Compacting nanopowder materials by a pulse pressure generated by expanding plasma channel of a spark ignited by wire electrical explosion

Cover Page

Cite item

Full Text

Abstract

The purpose of the article is to explore the possibilities of powder material compaction by the pressure pulse of an electric explosion of a conductor, establish a functional relationship between the parameters of the pressure pulse and an electrical technological installation for powder material compaction, select the parameters for pulse pressure amplitude and duration adjustment, and specify the design options of the working tool for powder material compaction. Analytical studies have been carried out on the basis of the method of formalized representation of the development of the process of pulse pressure wave formation and propagation where the latter is created by an expanding plasma channel of an electric spark in a transmitting medium initiated by an electric explosion of a wire. The simulation of high-speed de formation of the pipe wall under the action of the pulse pressure is carried out in the MATLAB software package. A scanning electron microscope is used to study the microstructure of the breakage of the compacted material with nanomodifiers. Based on the experimental studies on powder material compaction by the pulse pressure created by the expanding plasma channel of a spark initiated by an electric explosion of a wire when the current pulse f rom an electrotechnological installation is supplied to it, it has been determined that the magnitude and shape of the pressure pulse are most influenced by the parameters of this installation. Based on the obtained model studies, the optimal modes for compaction of nanomodified powders have been selected. The relationship is obtained between the parameters of the pulse pressure (Pm amplitude and pressure wave propagation form) and the electrotechnological installation (voltage, inductance, capacitance). It is proposed to use an acoustic-electric wave model to estimate the pressure that provides high-speed deformation of metal pipes, and to plot a deformation profile of metal pipes used for compaction. Analysis of SEM images of the fractures obtained in compact experiments has showed a high degree of particle compaction with the formation of a solid composite.

About the authors

L. M. Chebotnyagin

Irkutsk National Research Technical University

Email: leonid@istu.edu

V. V. Potapov

Irkutsk National Research Technical University

Email: otep2@istu.edu

N. A. Ivanov

Irkutsk National Research Technical University

Email: ivnik@istu.edu

N. N. Ivanchik

Irkutsk National Research Technical University

Email: nkolayivanchik@gmail.com

References

  1. Kuz’min M.P., Ivanov N.A., Kondrat’ev V.V., Kuz’mina M.Yu., Begunov A.I., Kuz’mina A.S., Ivanchik N.N. Preparation of aluminum–carbon nanotubes composite material by hot pressing // Metallurgist. 2018. Vol. 61 P. 815–821. https://doi.org/10.1007/s11015-018-0569-2
  2. Злобин С.Б., Пай В.В., Яковлев И.В., Кузьмин Г.Е. Взрывное компактирование алюминиевого порошка и исследование структуры компактов // Физика горения и взрывов. 2000. Т. 36. № 2. С. 105–109.
  3. Прюммер Р. Обработка порошкообразных материалов взрывом / пер. с нем. М.: Мир, 1990. 126 с.
  4. Петров Е.В., Сайков И.В., Щукин А.С. Ударноволновое компактирование порошка алюминия // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2016. Т. 21. Вып. 3. C. 1235–1237. https://doi.org/10.20310/1810-0198-2016-21-3-1235-1237
  5. Степанов В.Г., Шавров И.А. Высокоэнергетические импульсные методы обработки металлов. Л.: Машиностроение, 1975. 280 с.
  6. Дерибас А.А. Физика упрочнения и сварки взрывом: монография. 2-е изд., доп. и перераб. Новосибирск: Наука, 1980. 222 с.
  7. Райнхарт Д.С., Пирсон Д. Взрывная обработка металлов: монография. М.: Изд-во иностранной литературы, 1966. 391 с.
  8. Драбкина С.И. К теории развития канала искрового разряда // Журнал Экспериментальной и Теоретической Физики. 1951. Т. 21. Вып. 4. С. 473–483.
  9. Наугольных К.А., Рой Н.А. Электрические разряды в воде: монография. М.: Наука, 1971. 155 с.
  10. Каляцкий И.И., Сѐмкин Б.Ф., Халилов Д.Д. К анализу энергетических характеристик искры в контуре RLC // Электрофизическая аппаратура и электрическая изоляция: сб. докл. Межвузовской науч.-техн. конф. по вопросам создания и методам испытания высоковольтной электрофизической аппаратуры / под ред. А.А. Воробьѐва (г. Томск, 1967 г.). М.: Энергия, 1970. С. 242–247.
  11. Гегечкори Н.М. Экспериментальное исследование канала искрового разряда // Журнал Эксперименталь- ной и Теоретической Физики. 1951. Т. 21. Вып. 4. С. 493–506.
  12. Essmann S., Markus D., Maas U. Investigation of the spark channel of electrical discharges near the minimum ignition energy // Plasma Physics and Technology. 2016. Vol. 3. No. 3. Р. 116–121.. URL: https://scholar.google.com/citations?user=k1CGoJcAAAAJ&hl=de#d=gs_md_citad&u=%2Fcitations%3Fview_op%3Dview_citation%26hl%3Dde%26user%3Dk1CGoJcAAAAJ%26citation_for_view%3Dk1CGoJcAAAAJ%3AZph67rFs4hoC%26tzom%3D-480 (15.07.2020).
  13. Kharlov A.V. Spark channel dynamics in railgun switches in unipolar and oscillatory discharges // Laser and Particle Beams. 2019. Vol. 37. Issue 2. P. 223–230. https://doi.org/10.1017/S0263034619000429
  14. Kumar L. S., Chakravarthi S.R., Sarathi R., Jayaganthan R. Thermodynamic modeling and characterizations of Al nanoparticles produced by electrical wire explosion process // Journal of Materials Research. 2017. Vol. 32. Issue 4. P. 897–909. https://doi.org/10.1557/jmr.2016.507
  15. Kolmakov V.P., Grechneva M.V., Potapov V.V., Chebotnyagin L.M. Improving the quality of the tube–tube plate welded joint in welding with the energy of electrical explosion of a conductor // Welding International. 2015. Vol. 29. Issue 8. P. 633–638. https://doi.org/10.1080/09507116.2014.960699
  16. Potapov V.V., Kolmakov V.P., Chebotnyagin L.M. The algorithm of constructor and technological // Energy Systems Research 2019: International E3S Web Conference of Young Scientists. 2019. Vol. 114. https://doi.org/10.1051/e3sconf/201911403007
  17. Chebotnyagin L.M., Potapov V.V., Lopatin V.V. Kinetics of deformation of alloys by pulsed pressure of an electric discharge // Russian Physics Journal. 2015. Vol. 58. No. 1. P. 56–62. https://doi.org/10.1007/s11182-015-0462-4
  18. Chebotnyagin L.M., Potapov V.V., Lopatin V.V. Patterns of alloy deformation by pulsed pressure // Russian Physics Journal. 2015. Vol. 58. No. 2. P. 212–220. https://doi.org/10.1007/s11182-015-0484-y
  19. Cole R.H. Underwater explosions. New Jersey: Princeton University Press, 1948. 495 р.
  20. Круг К.А. Основы электротехники. Ч. 2. М.: Госэнергоиздат, 1946. 637 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).