Effect of periodic ventilation in a classroom on air quality and microclimate

封面

如何引用文章

全文:

详细

Air quality and microclimate parameters in classrooms impact student health and academic performance. Calculate the precise reduction in carbon dioxide concentration achieved through periodic ventilation is challenging. Therefore, an experimental study was conducted to evaluate the effect of ventilation on air quality and microclimate parameters during the cold season. The research object was a classroom with an area of 55.6 m2. On the first day of the study, ventilation was implemented before the start of classes and during breaks. On the second and third days, the ventilation schedule was determined by the students and lecturers. Carbon dioxide concentration, air temperature and relative humidity were measured using an air quality meter positioned in the center of the room at a height of 1.5 meters. On the first day, the air quality met the required standard for 16% of the teaching time, while it was acceptable and low for 47 and 37% of the time, respectively. The maximum carbon dioxide concentration reached 2639 ppm, and an unstable thermal environment was observed, with a maximum temperature increase of 4.7 °C over a 45-minute class period. Without control over the ventilation schedule and with the classroom door closed during classes, the duration of study time with poor air quality increased by 2.2 times, and the maximum carbon dioxide concentration was 1.3 times higher.

作者简介

D. Simonov

Ural Federal University named after the first President of Russia B. N. Yeltsin

A. Morozov

Ural Federal University named after the first President of Russia B. N. Yeltsin

K. Konovalova

Ural Federal University named after the first President of Russia B. N. Yeltsin

E. Miskova

Ural Federal University named after the first President of Russia B. N. Yeltsin

参考

  1. Денисихина Д. М. Численное исследование закономерностей распределения CO2 в общественных зданиях. Инновации и инвестиции. 2023;(5):368–372. URL: https://www.innovazia.ru/archive/39071/.
  2. Мансуров Р. Ш., Мухин А. И., Костин В. И., Омельченко Д. А., Гавриленко В. А., Соколов Ю. Г. Воздушный режим помещений небольшого объема общественных зданий при нестационарном характере работы. Известия высших учебных заведений. Строительство. 2023;(9):46–57. https://doi.org/10.32683/0536-1052-2023-777-9-46-57
  3. Уляшева В. М., Иванова Ю. В., Аншукова Е. А. Численное моделирование микроклимата в торговых помещениях. Сантехника. Отопление. Кондиционирование. 2024;(9):64–67. URL: https://www.c-o-k.ru/archivecok?num=9&year=2024.
  4. Дацюк Т. А., Гримитлин А. М., Таурит В. Р., Иванова Ю. В. Численное моделирование вентиляции спацентра. Сантехника. Отопление. Кондиционирование. 2024;(10):50–52. URL: https://www.c-o-k.ru/archivecok?num=10&year=2024.
  5. Sadrizadeh S., Yao R., Yuan F., Awbi H., Bahnfleth W., Bi Ya. et al. Indoor air quality and health in schools: a critical review for developing the roadmap for the future school environment. Journal of Building Engineering. 2022;57:104908. https://doi.org/10.1016/j.jobe.2022.104908
  6. Wargocki P., Wyon D. P. Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment. 2013;59:581–589. https://doi.org/10.1016/j.buildenv.2012.10.007
  7. Симонов Д. С., Морозов А. Ю., Коновалова К. Д., Миськова Е. Л. Обзор результатов исследований влияния качества воздуха на обучение и посещаемость. Сантехника. Отопление. Кондиционирование. 2024;(10):54–56. URL: https://www.c-o-k.ru/archive-cok?num=10&year=2024.
  8. Andamon M. M., Rajagopalan P., Woo J. Evaluation of ventilation in Australian school classrooms using long-term indoor CO2 concentration measurements. Building and Environment. 2023;237:110313. https://doi.org/10.1016/j.buildenv.2023.110313
  9. Cabovská B., Bekö G., Teli D., Ekberg L., Dalenb ck Ja. O., Wargocki P. et al. Ventilation strategies and indoor air quality in Swedish primary school classrooms. Building and Environment. 2022;226:109744. https://doi.org/10.1016/j.buildenv.2022.109744
  10. Ding E., Zhang D., Hamida A., García-Sánchez C., Jonker L., De Boer A. R. et al. Ventilation and thermal conditions in secondary schools in the Netherlands: Effects of COVID-19 pandemic control and prevention measures. Building and Environment. 2023;229(4):109922. https://doi.org/10.1016/j.buildenv.2022.109922
  11. Zhang D., Ding E., Bluyssen P. M. Guidance to assess ventilation performance of a classroom based on CO2 monitoring. Indoor and Built Environment. 2022;31(4):1107–1126. https://doi.org/10.1177/1420326X211058743
  12. Симонов Д. С., Морозов А. Ю., Жилина Т. С. Воздухообмен и воздухораспределение в учебных кабинетах образовательных организаций. Сантехника. Отопление. Кондиционирование. 2024;(7):62–65. URL: https://www.c-o-k.ru/archive-cok?num=7&year=2024.
  13. Korsavi S. S., Montazami A. Children's thermal comfort and adaptive behaviours; UK primary schools during nonheating and heating seasons. Energy and Buildings. 2020;214:109857. https://doi.org/10.1016/j.enbuild.2020.109857
  14. Wargocki P., Porras-Salazar J. A., Contreras-Espinoza S. The relationship between classroom temperature and children’s performance in school. Building and Environment. 2019;157:197–204. https://doi.org/10.1016/j.buildenv.2019.04.046
  15. Mohamed S., Rodrigues L., Omer S., Calautit J. Overheating and indoor air quality in primary schools in the UK. Energy and Buildings. 2021;250:111291. https://doi.org/10.1016/j.enbuild.2021.111291
  16. Wargocki P., Foldbjerg P., Eriksen K. E., Videbæk L. E. Socio-economic consequences of improved indoor air quality in Danish primary schools. In: Indoor Air 2014. The 13th Conferenceof the International Sosiety of Indoor Air Quality and Climate. Hong Kong, July 7 to 12, 2014. Vol. 5. 2014. P. 953–958.
  17. Каменев П. Н., Тертичник Е. И. Вентиляция. Москва: АСВ; 2008. 624 с. URL: https://djvu.online/file/SYF0pFbiklm8F?ysclid=m88oek1oz901811982
  18. Горбаткова Е. Ю., Ахмадуллина Х. М., Ахмадуллин У. З., Зулькарнаев Т. Р., Хуснутдинова З. А., Мануйлова Г. Р. Гигиеническая оценка состава воздушной среды студенческих аудиторий. Гигиена и санитария. 2022;101(4):453–458. https://doi.org/10.47470/0016-9900-2022-101-4-453-458
  19. Исаева Г. Ш., Зиатдинов В. Б., Габидуллина С. Н. Гигиенический и микробиологический мониторинг воздушной среды в начальной школе. Здравоохранение Российской Федерации. 2016;60(2):83–88. URL: https://www.elibrary.ru/item.asp?id=25717378.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».