Temperature control of aerial current-carrying conductors by insulation surface temperature
- Authors: Girshin S.S.1, Goryunov V.N.1, Petrova E.V.1, Krivolapov V.A.1, Deev V.A.1, Shcherbakov K.S.1, Nikolayev N.Y.1
-
Affiliations:
- Omsk State Technical University
- Issue: Vol 29, No 1 (2025)
- Pages: 51-65
- Section: Power Engineering
- URL: https://journal-vniispk.ru/2782-4004/article/view/373042
- DOI: https://doi.org/10.21285/1814-3520-2025-1-51-65
- ID: 373042
Cite item
Full Text
Abstract
About the authors
S. S. Girshin
Omsk State Technical University
Email: stansg@mail.ru
ORCID iD: 0000-0002-0650-1880
V. N. Goryunov
Omsk State Technical University
Email: vladimirgoryunov2016@yandex.ru
ORCID iD: 0000-0002-4707-2023
E. V. Petrova
Omsk State Technical University
Email: evpetrova2000@yandex.ru
ORCID iD: 0000-0002-7866-5630
V. A. Krivolapov
Omsk State Technical University
Email: KrivolapovVladislav1998@gmail.com
V. A. Deev
Omsk State Technical University
Email: vlad_deev@inbox.ru
K. S. Shcherbakov
Omsk State Technical University
Email: kirya.shcherbakov.01@mail.ru
N. Yu. Nikolayev
Omsk State Technical University
Email: munp@yandex.ru
ORCID iD: 0000-0002-3046-2092
References
- Hasan M.K., Ahmed M.M., Musa S.S., Islam S., Abdullah S.N.H.S., Hossain E. An improved dynamic thermal current rating model for PMU–based wide area measurement framework for reliability analysis utilizing sensor cloud system // IEEE Access. 2021. Vol. 9. P. 14446–14458. https://doi.org/10.1109/ACCESS.2021.3052368.
- Lai Ching-Ming, Teh Jiashen. Comprehensive review of the dynamic thermal rating system for sustainable electrical power systems // Energy Reports. 2022. Vol. 8. P. 3263–3288. https://doi.org/10.1016/j.egyr.2022.02.085.
- El–Azab M., Omran W.A., Mekhamer S.F., Talaat H.E.A. Congestion management of power systems by optimizing grid topology and using dynamic thermal rating // Electric Power Systems Research. 2021. Vol. 199. P. 107433. https://doi.org/10.1016/j.epsr.2021.107433.
- Dawson L., Knight A.M. Investigating the impact of a dynamic thermal rating on wind farm integration // IET Generation, Transmission & Distribution. 2023. Vol. 17. Iss. 4. P. 2449–2457. https://doi.org/10.1049/gtd2.12821.
- Lai Ching-Ming, Teh Jiashen, Alharbi B., AlKassem A., Aljabr A., Alshammari N. Optimisation of generation unit commitment and network topology with the dynamic thermal rating system considering N–1 reliability // Electric Power Systems Research. 2023. Vol. 221. P. 109444. https://doi.org/10.1016/j.epsr.2023.109444.
- Zainuddin N.M., Rahman M.S.A., Kadir M.Z.A.A., Ali N.H.B.N., Ali Z., Miszaina Osman, et al. Review of thermal stress and condition monitoring technologies for overhead transmission lines: issues and challenges // IEEE Access. 2020. Vol. 8. P. 120053–120081. https://doi.org/10.1109/ACCESS.2020.3004578.
- Rahman M., Atchison F., Cecchi V. Temperature–dependent system level analysis of electric power transmission systems: а review // Electric Power Systems Research. 2021. Vol. 193. P. 107033. https://doi.org/10.1016/j.epsr.2021.107033.
- Lawal O.A., Teh J. Dynamic thermal rating forecasting methods: a systematic survey // IEEE Access. 2022. Vol. 10. P. 65193–65205. https://doi.org/10.1109/ACCESS.2022.3183606.
- Karimi S., Musilek P., Knight A.M. Dynamic thermal rating of transmission lines: a review // Renewable and Sustainable Energy Reviews. 2018. Vol. 91. P. 600–612. https://doi.org/10.1016/j.rser.2018.04.001.
- Martinez R., Manana M., Arroyo A., Bustamante S., Laso A., Castro P., et al. Dynamic rating management of overhead transmission lines operating under multiple weather conditions // Energies. 2021. Vol. 14. Iss. 4. P. 1136. https://doi.org/10.3390/en14041136.
- Xie Xiaowei, Liu Zhengjun, Xu Caijun, Zhang Yongzhen. A multiple sensors platform method for power line inspection based on a large unmanned helicopter // Sensors. 2017. Vol. 17. Iss. 6. P. 1222. https://doi.org/10.3390/s17061222.
- Iglesias J., Watt G., Douglass D., Morgan V., Stephen R., Bertinat M., et al. Guide for thermal rating calculations of overhead lines // CIGRE. 2014. P. 95.
- Zivkovic M. IEEE Standard for calculating the current-temperature relationship of bare overhead conductors sponsored by the transmission and distribution Committee. New York: IEEE, 2013. 58 р. https://doi.org/10.1109/IEEESTD.2013.6692858.
- Петрова Е.В., Гиршин С.С., Криволапов В.А., Горюнов В.Н., Троценко В.М. Анализ длительно допустимых токов и потерь активной мощности в воздушных линиях электропередачи с учетом климатических факторов // Омский научный вестник. 2023. № 4. С. 84–92. https://doi.org/10.25206/1813–8225-2023-188-84-92. EDN: WQGZWB.
- Liu Yanxin, Sun Jianyu, Chen Shaoping, Sha Jingjie, Yang Juekuan. Thermophysical properties of cross–linked polyethylene during thermal aging // Thermochimica Acta. 2022. Vol. 713. P. 179231. https://doi.org/10.1016/j.tca.2022.179231.
- Бигун А.Я., Гиршин С.С., Горюнов В.Н., Шепелев А.О., Ткаченко В.А., Троценко В.М. Оценка влияния ветра на нагрев изолированного провода воздушных линий электропередачи // Динамика систем, механизмов и машин. 2020. Т. 8. № 3. C. 23–30. https://doi.org/10.25206/2310-9793-8-3-23-30. EDN: HPGPAX.
- Liu Zhao, Deng Honglei, Peng Ruidong, Peng Xiangyang, Wang Rui, Zheng Wencheng, et al. An equivalent heat transfer model instead of wind speed measuring for dynamic thermal rating of transmission lines // Energies. 2020. Vol. 13. Iss. 18. P. 4679. https://doi.org/10.3390/en13184679.
- Sanda M., Kojima T., Higashi E., Maruyama T., Iwama N., Sakai O. Overhead transmission line monitoring system for dynamic rating // SEI Technical Review. 2018. No. 87. P. 64–69.
- Jagota V., Sethi A.S., Kumar K. Finite element method: an overview // Walailak Journal of Science and Technology. 2013. Vol. 10. Iss. 1. P. 1–8. https://doi.org/10.2004/WJST.V10I1.499.
- Петрова Е.В. Аналитический метод расчета потерь в воздушных линиях электроэнергетических систем с учетом изменения нагрузки и погодных условий // Омский научный вестник. 2023. № 3. С. 101–108. https://doi.org/10.25206/1813-8225-2023-187-101-108. EDN: QJTELW.
Supplementary files

