Temperature control of aerial current-carrying conductors by insulation surface temperature

Cover Page

Cite item

Full Text

Abstract

This study aims to develop and carry out numerical analysis of a methodology for determining the temperature of conductors of insulated wires, which implies measuring electric current and insulation surface temperature as well as using Smart Grid technology. We used a mathematical model of thermal conditions for conductors in the form of an algebraic fourth-degree equation and the Ferrari method to solve this equation. Simulation of temperature fields providing comparison results was carried out using the finite element method in the COMSOL Multiphysics. The temperature of conductors was measured taking into account measurement errors and using the least squares method together with the golden-section search. The finite element method made it possible to study temperature distribution in the section of SIP-3 shielded wire as well as in its insulation surface. The dependencies of changes in the maximum and minimal temperatures of the wire insulation surface were obtained as a result of simulation; these dependencies were influenced by wind speed changes at the maximum permissible temperature of conductors. The difference between the maximum and minimum surface temperatures was shown to reach approximately 25°C at wind speeds of 3–4 m/s. Our study resulted in function, the minimization of which makes it possible to find the temperature of current-carrying conductors of shielded wires by values of the insulation surface temperature. Comparative analysis of the developed method for determining the temperature of conductors and the finite element method provided the calculation error of 0.44°C given accurate settings of electric current value. The study results substantiate the need to take into account the nonuniformity in temperature distribution on the insulation surface of shielded conductors when monitoring power lines. The developed methodology for calculating the temperature of conductors by measurement data provides high accuracy at almost any nonuniformity in the surface temperature provided that the current measurement error equals 5% or less.

About the authors

S. S. Girshin

Omsk State Technical University

Email: stansg@mail.ru
ORCID iD: 0000-0002-0650-1880

V. N. Goryunov

Omsk State Technical University

Email: vladimirgoryunov2016@yandex.ru
ORCID iD: 0000-0002-4707-2023

E. V. Petrova

Omsk State Technical University

Email: evpetrova2000@yandex.ru
ORCID iD: 0000-0002-7866-5630

V. A. Krivolapov

Omsk State Technical University

Email: KrivolapovVladislav1998@gmail.com

V. A. Deev

Omsk State Technical University

Email: vlad_deev@inbox.ru

K. S. Shcherbakov

Omsk State Technical University

Email: kirya.shcherbakov.01@mail.ru

N. Yu. Nikolayev

Omsk State Technical University

Email: munp@yandex.ru
ORCID iD: 0000-0002-3046-2092

References

  1. Hasan M.K., Ahmed M.M., Musa S.S., Islam S., Abdullah S.N.H.S., Hossain E. An improved dynamic thermal current rating model for PMU–based wide area measurement framework for reliability analysis utilizing sensor cloud system // IEEE Access. 2021. Vol. 9. P. 14446–14458. https://doi.org/10.1109/ACCESS.2021.3052368.
  2. Lai Ching-Ming, Teh Jiashen. Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems // Energy Reports. 2022. Vol. 8. P. 3263–3288. https://doi.org/10.1016/j.egyr.2022.02.085.
  3. El–Azab M., Omran W.A., Mekhamer S.F., Talaat H.E.A. Congestion management of power systems by optimizing grid topology and using dynamic thermal rating // Electric Power Systems Research. 2021. Vol. 199. P. 107433. https://doi.org/10.1016/j.epsr.2021.107433.
  4. Dawson L., Knight A.M. Investigating the impact of a dynamic thermal rating on wind farm integration // IET Generation, Transmission & Distribution. 2023. Vol. 17. Iss. 4. P. 2449–2457. https://doi.org/10.1049/gtd2.12821.
  5. Lai Ching-Ming, Teh Jiashen, Alharbi B., AlKassem A., Aljabr A., Alshammari N. Optimisation of generation unit commitment and network topology with the dynamic thermal rating system considering N–1 reliability // Electric Power Systems Research. 2023. Vol. 221. P. 109444. https://doi.org/10.1016/j.epsr.2023.109444.
  6. Zainuddin N.M., Rahman M.S.A., Kadir M.Z.A.A., Ali N.H.B.N., Ali Z., Miszaina Osman, et al. Review of thermal stress and condition monitoring technologies for overhead transmission lines: issues and challenges // IEEE Access. 2020. Vol. 8. P. 120053–120081. https://doi.org/10.1109/ACCESS.2020.3004578.
  7. Rahman M., Atchison F., Cecchi V. Temperature–dependent system level analysis of electric power transmission systems: а review // Electric Power Systems Research. 2021. Vol. 193. P. 107033. https://doi.org/10.1016/j.epsr.2021.107033.
  8. Lawal O.A., Teh J. Dynamic thermal rating forecasting methods: a systematic survey // IEEE Access. 2022. Vol. 10. P. 65193–65205. https://doi.org/10.1109/ACCESS.2022.3183606.
  9. Karimi S., Musilek P., Knight A.M. Dynamic thermal rating of transmission lines: a review // Renewable and Sustainable Energy Reviews. 2018. Vol. 91. P. 600–612. https://doi.org/10.1016/j.rser.2018.04.001.
  10. Martinez R., Manana M., Arroyo A., Bustamante S., Laso A., Castro P., et al. Dynamic rating management of overhead transmission lines operating under multiple weather conditions // Energies. 2021. Vol. 14. Iss. 4. P. 1136. https://doi.org/10.3390/en14041136.
  11. Xie Xiaowei, Liu Zhengjun, Xu Caijun, Zhang Yongzhen. A multiple sensors platform method for power line inspection based on a large unmanned helicopter // Sensors. 2017. Vol. 17. Iss. 6. P. 1222. https://doi.org/10.3390/s17061222.
  12. Iglesias J., Watt G., Douglass D., Morgan V., Stephen R., Bertinat M., et al. Guide for thermal rating calculations of overhead lines // CIGRE. 2014. P. 95.
  13. Zivkovic M. IEEE Standard for calculating the current-temperature relationship of bare overhead conductors sponsored by the transmission and distribution Committee. New York: IEEE, 2013. 58 р. https://doi.org/10.1109/IEEESTD.2013.6692858.
  14. Петрова Е.В., Гиршин С.С., Криволапов В.А., Горюнов В.Н., Троценко В.М. Анализ длительно допустимых токов и потерь активной мощности в воздушных линиях электропередачи с учетом климатических факторов // Омский научный вестник. 2023. № 4. С. 84–92. https://doi.org/10.25206/1813–8225-2023-188-84-92. EDN: WQGZWB.
  15. Liu Yanxin, Sun Jianyu, Chen Shaoping, Sha Jingjie, Yang Juekuan. Thermophysical properties of cross–linked polyethylene during thermal aging // Thermochimica Acta. 2022. Vol. 713. P. 179231. https://doi.org/10.1016/j.tca.2022.179231.
  16. Бигун А.Я., Гиршин С.С., Горюнов В.Н., Шепелев А.О., Ткаченко В.А., Троценко В.М. Оценка влияния ветра на нагрев изолированного провода воздушных линий электропередачи // Динамика систем, механизмов и машин. 2020. Т. 8. № 3. C. 23–30. https://doi.org/10.25206/2310-9793-8-3-23-30. EDN: HPGPAX.
  17. Liu Zhao, Deng Honglei, Peng Ruidong, Peng Xiangyang, Wang Rui, Zheng Wencheng, et al. An equivalent heat transfer model instead of wind speed measuring for dynamic thermal rating of transmission lines // Energies. 2020. Vol. 13. Iss. 18. P. 4679. https://doi.org/10.3390/en13184679.
  18. Sanda M., Kojima T., Higashi E., Maruyama T., Iwama N., Sakai O. Overhead transmission line monitoring system for dynamic rating // SEI Technical Review. 2018. No. 87. P. 64–69.
  19. Jagota V., Sethi A.S., Kumar K. Finite element method: an overview // Walailak Journal of Science and Technology. 2013. Vol. 10. Iss. 1. P. 1–8. https://doi.org/10.2004/WJST.V10I1.499.
  20. Петрова Е.В. Аналитический метод расчета потерь в воздушных линиях электроэнергетических систем с учетом изменения нагрузки и погодных условий // Омский научный вестник. 2023. № 3. С. 101–108. https://doi.org/10.25206/1813-8225-2023-187-101-108. EDN: QJTELW.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).