Optimization of turning parameters for ultrafine grained Ti–Nb–Zr alloys using the Taguchi method

Cover Page

Cite item

Full Text

Abstract

This study aimed to optimize turning parameters for Ti–Nb–Zr alloys in order to minimize surface roughness. Billets of two ultrafine-grained (UFG) titanium alloys, melt batches 92 and 94 of the Ti–Nb–Zr system, were investigated. To enhance mechanical properties, we produced a UFG structure by abc-pressing of billets followed by groove rolling. Experimental design employed the Taguchi method of orthogonal arrays, which enabled ranking of the technological parameters of the turning process according to their influence on the output characteristics. The experiment determined the optimal turning parameters for achieving minimal surface roughness in UFG titanium alloys. The lowest surface roughness was achieved at a feed rate of 0.07 mm/rev. The cutting speed was 60 m/min for alloy 94, which contained tin and tantalum as alloying elements, and 30 m/min for alloy 92, which contained neither tin nor tantalum. Cutting speed was found to exert the greatest influence on surface roughness. For the samples with the lowest surface roughness, the microhardness of the surface layer was measured. The average microhardness HV0.05 was 321 HV for alloy 92 and 252 HV for alloy 94. The microhardness of alloy 92 increased by 14.6% compared to its initial value of 280 HV. Thus, the turning parameters established in this study can be considered optimal for achieving minimal surface roughness in alloys 92 and 94 of the Ti–Nb–Zr system. The optimized turning parameters were applied in the fabrication of implants for osseointegration prosthetics. Future work will focus on determining the optimal combination of technological parameters for the thread-cutting process in the manufacture of biomedical implants from Ti–Nb–Zr alloys.

About the authors

V. P. Kuznetsov

Ural Federal University named after the first President of Russia B.N. Yeltsin; National Ilizarov Medical Research Centre for Traumatology and Ortopaedics

Email: wpkuzn@mail.ru
ORCID iD: 0000-0001-8949-6345

D. S. Goncharov

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: goncharovv.d@yandex.ru
ORCID iD: 0009-0009-9603-5980

O. G. Blinkov

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: o.g.blinkov@urfu.ru
ORCID iD: 0000-0001-7353-9582

Yu. P. Sharkeev

Institute of Strength Physics and Materials Science SB RAS

Email: sharkeev@ispms.ru
ORCID iD: 0000-0001-5037-245X

References

  1. Chen Yu., Han Pingping, Dehghan-Manshadi A., Kent D., Ehtemam-Haghighi Sh., Jowers C., et al. Sintering and biocompatibility of blended elemental Ti-xNb alloys // Journal of the Mechanical Behavior of Biomedical Materials. 2020. Vol. 104. P. 103691. https://doi.org/10.1016/j.jmbbm.2020.103691. EDN: KLEIQC.
  2. Abdel-Hady G.M., Niinomi M. Biocompatibility of Ti-alloys for long-term implantation // Journal of the Mechanical Behavior of Biomedical Materials. 2013. Vol. 20. Р. 407–415. https://doi.org/10.1016/j.jmbbm.2012.11.014. EDN: RMMTLD.
  3. Mishchenko O., Pogorielov M., Ovchynnykov O., Kapustian O. New Zr-Ti-Nb alloy for medical application: development, chemical and mechanical properties, and biocompatibility // Materials. 2020. Vol. 13. Iss. 6. Р. 1306. https://doi.org/10.3390/ma13061306. EDN: SSBOFU.
  4. Zhang Yuqing, Sun Danni, Cheng Jun, Tsoi James Kit Hon, Chen Jiang. Mechanical and biological properties of Ti-(0-25 Wt%)Nb alloys for biomedical implants application // Regenerative Biomaterials. 2019. Vol. 7. Iss. 1. Р. 119–127. https://doi.org/10.1093/rb/rbz042. EDN: ZUUGDE.
  5. Angelescu R.M., Raducanu D., Cojocaru V.D., Angelescu M.L., Butu M., Cinca I., et al. Microstructural and mechanical evaluation of a Ti-Nb-Ta alloy // Scientific Bulletin-University Politehnica of Bucharest. 2015. Vol. 77. Iss. 3. Р. 221–228.
  6. Kim Kyong Min, Kim Hee Young, Miyazaki S. Effect of Zr content on phase stability, deformation behavior, and young’s modulus in Ti-Nb-Zr alloys // Materials. 2020. Vol. 13. Iss. 2. Р. 476. https://doi.org/10.3390/ma13020476. EDN: XTDXUB.
  7. Boubaker H.B., Le-Coz G., Moufki A., Nouari M., Laheurte P. Experimental and numerical investigations of cutting forces and chip formation during precision cutting of Ti42Nb titanium alloy produced by laser-based powder bed fusion // The International Journal of Advanced Manufacturing Technology. 2024. Vol. 131. Iss. 2. Р. 701–717. https://doi.org/10.1007/s00170-023-11511-0. EDN: XMLOYY.
  8. Maurotto A., Roy A., Babitsky V.I., Silberschmidt V.V. Analysis of machinability of Ti- and Ni-based alloys // Solid State Phenomena. 2012. Vol. 188. Р. 330–338. https://doi.org/10.4028/www.scientific.net/SSP.188.330. EDN: PQFLAR.
  9. Takahashi M., Kikuchi M., Takada Yu. Grindability of Ti−Nb−Cu alloys for dental machining applications // Metals. 2022. Vol. 12. Iss. 5. Р. 861. https://doi.org/10.3390/met12050861. EDN: DAPFER.
  10. Jiang Shengxian, Sakurai J., Aono Y., Hata S. Novel evaluation method for machinability of Ni-Nb-Ti alloy // The Proceedings of the Materials and Processing Conference. 2013. Vol. 21. Р. 632-1–632-1. https://doi.org/10.1299/jsmemp.2013.21._632-1_.
  11. Sakthivelu S., Anandaraj T. Prediction of optimum machining parameters on surface roughness and MRR in CNC drilling of AA6063 alloy using design of experiments // International Journal of Engineering Research and Technology. 2017. Vol. 5. Iss. 13. Р. 1–5. https://doi.org/10.17577/IJERTCONV5IS13078.
  12. Krishnaprakasha, Pavitra A. Optimization of drilling parameters on surface roughness of Al 1200-SiC composites using Taguchi analysis // IOSR Journal of Mechanical and Civil Engineering. 2018. Vol. 15. Iss. 3. Р. 77–84. https://doi.org/10.9790/1684-1503047784.
  13. Suthar J., Teli S.N., Murumkar A. Drilling process improvement by Taguchi method // Materialstoday: Proceedings. 2021. Vol. 47. Part 11. P. 2814–2819. https://doi.org/10.1016/j.matpr.2021.03.533.
  14. Kuznetsov V.P., Dmitriev A.I., Anisimova G.S., Semenova Yu.V. Optimization of nanostructuring burnishing technological parameters by Taguchi method // Materials Science and Engineering: IOP Conference Series. 2016. Vol. 124. P. 012022. https://doi.org/10.1088/1757-899x/124/1/012022.
  15. Кузнецов В.П., Анисимова Г.С., Семенова Ю.В. Оптимизация методом Тагучи параметров наноструктурирующего выглаживания стали 20Х13 по критерию упрочнения поверхностного слоя // Теплофизические и технологические аспекты повышения эффективности машиностроительного производства: тр. IV Междунар. на- уч.-техн. конф. (Резниковские чтения) (г. Тольятти, 27–29 мая 2015 г.). Тольятти: ТГУ, 2015. Т. 1. С. 279–286. EDN: TZDFOD.
  16. Kuznetsov V.P., Gorgots V.G., Vorontsov I.A., Skorobogatov A.S., Kosareva A.V. Surface hardening of medical parts made of AISI 304 austenitic stainless steel by nanostructuring burnishing // Physical Mesomechanics of Condensed Matter: Physical Principles of Multiscale Structure formation and the Mechanisms of Nonlinear behavior: AIP Conference Proceedings (Tomsk, 5–8 September 2022). Tomsk: AIP Conference Proceedings, 2023. Vol. 2899. Iss. 1. P. 020085. https://doi.org/10.1063/5.0162889. EDN: SZVLIH.
  17. Patel R., Patel S., Patel P., Parmar P., Vohra J. Optimization of machining parameters for EN8D carbon steel by Taguchi’s orthogonal array experiments in CNC turning // Materialstoday: Proceedings. 2021. Vol. 44. Part 1. Р. 2325–2329. https://doi.org/10.1016/J.MATPR.2020.12.409.
  18. Lin Yue-Feng, Lai Pei-Yu, Chen Guan-Yu, Zhang Zi-Peng. Optimization of surface roughness and cylindricity using the Taguchi method in boring of S45C steel with tungsten steel and phosphor bronze damping materials // The International Journal of Advanced Manufacturing Technology. 2024. Vol. 135. Р. 5999–6015. https://doi.org/10.1007/s00170-024-14796-x.
  19. Eroshenko A.Yu., Legostaeva E.V., Uvarkin P.V., Tolmachev A.I., Khimich M.A. Kuznetsov V.P., et al. Evolution of microstructure and mechanical properties of Ti-Nb-Zr and Ti-Nb-Zr-Ta-Sn alloys in severe plastic deformation // Materials Letters. 2025. Vol. 382. Р. 137805. https://doi.org/10.1016/j.matlet.2024.137805.
  20. Пат. № 2848396, Российская Федерация. С 1, A61L 27/06, A61B 17/86. Способ изготовления компрессионного винта для остеосинтеза костей стопы / В.П. Кузнецов, В.Г. Горгоц, А.С. Судницын, Ю.П. Шаркеев, А.И. Толмачев, А.Ю. Ерошенко, А.В. Корелин, Д.С. Гончаров; заявитель и патентообладатель Уральский федеральный университет имени первого Президента России Б.Н. Ельцина. № 2024131299. Заявл. 18.10.2024; опубл. 17.10.2025. EDN: PSOUUV.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).