doi: 10.1007/s11270-017-3682-0
  27. Shubin IN. Features of hardware and technological process formation in obtaining the compacted carbon materials. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroyeniye. 2024;1:57-67. doi: 10.18698/0536-1044-2024-01-57-67 (In Russ.)
  28. Falco C, Marco-Lozar JP, Salinas-Torres D, Morallo´n E at al. Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon. 2013;62:346-355. doi: 10.1016/j.carbon.2013.06.017
  29. Shubin IN, Mkrtchyan ES, Ananyeva OA. Promising sorbents based on compacted highly porous carbon materials. Journal of Advanced Materials and Technologies. 2023;8(4):270-278. doi: 10.17277/jamt.2023.04.pp.270-278
  30. Mkrtchyan ES, Popova AA, Shubin IN. Investigation of promising carbon sorbents obtained by high-temperature activation in the processes of purification of aqueous solutions from dyes. Perspektivnyye Materialy = Prospective Materials. 2023;11:28-38. doi: 10.30791/1028-978X-2023-11-28-38 (In Russ.)
  31. Zgrzebnicki M, Kałamaga A, Wrobel R. Sorption and textural properties of activated carbon derived from charred beech wood. Molecules. 2021;26:7604. doi: 10.3390/molecules26247604
  32. Cychosz KA, Thommes M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering. 2018;4:559-566. doi: 10.1016/j.eng.2018.06.001
  33. Bahadur J, Melnichenko YB, He L, Contescu CI at al. SANS investigations of CO2 adsorption in microporous. Carbon. 2015;95:535-544. doi: 10.1016/j.carbon.2015.08.010
  34. Mukhin VM, Klushin VN. Production and application of carbon adsorbents: textbook. Moscow: Mendeleev Russian University of Chemical Technology; 2012. 308 p. (In Russ.)
  35. Al-Ghouti MA, Sweleh AO. Optimizing textile dye removal by activated carbon prepar froedm olive stones. Environmental Technology and Innovation. 2019;16:100488. doi: 10.1016/j.eti.2019.100488
  36. Ji B, Wang J, Song H, Chen W. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. Journal of Environmental Chemical Engineering. 2019;7(3):103036. doi: 10.1016/j.jece.2019.103036
  37. Li Z, Hanafy H, Zhanga L, Sellaouid L at al. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chemical Engineering Journal. 2020;388:124263. doi: 10.1016/j.cej.2020.124263
  38. Canales-Flores RA, Prieto-García F. Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. Diamond and Related Materials. 2020;109:108027. doi: 10.1016/j.diamond.2020.108027
  39. Wang B, Gao B, Zimmerman AR, Lee X. Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue. Chemical Engineering Research and Design. 2018;133:235-242. doi: 10.1016/j.cherd.2018.03.026
  40. Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology. 2006; 97(9):1061-1085. doi: 10.1016/j.biortech.2005.05.001
  41. Nayeri D, Mousavi SA. Dye removal from water and wastewater by nanosized metal oxides-modified activated carbon: a review on recent researches. Journal of Environmental Health Science and Engineering. 2020;18(2):1671-1689. doi: 10.1007/s40201-020-00566-w
  42. Mariana M, Khalil AHPS, Mistar EM, Yahya EB, et al. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. Journal of Water Process Engineering. 2021;43:102221. doi: 10.1016/j.jwpe.2021.102221
  43. Sabzehmeidani MM, Mahnaee S, Ghaedi M, Heidari H. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances. 2021;2(2):598-627. doi: 10.1039/D0MA00087F
  44. Han Z, Tang Z, Shen S, Zhao B, at al. Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Scientific Reports. 2014;4:5025. doi: 10.1038/srep05025
  45. Purnendu SS. Graphene-based 3D xerogel as adsorbent for removal of heavy metal ions from industrial wastewater. Journal of Renewable Materials. 2017;5(2):96-102. doi: 10.7569/JRM.2016.634134
  46. Wang B, Zhang F, He S, Huang F, Peng Z. Adsorption behavior of reduced graphene oxide for removal of heavy metal ions. Asian Journal of Chemistry. 2014;26:4901-4906. doi: 10.14233/ajchem.2014.17024
  47. Gautam RK, Chattopadhyaya MC. Nanomaterials for Wastewater Remediation. Oxford: Elsevier; 2016. 347 p.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».