Optimization of turning parameters for ultrafine grained Ti–Nb–Zr alloys using the Taguchi method
- Authors: Kuznetsov V.P.1,2, Goncharov D.S.1, Blinkov O.G.1, Sharkeev Y.P.3
-
Affiliations:
- Ural Federal University named after the first President of Russia B.N. Yeltsin
- National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
- Institute of Strength Physics and Materials Science SB RAS
- Issue: Vol 29, No 4 (2025)
- Pages: 466-476
- Section: Mechanical Engineering and Machine Science
- URL: https://journal-vniispk.ru/2782-4004/article/view/382252
- DOI: https://doi.org/10.21285/1814-3520-2025-4-466-476
- EDN: https://elibrary.ru/XBITUE
- ID: 382252
Cite item
Full Text
Abstract
About the authors
V. P. Kuznetsov
Ural Federal University named after the first President of Russia B.N. Yeltsin; National Ilizarov Medical Research Centre for Traumatology and Ortopaedics
Email: wpkuzn@mail.ru
ORCID iD: 0000-0001-8949-6345
D. S. Goncharov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: goncharovv.d@yandex.ru
ORCID iD: 0009-0009-9603-5980
O. G. Blinkov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: o.g.blinkov@urfu.ru
ORCID iD: 0000-0001-7353-9582
Yu. P. Sharkeev
Institute of Strength Physics and Materials Science SB RAS
Email: sharkeev@ispms.ru
ORCID iD: 0000-0001-5037-245X
References
- Chen Yu., Han Pingping, Dehghan-Manshadi A., Kent D., Ehtemam-Haghighi Sh., Jowers C., et al. Sintering and biocompatibility of blended elemental Ti-xNb alloys // Journal of the Mechanical Behavior of Biomedical Materials. 2020. Vol. 104. P. 103691. https://doi.org/10.1016/j.jmbbm.2020.103691. EDN: KLEIQC.
- Abdel-Hady G.M., Niinomi M. Biocompatibility of Ti-alloys for long-term implantation // Journal of the Mechanical Behavior of Biomedical Materials. 2013. Vol. 20. Р. 407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014. EDN: RMMTLD.
- Mishchenko O., Pogorielov M., Ovchynnykov O., Kapustian O. New Zr-Ti-Nb alloy for medical application: development, chemical and mechanical properties, and biocompatibility // Materials. 2020. Vol. 13. Iss. 6. Р. 1306. https://doi.org/10.3390/ma13061306. EDN: SSBOFU.
- Zhang Yuqing, Sun Danni, Cheng Jun, Tsoi James Kit Hon, Chen Jiang. Mechanical and biological properties of Ti-(0-25 Wt%)Nb alloys for biomedical implants application // Regenerative Biomaterials. 2019. Vol. 7. Iss. 1. Р. 119–127. https://doi.org/10.1093/rb/rbz042. EDN: ZUUGDE.
- Angelescu R.M., Raducanu D., Cojocaru V.D., Angelescu M.L., Butu M., Cinca I., et al. Microstructural and mechanical evaluation of a Ti-Nb-Ta alloy // Scientific Bulletin-University Politehnica of Bucharest. 2015. Vol. 77. Iss. 3. Р. 221–228.
- Kim Kyong Min, Kim Hee Young, Miyazaki S. Effect of Zr content on phase stability, deformation behavior, and young’s modulus in Ti-Nb-Zr alloys // Materials. 2020. Vol. 13. Iss. 2. Р. 476. https://doi.org/10.3390/ma13020476. EDN: XTDXUB.
- Boubaker H.B., Le-Coz G., Moufki A., Nouari M., Laheurte P. Experimental and numerical investigations of cutting forces and chip formation during precision cutting of Ti42Nb titanium alloy produced by laser-based powder bed fusion // The International Journal of Advanced Manufacturing Technology. 2024. Vol. 131. Iss. 2. Р. 701–717. https://doi.org/10.1007/s00170-023-11511-0. EDN: XMLOYY.
- Maurotto A., Roy A., Babitsky V.I., Silberschmidt V.V. Analysis of machinability of Ti- and Ni-based alloys // Solid State Phenomena. 2012. Vol. 188. Р. 330–338. https://doi.org/10.4028/www.scientific.net/SSP.188.330. EDN: PQFLAR.
- Takahashi M., Kikuchi M., Takada Yu. Grindability of Ti−Nb−Cu alloys for dental machining applications // Metals. 2022. Vol. 12. Iss. 5. Р. 861. https://doi.org/10.3390/met12050861. EDN: DAPFER.
- Jiang Shengxian, Sakurai J., Aono Y., Hata S. Novel evaluation method for machinability of Ni-Nb-Ti alloy // The Proceedings of the Materials and Processing Conference. 2013. Vol. 21. Р. 632-1–632-1. https://doi.org/10.1299/jsmemp.2013.21._632-1_.
- Sakthivelu S., Anandaraj T. Prediction of optimum machining parameters on surface roughness and MRR in CNC drilling of AA6063 alloy using design of experiments // International Journal of Engineering Research and Technology. 2017. Vol. 5. Iss. 13. Р. 1–5. https://doi.org/10.17577/IJERTCONV5IS13078.
- Krishnaprakasha, Pavitra A. Optimization of drilling parameters on surface roughness of Al 1200-SiC composites using Taguchi analysis // IOSR Journal of Mechanical and Civil Engineering. 2018. Vol. 15. Iss. 3. Р. 77–84. https://doi.org/10.9790/1684-1503047784.
- Suthar J., Teli S.N., Murumkar A. Drilling process improvement by Taguchi method // Materialstoday: Proceedings. 2021. Vol. 47. Part 11. P. 2814–2819. https://doi.org/10.1016/j.matpr.2021.03.533.
- Kuznetsov V.P., Dmitriev A.I., Anisimova G.S., Semenova Yu.V. Optimization of nanostructuring burnishing technological parameters by Taguchi method // Materials Science and Engineering: IOP Conference Series. 2016. Vol. 124. P. 012022. https://doi.org/10.1088/1757-899x/124/1/012022.
- Кузнецов В.П., Анисимова Г.С., Семенова Ю.В. Оптимизация методом Тагучи параметров наноструктурирующего выглаживания стали 20Х13 по критерию упрочнения поверхностного слоя // Теплофизические и технологические аспекты повышения эффективности машиностроительного производства: тр. IV Междунар. на- уч.-техн. конф. (Резниковские чтения) (г. Тольятти, 27–29 мая 2015 г.). Тольятти: ТГУ, 2015. Т. 1. С. 279–286. EDN: TZDFOD.
- Kuznetsov V.P., Gorgots V.G., Vorontsov I.A., Skorobogatov A.S., Kosareva A.V. Surface hardening of medical parts made of AISI 304 austenitic stainless steel by nanostructuring burnishing // Physical Mesomechanics of Condensed Matter: Physical Principles of Multiscale Structure formation and the Mechanisms of Nonlinear behavior: AIP Conference Proceedings (Tomsk, 5–8 September 2022). Tomsk: AIP Conference Proceedings, 2023. Vol. 2899. Iss. 1. P. 020085. https://doi.org/10.1063/5.0162889. EDN: SZVLIH.
- Patel R., Patel S., Patel P., Parmar P., Vohra J. Optimization of machining parameters for EN8D carbon steel by Taguchi’s orthogonal array experiments in CNC turning // Materialstoday: Proceedings. 2021. Vol. 44. Part 1. Р. 2325–2329. https://doi.org/10.1016/J.MATPR.2020.12.409.
- Lin Yue-Feng, Lai Pei-Yu, Chen Guan-Yu, Zhang Zi-Peng. Optimization of surface roughness and cylindricity using the Taguchi method in boring of S45C steel with tungsten steel and phosphor bronze damping materials // The International Journal of Advanced Manufacturing Technology. 2024. Vol. 135. Р. 5999–6015. https://doi.org/10.1007/s00170-024-14796-x.
- Eroshenko A.Yu., Legostaeva E.V., Uvarkin P.V., Tolmachev A.I., Khimich M.A. Kuznetsov V.P., et al. Evolution of microstructure and mechanical properties of Ti-Nb-Zr and Ti-Nb-Zr-Ta-Sn alloys in severe plastic deformation // Materials Letters. 2025. Vol. 382. Р. 137805. https://doi.org/10.1016/j.matlet.2024.137805.
- Пат. № 2848396, Российская Федерация. С 1, A61L 27/06, A61B 17/86. Способ изготовления компрессионного винта для остеосинтеза костей стопы / В.П. Кузнецов, В.Г. Горгоц, А.С. Судницын, Ю.П. Шаркеев, А.И. Толмачев, А.Ю. Ерошенко, А.В. Корелин, Д.С. Гончаров; заявитель и патентообладатель Уральский федеральный университет имени первого Президента России Б.Н. Ельцина. № 2024131299. Заявл. 18.10.2024; опубл. 17.10.2025. EDN: PSOUUV.
Supplementary files


