Начальная задача для интегро-дифференциального уравнения с разностными ядрами и неоднородностью в линейной части

Обложка

Цитировать

Полный текст

Аннотация

Методом весовых метрик в конусе пространства непрерывных функций доказана глобальная теорема о существовании и единственности неотрицательного решения начальной задачи для интегро-дифференциального уравнения с разностными ядрами, степенной нелинейностью и неоднородностью в линейной части. Показано, что решение может быть найдено методом последовательных приближений пикаровского типа и получена оценка скорости их сходимости.

Полный текст

1. Введение. Решение многих задач гидроаэродинамики, теории упругости, популяционной генетики и других приводит к нелинейным интегральным и интегро-дифференциальным уравнениям вольтерровского типа с разностными ядрами. При этом с теоретической и прикладной точек зрения особый интерес представляют неотрицательные решения таких уравнений (см., например, [1, 4]). В отличие от соответствующих линейных однородных уравнений нелинейные уравнения кроме тривиального решения могут иметь и нетривиальные решения, и в этом состоит принципиальное отличие нелинейных однородных уравнений от соответствующих линейных уравнений.

В данной работе рассматривается начальная задача вида

u α (x)= 0 x h(xt)u(t)dt+ 0 x k(xt) u (t)dt+f(x),α>1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadI haa0Gaey4kIipakiaadUgacaaIOaGaamiEaiabgkHiTiaadshacaaI PaGabmyDayaafaGaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG0b Gaey4kaSIaamOzaiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UaeqyS deMaaGOpaiaaigdacaaISaaaaa@677E@  (1)

u(0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaaIWaGaaGykaiaai2dacaaIWaGaaGilaaaa@3B43@  (2)

где ядра h(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaaaa@3942@ , k(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaaaa@3945@  и неоднородность f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  удовлетворяют следующим условиям:

hC[0,),h(x)неубываетна[0,),h(0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadoeacaaIBbGaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaiaa ywW7caqGObGaaeikaiaabIhacaqGPaGaaGPaVlaab2dbcaqG1qGaaG PaVlaaboebcaqGXqGaae4seiaabkdbcaqGWqGaaeyneiaabkebcaaM c8UaaeypeiaabcdbcaaMc8Uaae4waiaabcdacaqGSaGaeyOhIuQaae ykaiaaiYcacaaMf8UaamiAaiaaiIcacaaIWaGaaGykaiaai2dacaaI WaGaaGilaaaa@5D7A@  (3)

kC1[0,),k'(x) неубываетна[0,),k(0)=0,k'(0)>0, (4)

f C 1 [0,),f(x) неубываетна [0,),f(0)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIBbGaaGimaiaaiYca cqGHEisPcaaIPaGaaGilaiaaywW7caqGMbGaaeikaiaabIhacaqGPa Gaaeiiaiaab2dbcaqG1qGaaGPaVlaaboebcaqGXqGaae4seiaabkdb caqGWqGaaeyneiaabkebcaaMc8UaaeypeiaabcdbcaqGGaGaae4wai aabcdacaqGSaGaeyOhIuQaaeykaiaaiYcacaaMf8UaamOzaiaaiIca caaIWaGaaGykaiaai2dacaaIWaGaaGOlaaaa@5C98@  (5)

Решения начальной задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) разыскиваются в классе

Q 0 1 ={u(x):uC[0,) C 1 (0,),u(0)=0,u(x)>0приx>0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaakiaai2dacaaI7bGaamyDaiaaiIca caWG4bGaaGykaiaaiQdacaaMe8UaamyDaiabgIGiolaadoeacaaIBb GaaGimaiaaiYcacqGHEisPcaaIPaGaeyykICSaam4qamaaCaaaleqa baGaaGymaaaakiaaiIcacaaIWaGaaGilaiabg6HiLkaaiMcacaaISa GaaGjbVlaadwhacaaIOaGaaGimaiaaiMcacaaI9aGaaGimaiaaiYca caaMe8UaamyDaiaaiIcacaWG4bGaaGykaiaai6dacaaIWaGaaGPaVl aab+dbcaqGarGaaeioeiaaykW7caWG4bGaaGOpaiaaicdacaaI9bGa aGOlaaaa@66E9@

Наряду с задачей (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) рассматривается тесно связанное с ней интегральное уравнение типа свертки

u α (x)= 0 x H(xt)u(t)dt+f(x),α>1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaca aISaGaaGzbVlabeg7aHjaai6dacaaIXaGaaGilaaaa@5642@  (6)

где H(x)=h(x)+ k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGObGaaGikaiaadIhacaaIPaGaey4k aSIabm4AayaafaGaaGikaiaadIhacaaIPaaaaa@4178@ .

Из условий (3) и (4) вытекает, что ядро H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  уравнения (6) удовлетворяет условию

HC[0,),H(x) не убывает на [0,),H(0)>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgI GiolaadoeacaaIBbGaaGimaiaaiYcacqGHEisPcaaIPaGaaGilaiaa ywW7caqGibGaaeikaiaabIhacaqGPaGaaeiiaiaab2dbcaqG1qGaae iiaiaaboebcaqGXqGaae4seiaabkdbcaqGWqGaaeyneiaabkebcaqG GaGaaeypeiaabcdbcaqGGaGaae4waiaabcdacaqGSaGaeyOhIuQaae ykaiaaiYcacaaMf8UaamisaiaaiIcacaaIWaGaaGykaiaai6dacaaI WaGaaGOlaaaa@597D@  (7)

Решения уравнения (6) разыскиваются в классе

Q 0 ={u(x):uC[0,),u(0)=0,u(x)>0при x>0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaakiaai2dacaaI7bGaamyDaiaaiIcacaWG4bGa aGykaiaaiQdacaaMe8UaamyDaiabgIGiolaadoeacaaIBbGaaGimai aaiYcacqGHEisPcaaIPaGaaGilaiaaysW7caWG1bGaaGikaiaaicda caaIPaGaaGypaiaaicdacaaISaGaaGjbVlaadwhacaaIOaGaamiEai aaiMcacaaI+aGaaGimaiaaykW7caqG=qGaaeiqeiaabIdbcaqGGaGa amiEaiaai6dacaaIWaGaaGyFaiaai6caaaa@5DA7@

Уравнения вида (6) возникают в теории инфильтрации жидкости из цилиндрического резервуара в изотропную однородную пористую среду (см. [9]), при описании процесса распространения ударных волн в трубах, наполненных газом (см. [7, 11]), при решении задачи о нагревании полубесконечного тела при нелинейном теплопередаточном процессе, в моделях популяционной генетики и других (подробнее см. в [1, 6, 10]). В частности, к уравнению вида (6) при α=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaikdaaaa@3915@  сводится известное уравнение Буссинеска. Важно отметить, что в связи с указанными и другими приложениями особый интерес представляют непрерывные положительные при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  решения интегрального уравнения (6), т.е. решения принадлежащие классу Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@ .

На основе полученных точных нижней и верхней априорных оценок решения уравнения (6) мы строим весовое полное метрическое пространство P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  и, применяя аналог метода Белицкого (см., например, [5, гл. 3, п. 3.1.3], доказываем глобальную теорему о существовании и единственности решения уравнения (6) как в пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ , так и во всем классе непрерывных положительных при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  функций. Показано, что решение уравнения (6) может быть найдено в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  методом последовательных приближений пикаровского типа. Для последовательных приближений получены оценки скорости их сходимости к точному решению в терминах весовой метрики пространства P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Установлено, что любое решение интегрального уравнения (6) из конуса Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) в конусе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  и обратно, любое решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) является решением интегрального уравнения (6). Тем самым доказана глобальная теорема о существовании, единственности и способе нахождения решения задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) как в пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ , так и во всем классе непрерывных положительных при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  функций. Приведены также простые примеры, иллюстрирующие основные результаты.

2. Свойства неотрицательных решений

Лемма 1 Пусть выполнены условия (5) и (7). Если u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением интегрального уравнения (6), то функция u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывает и непрерывно дифференцируема на (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A39@ , т.е. u C 1 (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaaGimaiaaiYca cqGHEisPcaaIPaaaaa@3E71@ .

Доказательство. Пусть u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением уравнения (6) и x 1 , x 2 [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaaG4waiaaicdacaaISaGaeyOhIuQaaGykaaaa@4083@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  любые числа, x 1 < x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiaaiYdacaWG4bWaaSbaaSqaaiaaikdaaeqa aaaa@3A8C@ . Так как H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  и f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  не убывают на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то

u α ( x 2 ) u α ( x 1 )= 0 x 1 [H( x 2 t)H( x 1 t)]u(t)dt+ x 1 x 2 H( x 2 t)u(t)dt+f( x 2 )f( x 1 )0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhadaWgaaWcbaGaaGOmaaqa baGccaaIPaGaeyOeI0IaamyDamaaCaaaleqabaGaeqySdegaaOGaaG ikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhadaWgaaqaaiaaigdaaeqaaaqdcqGHRi I8aOGaaG4waiaadIeacaaIOaGaamiEamaaBaaaleaacaaIYaaabeaa kiabgkHiTiaadshacaaIPaGaeyOeI0IaamisaiaaiIcacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamiDaiaaiMcacaaIDbGaamyD aiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaey4kaSYaa8qCaeqale aacaWG4bWaaSbaaeaacaaIXaaabeaaaeaacaWG4bWaaSbaaeaacaaI Yaaabeaaa0Gaey4kIipakiaadIeacaaIOaGaamiEamaaBaaaleaaca aIYaaabeaakiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGa aGykaiaadsgacaWG0bGaey4kaSIaamOzaiaaiIcacaWG4bWaaSbaaS qaaiaaikdaaeqaaOGaaGykaiabgkHiTiaadAgacaaIOaGaamiEamaa BaaaleaacaaIXaaabeaakiaaiMcacqGHLjYScaaIWaGaaGOlaaaa@7CC3@

Значит, u( x 2 )u( x 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiabgwMiZkaadwha caaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcaaaa@4054@  при x 2 > x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIYaaabeaakiaai6dacaWG4bWaaSbaaSqaaiaaigdaaeqa aaaa@3A8E@ , т.е. u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывает на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ .

Докажем теперь, что решение u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  есть непрерывно дифференцируемая на (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A39@  функция. Так как по условию H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  не убывает на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то по теореме Лебега (см., например, [1, теорема 17.7]) почти всюду на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@  существует производная H (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaafa GaaGikaiaadIhacaaIPaaaaa@392E@ , которая, по теореме об интегрировании производной (см. [1, теорема 17.8]), локально суммируема. Следовательно, правая часть тождества (6) дифференцируема, причем в силу свойства коммутативности свертки (см. [1, §17])

0 x H(xt)u(t)dt+f(x) = 0 x H (xt)u(t)dt+H(0)u(x)+ f (x)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadIhacqGHsislcaWG0bGaaGykaiaadwhacaaIOaGaamiDaiaaiM cacaWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaaiaa wIcacaGLPaaacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcq GHRiI8aOGabmisayaafaGaaGikaiaadIhacqGHsislcaWG0bGaaGyk aiaadwhacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRiaadI eacaaIOaGaaGimaiaaiMcacaWG1bGaaGikaiaadIhacaaIPaGaey4k aSIabmOzayaafaGaaGikaiaadIhacaaIPaGaaGypaaaa@659E@

= 0 x H (t)u(xt)dt+H(0)u(x)+ f (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiqadIeagaqbaiaa iIcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiabgkHiTiaadshaca aIPaGaamizaiaadshacqGHRaWkcaWGibGaaGikaiaaicdacaaIPaGa amyDaiaaiIcacaWG4bGaaGykaiabgUcaRiqadAgagaqbaiaaiIcaca WG4bGaaGykaiaai6caaaa@515D@  (8)

 Поскольку функция u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывает, функция f (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiaadIhacaaIPaaaaa@394C@  непрерывна, а функция H (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaafa GaaGikaiaadIhacaaIPaaaaa@392E@  локально суммируема на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@  то, в силу леммы о непрерывности свертки (см. [3, лемма 1], [8, лемма 1]), производная (8) правой части тождества (6) непрерывна на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ . Но тогда существует и непрерывна производная левой части тождества (6), что влечет за собой существование и непрерывность первой производной u (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaafa GaaGikaiaadIhacaaIPaaaaa@395B@  при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ , так как

u (x)= α 1 u 1α (x) 0 x H (t)u(xt)dt+H(0)u(x)+ f (x) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaafa GaaGikaiaadIhacaaIPaGaaGypaiabeg7aHnaaCaaaleqabaGaeyOe I0IaaGymaaaakiaadwhadaahaaWcbeqaaiaaigdacqGHsislcqaHXo qyaaGccaaIOaGaamiEaiaaiMcadaWadaqaamaapehabeWcbaGaaGim aaqaaiaadIhaa0Gaey4kIipakiqadIeagaqbaiaaiIcacaWG0bGaaG ykaiaadwhacaaIOaGaamiEaiabgkHiTiaadshacaaIPaGaamizaiaa dshacqGHRaWkcaWGibGaaGikaiaaicdacaaIPaGaamyDaiaaiIcaca WG4bGaaGykaiabgUcaRiqadAgagaqbaiaaiIcacaWG4bGaaGykaaGa ay5waiaaw2faaiaai6caaaa@610F@

Следующая лемма устанавливает связь между задачей (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) и интегральным уравнением (6).

Лемма 2 Пусть выполнены условия (3), (4) и (5). Если функция u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (2), то u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  и u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36ED@  является решением интегрального уравнения (6). Обратно, если уравнение (6) имеет решение u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@ , то u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@  и u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36ED@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (2).

Доказательство. Пусть u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2). Тогда u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@ . Так как k(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaaIWaGaaGykaiaai2dacaaIWaaaaa@3A83@  и u(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaaIWaGaaGykaiaai2dacaaIWaaaaa@3A8D@ , интегрируя по частям тождество (1) и учитывая, что H(x)=h(x)+ k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGObGaaGikaiaadIhacaaIPaGaey4k aSIabm4AayaafaGaaGikaiaadIhacaaIPaaaaa@4178@ , имеем

u α (x)= 0 x h(xt)u(t)dt+ 0 x k(xt)du(t)+f(x)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadI haa0Gaey4kIipakiaadUgacaaIOaGaamiEaiabgkHiTiaadshacaaI PaGaamizaiaadwhacaaIOaGaamiDaiaaiMcacqGHRaWkcaWGMbGaaG ikaiaadIhacaaIPaGaaGypaaaa@5F93@

= 0 x h(xt)u(t)dt+ 0 x u(t) k (xt)dt+f(x)= 0 x H(xt)u(t)dt+f(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGa amiEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykai aayIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiaadwhacaaIOaGaamiDaiaaiMcaceWGRbGbau aacaaIOaGaamiEaiabgkHiTiaadshacaaIPaGaamizaiaadshacqGH RaWkcaWGMbGaaGikaiaadIhacaaIPaGaaGypamaapehabeWcbaGaaG imaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaamiEaiabgkHi TiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacaaISaaaaa@7056@ (9)

т.е. u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  является решением уравнения (6) в конусе Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@ .

Обратно, пусть u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением уравнения (6). Тогда, согласно лемме 1, u C 1 (0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaaGimaiaaiYca cqGHEisPcaaIPaaaaa@3E71@  и, следовательно, u Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaqhaaWcbaGaaGimaaqaaiaaigdaaaaaaa@3AE9@ . Поэтому, используя свойство коммутативности свертки, формулу интегрирования по частям и равенства k(0)=u(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaaIWaGaaGykaiaai2dacaWG1bGaaGikaiaaicdacaaIPaGaaGyp aiaaicdaaaa@3E63@ , H(x)=h(x)+ k (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGObGaaGikaiaadIhacaaIPaGaey4k aSIabm4AayaafaGaaGikaiaadIhacaaIPaaaaa@4178@ , из тождества (6) имеем

u α (x)= 0 x H(t)u(xt)dt+f(x)= 0 x h(t)u(xt)dt+ 0 x k(t) u (xt)dt+f(x)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaca aI9aWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamiA aiaaiIcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiabgkHiTiaads hacaaIPaGaaGjcVlaadsgacaWG0bGaey4kaSYaa8qCaeqaleaacaaI WaaabaGaamiEaaqdcqGHRiI8aOGaam4AaiaaiIcacaWG0bGaaGykai qadwhagaqbaiaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcacaaMi8Ua amizaiaadshacqGHRaWkcaWGMbGaaGikaiaadIhacaaIPaGaaGypaa aa@772A@

= 0 x h(xt)u(t)dt+ 0 x k(xt) u (t)dt+f(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIgacaaIOaGa amiEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykai aayIW7caWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiaadUgacaaIOaGaamiEaiabgkHiTiaadshaca aIPaGabmyDayaafaGaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG 0bGaey4kaSIaamOzaiaaiIcacaWG4bGaaGykaiaaiYcaaaa@5CE6@

т.е. u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  является решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) в конусе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@ .

Из леммы 2 вытекает, что для доказательства существования и единственности в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  решения задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2) достаточно доказать существование и единственность в классе Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  решения интегрального уравнения (6).

Доказательства основных результатов данной статьи основаны на априорных оценках снизу и сверху решений уравнения (6). При доказательстве верхней априорной оценки решения уравнения (6) нам понадобится следующее интегральное неравенство Чебышева (см., например, [1, лемма 17.1]):

0 x v(xt)w(t)dt 0 x v(t)w(t)dt,x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamODaiaaiIcacaWG4bGa eyOeI0IaamiDaiaaiMcacaaMi8Uaam4DaiaaiIcacaWG0bGaaGykai aayIW7caWGKbGaamiDaiabgsMiJoaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiaadAhacaaIOaGaamiDaiaaiMcacaaMi8Uaam 4DaiaaiIcacaWG0bGaaGjcVlaaiMcacaWGKbGaamiDaiaaiYcacaaM f8UaamiEaiaai6dacaaIWaGaaGilaaaa@5ECF@  (10)

справедливое для любых неубывающих на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@  функций v(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGykaaaa@3950@  и w(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DaiaaiI cacaWG4bGaaGykaaaa@3951@ .

Лемма 3 Пусть выполнены условия (5) и (7). Если u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@  является решением интегрального уравнения (6), то u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  удовлетворяет неравенствам

α1 α H(0)x 1/(α1) u(x) α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaGaamisaiaa iIcacaaIWaGaaGykaiabgwSixlaadIhaaiaawUfacaGLDbaadaahaa WcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHiTiaaigdacaaI PaaaaOGaeyizImQaamyDaiaaiIcacaWG4bGaaGykaiabgsMiJoaadm aabaWaaSaaaeaacqaHXoqycqGHsislcaaIXaaabaGaeqySdegaamaa pehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOa GaamiDaiaaiMcacaaMi8UaamizaiaadshacqGHRaWkcaWGMbWaaWba aSqabeaacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeq ySdegaaOGaaGikaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWbaaSqa beaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaa aakiaai6caaaa@7455@  (11)

Доказательство. Пусть u Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadgfadaWgaaWcbaGaaGimaaqabaaaaa@3A2D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  решение уравнения (6). Так как пpи x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai2 dacaaIWaaaaa@3871@  неравенства (11) обращаются в очевидные равенства, то будем считать далее, что x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ .

Докажем сначала первое неравенство из (11). Так как f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabgwMiZkaaicdaaaa@3BC0@  и H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  не убывает на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то из тождества (6), имеем

u α (x) 0 x H(xt)u(t)dtH(0) 0 x u(t)dtx>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaeyyzIm7aa8qC aeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaaiIcaca WG4bGaeyOeI0IaamiDaiaaiMcacaWG1bGaaGikaiaadshacaaIPaGa aGjcVlaadsgacaWG0bGaeyyzImRaamisaiaaiIcacaaIWaGaaGykai abgwSixpaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaa dwhacaaIOaGaamiDaiaaiMcacaaMi8UaamizaiaadshacaaMf8Uaey iaIiIaamiEaiaai6dacaaIWaGaaGilaaaa@647B@

или

u(x) H(0) 0 x u(t)dt 1/α x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgwMiZoaadmaabaGaamisaiaaiIcacaaIWaGa aGykamaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadw hacaaIOaGaamiDaiaaiMcacaaMi8UaamizaiaadshaaiaawUfacaGL DbaadaahaaWcbeqaaiaaigdacaaIVaGaeqySdegaaOGaaGzbVlabgc GiIiaadIhacaaI+aGaaGimaiaaiYcaaaa@53C6@  (12)

или, что то же самое,

H(0) 0 t u(s)ds 1/α H(0)u(t)H(0)t>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGibGaaGikaiaaicdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiD aaqdcqGHRiI8aOGaamyDaiaaiIcacaWGZbGaaGykaiaayIW7caWGKb Gaam4CaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaiaa i+cacqaHXoqyaaGccaWGibGaaGikaiaaicdacaaIPaGaamyDaiaaiI cacaWG0bGaaGykaiabgwMiZkaadIeacaaIOaGaaGimaiaaiMcacaaM f8UaeyiaIiIaamiDaiaai6dacaaIWaGaaGOlaaaa@5A7F@

Интегрируя последнее неравенство в пределах от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36AD@  до x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ , получим

H(0) 0 x u(t)dt (α1)/α α1 α H(0)xx>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGibGaaGikaiaaicdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiE aaqdcqGHRiI8aOGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaaGaay5waiaaw2faamaaCaaaleqabaGaaGikaiabeg7aHjab gkHiTiaaigdacaaIPaGaaG4laiabeg7aHbaakiabgwMiZoaalaaaba GaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacaWGibGaaGikaiaa icdacaaIPaGaeyyXICTaamiEaiaaywW7cqGHaiIicaWG4bGaaGOpai aaicdacaaISaaaaa@5F84@

откуда

H(0) 0 x u(t)dt 1/α α1 α H(0)x 1/(α1) ,x>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGibGaaGikaiaaicdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiE aaqdcqGHRiI8aOGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+cacqaH XoqyaaGccqGHLjYSdaWadaqaamaalaaabaGaeqySdeMaeyOeI0IaaG ymaaqaaiabeg7aHbaacaWGibGaaGikaiaaicdacaaIPaGaeyyXICTa amiEaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+cacaaIOa GaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaaISaGaaGzbVlabgcGi IiaadIhacaaI+aGaaGimaiaai6caaaa@6494@  (13)

Таким образом, первое неравенство из (11) непосредственно вытекает из неравенств (12) и (13).

Докажем теперь второе неравенство из (11). Так как, в силу условия (7) и леммы 1, функции H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  и u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  не убывают на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то, используя неравенство Чебышева (10), из тождества (6) получаем

u α (x)= 0 x H(xt)u(t)dt+f(x) 0 x H(t)u(t)dt+f(x)x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacq GHKjYOdaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWG ibGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaayI W7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacaaM f8UaeyiaIiIaamiEaiaai6dacaaIWaGaaGilaaaa@69BE@

или

u(x) 0 x H(t)u(t)dt+f(x) 1/α x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgsMiJoaadmaabaWaa8qCaeqaleaacaaIWaaa baGaamiEaaqdcqGHRiI8aOGaamisaiaaiIcacaWG0bGaaGykaiaadw hacaaIOaGaamiDaiaaiMcacaaMi8UaamizaiaadshacqGHRaWkcaWG MbGaaGikaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaaca aIXaGaaG4laiabeg7aHbaakiaaywW7cqGHaiIicaWG4bGaaGOpaiaa icdacaaISaaaaa@5823@  (14)

или

H(t)u(t)+ f (t)H(t) 0 t H(s)u(s)ds+f(t) 1/α + f (t),t>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG0bGaaGykaiaadwhacaaIOaGaamiDaiaaiMcacqGHRaWkceWG MbGbauaacaaIOaGaamiDaiaaiMcacqGHKjYOcaWGibGaaGikaiaads hacaaIPaWaamWaaeaadaWdXbqabSqaaiaaicdaaeaacaWG0baaniab gUIiYdGccaWGibGaaGikaiaadohacaaIPaGaamyDaiaaiIcacaWGZb GaaGykaiaayIW7caWGKbGaam4CaiabgUcaRiaadAgacaaIOaGaamiD aiaaiMcaaiaawUfacaGLDbaadaahaaWcbeqaaiaaigdacaaIVaGaeq ySdegaaOGaey4kaSIabmOzayaafaGaaGikaiaadshacaaIPaGaaGil aiaaywW7cqGHaiIicaWG0bGaaGOpaiaaicdacaaISaaaaa@678A@

откуда

0 t H(s)u(s)ds+f(t) 1/α H(t)u(t)+ f (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGibGaaGik aiaadohacaaIPaGaamyDaiaaiIcacaWGZbGaaGykaiaayIW7caWGKb Gaam4CaiabgUcaRiaadAgacaaIOaGaamiDaiaaiMcaaiaawUfacaGL DbaadaahaaWcbeqaaiabgkHiTiaaigdacaaIVaGaeqySdegaaOWaam WaaeaacaWGibGaaGikaiaadshacaaIPaGaamyDaiaaiIcacaWG0bGa aGykaiabgUcaRiqadAgagaqbaiaaiIcacaWG0bGaaGykaaGaay5wai aaw2faaiabgsMiJcaa@5CC2@

H(t)+ f (t) 0 t H(s)u(s)ds+f(t) 1/α =H(t)+I(t),t>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam isaiaaiIcacaWG0bGaaGykaiabgUcaRiqadAgagaqbaiaaiIcacaWG 0bGaaGykamaadmaabaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcq GHRiI8aOGaamisaiaaiIcacaWGZbGaaGykaiaadwhacaaIOaGaam4C aiaaiMcacaaMi8UaamizaiaadohacqGHRaWkcaWGMbGaaGikaiaads hacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaGa aG4laiabeg7aHbaakiaai2dacaWGibGaaGikaiaadshacaaIPaGaey 4kaSIaamysaiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaeyiaIiIa amiDaiaai6dacaaIWaGaaGilaaaa@65BD@  (15)

где

I(t) f (t) 0 t H(s)u(s)ds+f(t) 1/α . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaaiI cacaWG0bGaaGykaiabggMi6kqadAgagaqbaiaaiIcacaWG0bGaaGyk amaadmaabaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aO GaamisaiaaiIcacaWGZbGaaGykaiaadwhacaaIOaGaam4CaiaaiMca caaMi8UaamizaiaadohacqGHRaWkcaWGMbGaaGikaiaadshacaaIPa aacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXaGaaG4laiab eg7aHbaakiaai6caaaa@5763@

Докажем, что

0 x I(t)dt α α1 f (α1)/α (x)для любого x>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiabgsMiJoaalaaabaGaeqySdegaba GaeqySdeMaeyOeI0IaaGymaaaacaWGMbWaaWbaaSqabeaacaaIOaGa eqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeqySdegaaOGaaGikai aadIhacaaIPaGaaGzbVlaabsdbcaqG7qGaae4teiaabccacaqG7qGa aeOteiaabgdbcaqG+qGaae4meiaab6dbcaqGGaGaaeiEaiaab6daca qGWaGaaGOlaaaa@5ED1@  (16)

В силу условия (5) возможны только три случая: либо f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcaaaa@3CED@ , либо существует такое число x 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiaai6dacaaIWaaaaa@3962@ , что f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0, x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGc caaIDbaaaa@3D9D@  и f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@ , либо f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при всех x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ .

Если f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcaaaa@3CED@ , то неравенство (16) очевидно и обращается в тождество, так как при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@  выполняются соотношения H(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AA4@ , u(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AD1@  и f (x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiaadIhacaaIPaGaeyyyIORaaGimaaaa@3BCF@ .

Если же существует такое x 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaakiaai6dacaaIWaaaaa@3962@ , что f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  при x[0, x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGc caaIDbaaaa@3D9D@  и f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@ , то

0 x I(t)dt=0при любом x[0 ,x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiaai2dacaaIWaGaaGzbVlaab+dbca qGarGaaeioeiaabccacaqG7qGaaeOteiaabgdbcaqG+qGaaeipeiaa bccacaqG4bGaeyicI4Saae4waiaabcdacaqGSaGaaeiEamaaBaaale aacaqGWaaabeaakiaab2faaaa@5278@

и, значит, неравенство (16) выполняется при x[0, x 0 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadIhadaWgaaWcbaGaaGimaaqabaGc caaIDbaaaa@3D9D@ , обращаясь в тождество, а при x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@ , с учетом того, что f( x 0 )=f(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGMbGa aGikaiaaicdacaaIPaGaaGypaiaaicdaaaa@3F82@  и что функция f (α1)/α (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiab eg7aHbaakiaaiIcacaWG4bGaaGykaaaa@407B@  не убывает, имеем

0 x I(t)dt= x 0 x I(t)dt x 0 x f (t) f 1/α (t)dt= α α1 x 0 x [ f (α1)/α (t) ] dt α α1 f (α1)/α (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiaai2dadaWdXbqabSqaaiaadIhada WgaaqaaiaaicdaaeqaaaqaaiaadIhaa0Gaey4kIipakiaadMeacaaI OaGaamiDaiaaiMcacaaMi8UaamizaiaadshacqGHKjYOdaWdXbqabS qaaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhaa0Gaey4kIipa kiqadAgagaqbaiaaiIcacaWG0bGaaGykaiaadAgadaahaaWcbeqaai abgkHiTiaaigdacaaIVaGaeqySdegaaOGaaGikaiaadshacaaIPaGa aGjcVlaadsgacaWG0bGaaGypamaalaaabaGaeqySdegabaGaeqySde MaeyOeI0IaaGymaaaadaWdXbqabSqaaiaadIhadaWgaaqaaiaaicda aeqaaaqaaiaadIhaa0Gaey4kIipakiaaiUfacaWGMbWaaWbaaSqabe aacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeqySdega aOGaaGikaiaadshacaaIPaGabGyxayaafaGaaGjcVlaadsgacaWG0b GaeyizIm6aaSaaaeaacqaHXoqyaeaacqaHXoqycqGHsislcaaIXaaa aiaadAgadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaG ykaiaai+cacqaHXoqyaaGccaaIOaGaamiEaiaaiMcaaaa@8EBA@

в силу [1, теорема 17.8], т.е. неравенство (16) выполняется и при любом x> x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaWG4bWaaSbaaSqaaiaaicdaaeqaaaaa@399B@

Если, наконец, f(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai6dacaaIWaaaaa@3AC2@  при всех x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaai6 dacaaIWaaaaa@3872@ , то аналогично получаем

0 x I(t)dt 0 x f (t) f 1/α (t)dt= α α1 0 x [ f (α1)/α (t) ] dt α α1 f (α1)/α (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamysaiaaiIcacaWG0bGa aGykaiaayIW7caWGKbGaamiDaiabgsMiJoaapehabeWcbaGaaGimaa qaaiaadIhaa0Gaey4kIipakiqadAgagaqbaiaaiIcacaWG0bGaaGyk aiaadAgadaahaaWcbeqaaiabgkHiTiaaigdacaaIVaGaeqySdegaaO GaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG0bGaaGypamaalaaa baGaeqySdegabaGaeqySdeMaeyOeI0IaaGymaaaadaWdXbqabSqaai aaicdaaeaacaWG4baaniabgUIiYdGccaaIBbGaamOzamaaCaaaleqa baGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiabeg7aHb aakiaaiIcacaWG0bGaaGykaiqai2fagaqbaiaayIW7caWGKbGaamiD aiabgsMiJoaalaaabaGaeqySdegabaGaeqySdeMaeyOeI0IaaGymaa aacaWGMbWaaWbaaSqabeaacaaIOaGaeqySdeMaeyOeI0IaaGymaiaa iMcacaaIVaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGOlaaaa@8087@

Итак, неравенство (16) доказано во всех трёх случаях.

Интегрируя неравенство (15) в пределах от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36AD@  до x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ , с учётом неравенства (16) имеем

0 x H(s)u(s)ds+f(x) (α1)/α α1 α 0 x H(t)dt+ α α1 f (α1)/α (x) x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadohacaaIPaGaamyDaiaaiIcacaWGZbGaaGykaiaayIW7caWGKb Gaam4CaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaaiaawUfacaGL DbaadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykai aai+cacqaHXoqyaaGccqGHKjYOdaWcaaqaaiabeg7aHjabgkHiTiaa igdaaeaacqaHXoqyaaWaamWaaeaadaWdXbqabSqaaiaaicdaaeaaca WG4baaniabgUIiYdGccaWGibGaaGikaiaadshacaaIPaGaaGjcVlaa dsgacaWG0bGaey4kaSYaaSaaaeaacqaHXoqyaeaacqaHXoqycqGHsi slcaaIXaaaaiaadAgadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsisl caaIXaGaaGykaiaai+cacqaHXoqyaaGccaaIOaGaamiEaiaaiMcaai aawUfacaGLDbaacaaMf8UaeyiaIiIaamiEaiaai6dacaaIWaGaaGil aaaa@7AC6@

откуда

0 x H(t)u(t)dt+f(x) 1/α α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1 x>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKb GaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcaaiaawUfacaGL DbaadaahaaWcbeqaaiaaigdacaaIVaGaeqySdegaaOGaeyizIm6aam WaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaWa a8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaaiI cacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiabgUcaRiaadAgadaah aaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaiaai+cacq aHXoqyaaGccaaIOaGaamiEaiaaiMcaaiaawUfacaGLDbaadaahaaWc beqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHiTiaaigdaaaGcca aMf8UaeyiaIiIaamiEaiaai6dacaaIWaGaaGOlaaaa@7788@  (17)

Итак, второе неравенство из (11) непосредственно вытекает из неравенств (14) и (17).

Из леммы 3 следует, что решения интегрального уравнения (6) естественно разыскивать в классе

P={u(x):uC[0,),F(x)u(x)G(x)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaai2 dacaaI7bGaamyDaiaaiIcacaWG4bGaaGykaiaaiQdacaaMe8UaamyD aiabgIGiolaadoeacaaIBbGaaGimaiaaiYcacqGHEisPcaaIPaGaaG ilaiaaysW7caWGgbGaaGikaiaadIhacaaIPaGaeyizImQaamyDaiaa iIcacaWG4bGaaGykaiabgsMiJkaadEeacaaIOaGaamiEaiaaiMcaca aI9bGaaGilaaaa@5721@

где

F(x) α1 α H(0)x 1/(α1) ,G(x) α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabggMi6oaadmaabaWaaSaaaeaacqaHXoqycqGH sislcaaIXaaabaGaeqySdegaaiaayIW7caWGibGaaGikaiaaicdaca aIPaGaeyyXICTaamiEaaGaay5waiaaw2faamaaCaaaleqabaGaaGym aiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaaISa GaaGzbVlaadEeacaaIOaGaamiEaiaaiMcacqGHHjIUdaWadaqaamaa laaabaGaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacqGHflY1da WdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGik aiaadshacaaIPaGaaGjcVlaadsgacaWG0bGaey4kaSIaamOzamaaCa aaleqabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiab eg7aHbaakiaaiIcacaWG4bGaaGykaaGaay5waiaaw2faamaaCaaale qabaGaaGymaiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMca aaGccaaISaaaaa@7D99@  (18)

а функции H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@ , f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  удовлетворяют условиям (7) и (5), соответственно.

В силу леммы 2, утверждения леммы 3 справедливы и для задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (6).

Пример 1 При α=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaikdaaaa@3915@ , h(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3AC3@ , k(x)=3x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaaIZaGaamiEaaaa@3BC6@ , f(x)= x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai2dacaWG4bWaaWbaaSqabeaacaaIYaaaaaaa @3BED@  задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (6) и уравнение (6) имеют одно и то же решение u(x)=2x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai2dacaaIYaGaamiEaaaa@3BCF@ , при этом априорные оценки (11) принимают вид: 1,5x2x2,5x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiY cacaaI1aGaamiEaiabgsMiJkaaikdacaWG4bGaeyizImQaaGOmaiaa iYcacaaI1aGaamiEaaaa@4171@ .

3. Теоремы существования и единственности

Рассмотрим нелинейный интегральный оператор свертки T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ :

(Tu)(x)= 0 x H(xt)u(t)dt+f(x) 1/α ,x>0,α>1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiaai2dadaqadaqaamaa pehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOa GaamiEaiabgkHiTiaadshacaaIPaGaamyDaiaaiIcacaWG0bGaaGyk aiaayIW7caWGKbGaamiDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiM caaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIVaGaeqySdega aOGaaGilaiaaywW7caWG4bGaaGOpaiaaicdacaaISaGaaGzbVlabeg 7aHjaai6dacaaIXaGaaGOlaaaa@6042@

Теорема 1 Пусть выполнены условия (5) и (7). Тогда класс P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@36C8@  инваpиантен относительно нелинейного опеpатоpа T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , т.е. T:PP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiQ dacaWGqbGaeyOKH4Qaamiuaaaa@3B27@ .

Доказательство. Пусть uP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giolaadcfaaaa@3946@ . Нужно доказать, что тогда и TuP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw hacqGHiiIZcaWGqbaaaa@3A1F@ , т.е. TuC[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw hacqGHiiIZcaWGdbGaaG4waiaaicdacaaISaGaeyOhIuQaaGykaaaa @3E8B@  и F(x)(Tu)(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabgsMiJkaaiIcacaWGubGaamyDaiaaiMcacaaI OaGaamiEaiaaiMcacqGHKjYOcaWGhbGaaGikaiaadIhacaaIPaaaaa@4552@ .

1.     Так как H,u,fC[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiY cacaWG1bGaaGilaiaadAgacqGHiiIZcaWGdbGaaG4waiaaicdacaaI SaGaeyOhIuQaaGykaaaa@40D6@  и α>1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaigdaaaa@3915@ , то очевидно, что TuC[0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaadw hacqGHiiIZcaWGdbGaaG4waiaaicdacaaISaGaeyOhIuQaaGykaaaa @3E8B@ .

2.     Покажем, что (Tu)(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgwMiZkaadAeacaaI OaGaamiEaiaaiMcaaaa@4080@ . Так как u(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgwMiZkaadAeacaaIOaGaamiEaiaaiMcaaaa@3E42@ , то

[(Tu)(x)] α 0 x H(xt)u(t)dt 0 x H(xt)F(t)dtH(0) 0 x F(t)dt=[F(x )] α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaiI cacaWGubGaamyDaiaaiMcacaaIOaGaamiEaiaaiMcacaaIDbWaaWba aSqabeaacqaHXoqyaaGccqGHLjYSdaWdXbqabSqaaiaaicdaaeaaca WG4baaniabgUIiYdGccaWGibGaaGikaiaadIhacqGHsislcaWG0bGa aGykaiaadwhacaaIOaGaamiDaiaaiMcacaaMi8Uaamizaiaadshacq GHLjYSdaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWG ibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadAeacaaIOaGaam iDaiaaiMcacaaMi8UaamizaiaadshacqGHLjYScaWGibGaaGikaiaa icdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aO GaamOraiaaiIcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaai2da caaIBbGaamOraiaaiIcacaWG4bGaaGykaiaai2fadaahaaWcbeqaai abeg7aHbaakiaaiYcaaaa@7A67@

т.е. (Tu)(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgwMiZkaadAeacaaI OaGaamiEaiaaiMcaaaa@4080@ .

3.     Покажем, наконец, что (Tu)(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgsMiJkaadEeacaaI OaGaamiEaiaaiMcaaaa@4070@ . Так как u(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgsMiJkaadEeacaaIOaGaamiEaiaaiMcaaaa@3E32@  и функции H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@ , G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3921@  не убывают на [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , то в силу неpавенства Чебышева (10) получаем

[(Tu)(x)] α = 0 x H(xt)u(t)dt+f(x) 0 x H(xt)G(t)dt+f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaiI cacaWGubGaamyDaiaaiMcacaaIOaGaamiEaiaaiMcacaaIDbWaaWba aSqabeaacqaHXoqyaaGccaaI9aWaa8qCaeqaleaacaaIWaaabaGaam iEaaqdcqGHRiI8aOGaamisaiaaiIcacaWG4bGaeyOeI0IaamiDaiaa iMcacaaMi8UaamyDaiaaiIcacaWG0bGaaGykaiaayIW7caWGKbGaam iDaiabgUcaRiaadAgacaaIOaGaamiEaiaaiMcacqGHKjYOdaWdXbqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGikaiaadI hacqGHsislcaWG0bGaaGykaiaayIW7caWGhbGaaGikaiaadshacaaI PaGaaGjcVlaadsgacaWG0bGaey4kaSIaamOzaiaaiIcacaWG4bGaaG ykaiabgsMiJcaa@6EC8@

0 x H(t)G(t)dt+ 0 x f (t)dt= 0 x G(t) H(t)+ f (t) G(t) dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aa8 qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaaiIca caWG0bGaaGykaiaayIW7caWGhbGaaGikaiaadshacaaIPaGaaGjcVl aadsgacaWG0bGaey4kaSYaa8qCaeqaleaacaaIWaaabaGaamiEaaqd cqGHRiI8aOGabmOzayaafaGaaGikaiaadshacaaIPaGaamizaiaads hacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGa am4raiaaiIcacaWG0bGaaGykamaadmaabaGaamisaiaaiIcacaWG0b GaaGykaiabgUcaRmaalaaabaGabmOzayaafaGaaGikaiaadshacaaI PaaabaGaam4raiaaiIcacaWG0bGaaGykaaaaaiaawUfacaGLDbaaca WGKbGaamiDaiabgsMiJcaa@69B1@

α1 α 1/(α1) 0 x 0 t H(s)ds+ α α1 f (α1)/α (t) 1/(α1) H(t)+ f 1/α (t) f (t) dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aae WaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXo qycqGHsislcaaIXaGaaGykaaaakmaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakmaadmaabaWaa8qCaeqaleaacaaIWaaabaGaam iDaaqdcqGHRiI8aOGaamisaiaaiIcacaWGZbGaaGykaiaayIW7caWG KbGaam4CaiabgUcaRmaalaaabaGaeqySdegabaGaeqySdeMaeyOeI0 IaaGymaaaacaWGMbWaaWbaaSqabeaacaaIOaGaeqySdeMaeyOeI0Ia aGymaiaaiMcacaaIVaGaeqySdegaaOGaaGikaiaadshacaaIPaaaca GLBbGaayzxaaWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqy cqGHsislcaaIXaGaaGykaaaakmaadmaabaGaamisaiaaiIcacaWG0b GaaGykaiabgUcaRiaadAgadaahaaWcbeqaaiabgkHiTiaaigdacaaI VaGaeqySdegaaOGaaGikaiaadshacaaIPaGabmOzayaafaGaaGikai aadshacaaIPaaacaGLBbGaayzxaaGaamizaiaadshacaaI9aaaaa@7F8E@

= α1 α 1/(α1) α1 α 0 x H(t)dt+ α α1 f (α1)/α (x) α/(α1) = G(x) α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaWaaSaaaeaacqaHXoqycqGHsislcaaIXaaabaGaeqySdegaaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqySde MaeyOeI0IaaGymaiaaiMcaaaGcdaWcaaqaaiabeg7aHjabgkHiTiaa igdaaeaacqaHXoqyaaWaamWaaeaadaWdXbqabSqaaiaaicdaaeaaca WG4baaniabgUIiYdGccaWGibGaaGikaiaadshacaaIPaGaaGjcVlaa dsgacaWG0bGaey4kaSYaaSaaaeaacqaHXoqyaeaacqaHXoqycqGHsi slcaaIXaaaaiaadAgadaahaaWcbeqaaiaaiIcacqaHXoqycqGHsisl caaIXaGaaGykaiaai+cacqaHXoqyaaGccaaIOaGaamiEaiaaiMcaai aawUfacaGLDbaadaahaaWcbeqaaiabeg7aHjaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccaaI9aWaamWaaeaacaWGhbGaaG ikaiaadIhacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaacqaHXoqy aaGccaaISaaaaa@754F@

т.е. (Tu)(x) G ( x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bGaaGykaiaaiIcacaWG4bGaaGykaiabgsMiJkaadEeadaWg aaWcbaGaaGikaaqabaGccaWG4bGaaGykaaaa@40A6@ , что и тpебовалось доказать.

Исследование интегрального уравнения (6) будет основано на методе весовых метрик, и для его применения нам нужно будет построить полное метрическое пространство. Введем в связи с этим следующий класс функций:

P b ={u(x):uC[0,b],F(x)u(x)G(x)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaakiaai2dacaaI7bGaamyDaiaaiIcacaWG4bGa aGykaiaaiQdacaaMe8UaamyDaiabgIGiolaadoeacaaIBbGaaGimai aaiYcacaWGIbGaaGyxaiaaiYcacaaMe8UaamOraiaaiIcacaWG4bGa aGykaiabgsMiJkaadwhacaaIOaGaamiEaiaaiMcacqGHKjYOcaWGhb GaaGikaiaadIhacaaIPaGaaGyFaiaaiYcaaaa@57E8@

где функции F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaaaa@3920@  и G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3921@  определены в (18), а b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  произвольное число.

В силу вольтерровости оператора T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  из теоремы 1 непосредственно вытекает следующее утверждение.

Следствие 1 Если выполнены условия (5) и (7), то класс P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  инвариантен относительно интегрального оператора T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ .

Далее будем предполагать, что неоднородность f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3940@  наряду с условием (5) удовлетворяет дополнительному условию:

C= sup 0<xb f (α1)/α (x) x <. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dadaGfqbqabSqaaiaaicdacaaI8aGaamiEaiabgsMiJkaadkgaaeqa keaaciGGZbGaaiyDaiaacchaaaWaaSaaaeaacaWGMbWaaWbaaSqabe aacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcacaaIVaGaeqySdega aOGaaGikaiaadIhacaaIPaaabaGaamiEaaaacaaI8aGaeyOhIuQaaG Olaaaa@4E89@  (19)

Заметим, что функция f(x)= x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiaai2dacaWG4bWaaWbaaSqabeaacaaIYaaaaaaa @3BED@ , рассмотренная в примере 1, в котором α=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaikdaaaa@3915@ , удовлетворяет условию (19) и при этом C=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacaaIXaaaaa@383D@ .

Введем во множестве функций P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  расстояние по формуле

ρ b ( u 1 , u 2 )= sup 0<xb | u 1 (x) u 2 (x)| x 1/(α1) e βx ,β>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9a WaaybuaeqaleaacaaIWaGaaGipaiaadIhacqGHKjYOcaWGIbaabeGc baGaci4CaiaacwhacaGGWbaaamaalaaabaGaaGiFaiaadwhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiMcacqGHsislcaWG1bWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaaGiFaaqaai aadIhadaahaaWcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHi TiaaigdacaaIPaaaaOGaamyzamaaCaaaleqabaGaeqOSdiMaamiEaa aaaaGccaaISaGaaGzbVlabek7aIjaai6dacaaIWaGaaGOlaaaa@64E2@  (20)

Поскольку e βx 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaCa aaleqabaGaeqOSdiMaamiEaaaakiabgwMiZkaaigdaaaa@3C33@  и | u 1 (x) u 2 (x)|G(x)F(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiMcacqGHsisl caWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaaG iFaiabgsMiJkaadEeacaaIOaGaamiEaiaaiMcacqGHsislcaWGgbGa aGikaiaadIhacaaIPaaaaa@4A84@  для любых u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@ , то с учетом неравенства

k(x)= 0 x H(t)dtH(x)xx(0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dadaWdXbqabSqaaiaaicdaaeaacaWG4baa niabgUIiYdGccaWGibGaaGikaiaadshacaaIPaGaamizaiaadshacq GHKjYOcaWGibGaaGikaiaadIhacaaIPaGaeyyXICTaamiEaiaaywW7 cqGHaiIicaWG4bGaeyicI4SaaGikaiaaicdacaaISaGaamOyaiaai2 faaaa@543E@

получим:

| u 1 (x) u 2 (x)| x 1/(α1) e βx G(x)F(x) x 1/(α1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEai aaiMcacaaI8baabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaI OaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabe aacqaHYoGycaWG4baaaaaakiabgsMiJoaalaaabaGaam4raiaaiIca caWG4bGaaGykaiabgkHiTiaadAeacaaIOaGaamiEaiaaiMcaaeaaca WG4bWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsisl caaIXaGaaGykaaaaaaGccqGHKjYOaaa@5EC0@

α1 α H(b)+ f (α1)/α (x) x 1/(α1) α1 α H(0) 1/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aam WaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaaGa eyyXICTaamisaiaaiIcacaWGIbGaaGykaiabgUcaRmaalaaabaGaam OzamaaCaaaleqabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGa aG4laiabeg7aHbaakiaaiIcacaWG4bGaaGykaaqaaiaadIhaaaaaca GLBbGaayzxaaWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqy cqGHsislcaaIXaGaaGykaaaakiabgkHiTmaadmaabaWaaSaaaeaacq aHXoqycqGHsislcaaIXaaabaGaeqySdegaaiabgwSixlaadIeacaaI OaGaaGimaiaaiMcaaiaawUfacaGLDbaadaahaaWcbeqaaiaaigdaca aIVaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaaaaOGaaGOlaaaa @6ADB@

Следовательно, в силу условия (19), для всех u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@  

ρ b ( u 1 , u 2 ) α1 α H(b)+C 1/(α1) α1 α H(0) 1/(α1) <, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacqGHKj YOdaWadaqaamaalaaabaGaeqySdeMaeyOeI0IaaGymaaqaaiabeg7a HbaacqGHflY1caWGibGaaGikaiaadkgacaaIPaGaey4kaSIaam4qaa Gaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccqGHsisldaWadaqaamaalaaaba GaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacqGHflY1caWGibGa aGikaiaaicdacaaIPaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIXa GaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaaaakiaaiYda cqGHEisPcaaISaaaaa@6B12@

т.е. pасстояние ρ b ( u 1 , u 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcaaaa@3EC2@  опpеделено коppектно.

Лемма 4 Множество P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  с метpикой ρ b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaaaa@38C6@  обpазует полное метрическое пространство.

Доказательство. Выполнимость аксиом метpики очевидна. Докажем полноту метpического пpостpанства P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Пусть { u n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A22@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  произвольная фундаментальная последовательность из P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Тогда для любого ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@391C@  найдется такое N=N(ε)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaWGobGaaGikaiabew7aLjaaiMcacaaI+aGaaGimaaaa@3CEE@ , что при всех m,nN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaaiY cacaWGUbGaeyyzImRaamOtaaaa@3B27@  выполняется неpавенство ρ b ( u m , u n )<ε, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaamyBaaqa baGccaaISaGaamyDamaaBaaaleaacaWGUbaabeaakiaaiMcacaaI8a GaeqyTduMaaGilaaaa@4253@  т.е.

| u m (x) u n (x)| x 1/(α1) e βx <εm,nN,qx(0,b]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDamaaBaaaleaacaWGTbaabeaakiaaiIcacaWG4bGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEai aaiMcacaaI8baabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaI OaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabe aacqaHYoGycaWG4baaaaaakiaaiYdacqaH1oqzcaaMf8UaeyiaIiIa amyBaiaaiYcacaWGUbGaeyyzImRaamOtaiaaiYcacaWGXbGaaGzbVl abgcGiIiaadIhacqGHiiIZcaaIOaGaaGimaiaaiYcacaWGIbGaaGyx aiaai6caaaa@624A@  (21)

Так как x 1/(α1) e βx b 1/(α1) e βb M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGymaiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaa iMcaaaGccqGHflY1caWGLbWaaWbaaSqabeaacqaHYoGycaWG4baaaO GaeyizImQaamOyamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccqGHflY1caWGLbWaaWbaaSqabe aacqaHYoGycaWGIbaaaOGaeyyyIORaamytaaaa@54D1@ , то

| u m (x) u n (x)| x 1/(α1) e βx 1 M | u m (x) u n (x)|. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDamaaBaaaleaacaWGTbaabeaakiaaiIcacaWG4bGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEai aaiMcacaaI8baabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaI OaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabe aacqaHYoGycaWG4baaaaaakiabgwMiZoaalaaabaGaaGymaaqaaiaa d2eaaaGaeyyXICTaaGiFaiaadwhadaWgaaWcbaGaamyBaaqabaGcca aIOaGaamiEaiaaiMcacqGHsislcaWG1bWaaSbaaSqaaiaad6gaaeqa aOGaaGikaiaadIhacaaIPaGaaGiFaiaai6caaaa@5F7F@

Поэтому из (21), имеем

| u m (x) u n (x)|Mε,m,nN,x[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hadaWgaaWcbaGaamyBaaqabaGccaaIOaGaamiEaiaaiMcacqGHsisl caWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaG iFaiabgsMiJkaad2eacqGHflY1cqaH1oqzcaaISaGaaGzbVlabgcGi Iiaad2gacaaISaGaamOBaiabgwMiZkaad6eacaaISaGaaGzbVlabgc GiIiaadIhacqGHiiIZcaaIBbGaaGimaiaaiYcacaWGIbGaaGyxaaaa @5A6D@

(здесь учли, что u m (0)= u n (0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGTbaabeaakiaaiIcacaaIWaGaaGykaiaai2dacaWG1bWa aSbaaSqaaiaad6gaaeqaaOGaaGikaiaaicdacaaIPaGaaGypaiaaic daaaa@40BE@ , поскольку F(0)=G(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaaIWaGaaGykaiaai2dacaWGhbGaaGikaiaaicdacaaIPaGaaGyp aiaaicdaaaa@3E10@  ), т.е. { u n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9baaaa@3A22@  является фундаментальной последовательностью в C[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiU facaaIWaGaaGilaiaadkgacaaIDbaaaa@3ADE@ . В силу полноты метрического пространства C[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiU facaaIWaGaaGilaiaadkgacaaIDbaaaa@3ADE@  существует такая функция uC[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadoeacaaIBbGaaGimaiaaiYcacaWGIbGaaGyxaaaa@3D5C@ , что

lim n u n (x)=u(x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGUbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaca aI9aGaamyDaiaaiIcacaWG4bGaaGykaiaai6caaaa@46F8@  (22)

Покажем, что u P b . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadcfadaWgaaWcbaGaamOyaaqabaGccaaIUaaaaa@3B1B@  Так как { u n } P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaI9bGaeyicI4SaamiuamaaBaaa leaacaWGIbaabeaaaaa@3D8E@ , то для любых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E6@  и x[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadkgacaaIDbaaaa@3C97@  имеем

F(x) α1 α H(0)x 1/(α1) u n (x) α1 α 0 x H(t)dt+ f (α1)/α (x) 1/(α1) G(x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabggMi6oaadmaabaWaaSaaaeaacqaHXoqycqGH sislcaaIXaaabaGaeqySdegaaiaadIeacaaIOaGaaGimaiaaiMcaca aMi8UaamiEaaGaay5waiaaw2faamaaCaaaleqabaGaaGymaiaai+ca caaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccqGHKjYOcaWG1b WaaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaeyizIm6a amWaaeaadaWcaaqaaiabeg7aHjabgkHiTiaaigdaaeaacqaHXoqyaa Waa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamisaiaa iIcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiabgUcaRiaadAgada ahaaWcbeqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaiaai+ca cqaHXoqyaaGccaaIOaGaamiEaiaaiMcaaiaawUfacaGLDbaadaahaa WcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHiTiaaigdacaaI PaaaaOGaeyyyIORaam4raiaaiIcacaWG4bGaaGykaiaai6caaaa@7EB2@

Переходя в последнем неравенстве к пределу при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk ziUkabg6HiLcaa@3A44@ , с учетом равенства (22) получаем F(x)u(x)G(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacaWG4bGaaGykaiabgsMiJkaadwhacaaIOaGaamiEaiaaiMcacqGH KjYOcaWGhbGaaGikaiaadIhacaaIPaaaaa@4314@ , т.е. u P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadcfadaWgaaWcbaGaamOyaaqabaaaaa@3A59@ .

Осталось доказать сходимость последовательности { u n (x)} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaadw hadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaI9baa aa@3C84@  к u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  по метрике ρ b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaaaa@38C6@ . Переходя в неравенстве (21) к пределу при m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A43@ , имеем

|u(x) u n (x)| x 1/(α1) e βx <εnN,x(0,b], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI8bGaamyDaiaaiIcacaWG4bGaaGykaiabgkHiTiaadwhadaWgaaWc baGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaI8baabaGaamiEam aaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqySdeMaeyOeI0IaaGym aiaaiMcaaaGccaWGLbWaaWbaaSqabeaacqaHYoGycaWG4baaaaaaki aaiYdacqaH1oqzcaaMf8UaeyiaIiIaamOBaiabgwMiZkaad6eacaaI SaGaaGzbVlaadIhacqGHiiIZcaaIOaGaaGimaiaaiYcacaWGIbGaaG yxaiaaiYcaaaa@5DB2@

т.е. ρ b ( u n ,u)<ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaamOBaaqa baGccaaISaGaamyDaiaaiMcacaaI8aGaeqyTdugaaa@4075@  для любого nN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw MiZkaad6eaaaa@397F@ , что и требовалось.

Итак, выше мы доказали, что если во множестве функций P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  ввести метpику (20), то класс P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  пpевpащается полное метрическое пространство. Кpоме того, мы показали (см. следствие 1), что нелинейный опеpатоp свеpтки T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  действует из P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ .

Выберем теперь достаточно малое число c(0,b) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgI GiolaaiIcacaaIWaGaaGilaiaadkgacaaIPaaaaa@3C1B@  такое, что выполняется неравенство

H(c)<αH(0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWGJbGaaGykaiaaiYdacqaHXoqycqGHflY1caWGibGaaGikaiaa icdacaaIPaGaaGOlaaaa@4160@  (23)

Очевидно, что такое число c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  всегда существует, так как H(0)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaaIWaGaaGykaiaai6dacaaIWaaaaa@3A61@ , H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  непрерывна и α>1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaigdaaaa@3915@ . Положим

β= 1 H(0) sup cxb H(x)H(0) x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG ypamaalaaabaGaaGymaaqaaiaadIeacaaIOaGaaGimaiaaiMcaaaWa aybuaeqaleaacaWGJbGaeyizImQaamiEaiabgsMiJkaadkgaaeqake aaciGGZbGaaiyDaiaacchaaaWaaSaaaeaacaWGibGaaGikaiaadIha caaIPaGaeyOeI0IaamisaiaaiIcacaaIWaGaaGykaaqaaiaadIhaaa GaaGOlaaaa@4E7F@  (24)

Справедлива следующая лемма (ср. [8]).

Лемма 5 Пусть ядро H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  удовлетворяет условию (7). Тогда для любого x[0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaaIWaGaaGilaiaadkgacaaIDbaaaa@3C97@  справедливо неравенство

H(x) e βx H(c), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiabgwSixlaadwgadaahaaWcbeqaaiabgkHiTiab ek7aIjaadIhaaaGccqGHKjYOcaWGibGaaGikaiaadogacaaIPaGaaG ilaaaa@459D@  (25)

где числа c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  и β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3794@  определяются из условия (23) и формулы (24) соответственно.

Доказательство. Рассмотрим отдельно два случая.

1. Пусть 0xc MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadIhacqGHKjYOcaWGJbaaaa@3BFC@ . Учитывая, что H(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaaaa@3922@  не убывает и β>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaaG Opaiaaicdaaaa@3916@ , имеем H(x) e βx H(x)H(c) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaadwgadaahaaWcbeqaaiabgkHiTiabek7aIjaa dIhaaaGccqGHKjYOcaWGibGaaGikaiaadIhacaaIPaGaeyizImQaam isaiaaiIcacaWGJbGaaGykaaaa@4781@ , что и требовалось.

2. В случае cxb MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabgs MiJkaadIhacqGHKjYOcaWGIbaaaa@3C29@  имеем

H(x)=H(0)+H(0)x 1 H(0) H(x)H(0) x H(0)[1+xβ]H(0) e βx . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaai2dacaWGibGaaGikaiaaicdacaaIPaGaey4k aSIaamisaiaaiIcacaaIWaGaaGykaiabgwSixlaadIhacqGHflY1da WcaaqaaiaaigdaaeaacaWGibGaaGikaiaaicdacaaIPaaaaiabgwSi xpaalaaabaGaamisaiaaiIcacaWG4bGaaGykaiabgkHiTiaadIeaca aIOaGaaGimaiaaiMcaaeaacaWG4baaaiabgsMiJkaadIeacaaIOaGa aGimaiaaiMcacqGHflY1caaIBbGaaGymaiabgUcaRiaadIhacqGHfl Y1cqaHYoGycaaIDbGaeyizImQaamisaiaaiIcacaaIWaGaaGykaiab gwSixlaadwgadaahaaWcbeqaaiabek7aIjaayIW7caWG4baaaOGaaG Olaaaa@7079@

Следовательно, H(x)H(0) e βx H(c) e βx , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiabgsMiJkaadIeacaaIOaGaaGimaiaaiMcacaWG LbWaaWbaaSqabeaacqaHYoGycaWG4baaaOGaeyizImQaamisaiaaiI cacaWGJbGaaGykaiaadwgadaahaaWcbeqaaiabek7aIjaadIhaaaGc caaISaaaaa@4AC6@  откуда получаем, что H(x) e βx H(c) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWG4bGaaGykaiaadwgadaahaaWcbeqaaiabgkHiTiabek7aIjaa dIhaaaGccqGHKjYOcaWGibGaaGikaiaadogacaaIPaaaaa@429D@  и для любого x[c,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaWGJbGaaGilaiaadkgacaaIDbaaaa@3CC5@ .

Теорема 2 Пусть выполнены условия (5), (7) и (19). Тогда оператор T: P b P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiQ dacaWGqbWaaSbaaSqaaiaadkgaaeqaaOGaeyOKH4QaamiuamaaBaaa leaacaWGIbaabeaaaaa@3D57@  является сжимающим, при этом неравенство

ρ b (T u 2 ,T u 1 ) H(c) αH(0) ρ b ( u 2 , u 1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadsfacaWG1bWaaSbaaSqaaiaa ikdaaeqaaOGaaGilaiaadsfacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGykaiabgsMiJoaalaaabaGaamisaiaaiIcacaWGJbGaaGykaaqa aiabeg7aHjabgwSixlaadIeacaaIOaGaaGimaiaaiMcaaaGaeqyWdi 3aaSbaaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGOm aaqabaGccaaISaGaamyDamaaBaaaleaacaaIXaaabeaakiaaiMcaca aISaaaaa@55AD@  (26)

выполняется для всех u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@ , где число c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  определяется из условия (23).

Доказательство. Тот факт, что оператор T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  действует из P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ , вытекает из следствия 1. Докажем неравенство (26), т.е. факт, что оператор T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , в силу неравенства (23), является сжимающим. Пусть u 1 , u 2 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4SaamiuamaaBaaaleaacaWGIbaabeaaaaa@3DEC@  и x(0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiaadkgacaaIDbaaaa@3C64@ . По теореме Лагранжа, для любых z 1 , z 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaaikdaaeqa aOGaaGOpaiaaicdaaaa@3C0C@  имеем

z 1 1/α z 2 1/α = 1 α Θ 1/α1 ( z 1 z 2 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa aaleaacaaIXaaabaGaaGymaiaai+cacqaHXoqyaaGccqGHsislcaWG 6bWaa0baaSqaaiaaikdaaeaacaaIXaGaaG4laiabeg7aHbaakiaai2 dadaWcaaqaaiaaigdaaeaacqaHXoqyaaGaeuiMde1aaWbaaSqabeaa caaIXaGaaG4laiabeg7aHjabgkHiTiaaigdaaaGccaaIOaGaamOEam aaBaaaleaacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOm aaqabaGccaaIPaGaaGilaaaa@516C@

где Θ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdefaaa@376A@  лежит между z 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaaaaa@37D9@  и z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIYaaabeaaaaa@37DA@ . Поэтому, если z 1 z 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaadQhadaWgaaWcbaGaaGimaaqa baaaaa@3B8E@  и z 2 z 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIYaaabeaakiabgwMiZkaadQhadaWgaaWcbaGaaGimaaqa baaaaa@3B8F@ , где z 0 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIWaaabeaakiabgwMiZkaaicdaaaa@3A62@ , то Θ> z 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiMdeLaaG OpaiaadQhadaWgaaWcbaGaaGimaaqabaaaaa@3A17@  и, значит,

z 1 1/α z 2 1/α 1 α | z 1 z 2 | { z 0 } (α1)/α . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca WG6bWaa0baaSqaaiaaigdaaeaacaaIXaGaaG4laiabeg7aHbaakiab gkHiTiaadQhadaqhaaWcbaGaaGOmaaqaaiaaigdacaaIVaGaeqySde gaaaGccaGLhWUaayjcSdGaeyizIm6aaSaaaeaacaaIXaaabaGaeqyS degaaiabgwSixpaalaaabaGaaGiFaiaadQhadaWgaaWcbaGaaGymaa qabaGccqGHsislcaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGiFaaqa aiaaiUhacaWG6bWaaSbaaSqaaiaaicdaaeqaaOGaaGyFamaaCaaale qabaGaaGikaiabeg7aHjabgkHiTiaaigdacaaIPaGaaG4laiabeg7a HbaaaaGccaaIUaaaaa@5D4C@

Используя это неравенство и неравенства

(T u 1 )(x)F(x),(T u 2 )(x)F(x)x(0,b], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads facaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiIcacaWG4bGa aGykaiabgwMiZkaadAeacaaIOaGaamiEaiaaiMcacaaISaGaaGzbVl aaiIcacaWGubGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI OaGaamiEaiaaiMcacqGHLjYScaWGgbGaaGikaiaadIhacaaIPaGaaG zbVlabgcGiIiaadIhacqGHiiIZcaaIOaGaaGimaiaaiYcacaWGIbGa aGyxaiaaiYcaaaa@58B9@

имеем

(T u 2 )(x)(T u 1 )(x) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aIOaGaamivaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGik aiaadIhacaaIPaGaeyOeI0IaaGikaiaadsfacaWG1bWaaSbaaSqaai aaigdaaeqaaOGaaGykaiaaiIcacaWG4bGaaGykaaGaay5bSlaawIa7 aiaai2daaaa@47E0@

= 0 x H(xt) u 2 (t)dt+f(x) 1/α 0 x H(xt) u 1 (t)dt+f(x) 1/α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaem aabaWaaeWaaeaadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIi YdGccaWGibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadwhada WgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaMi8Uaamiz aiaadshacqGHRaWkcaWGMbGaaGikaiaadIhacaaIPaaacaGLOaGaay zkaaWaaWbaaSqabeaacaaIXaGaaG4laiabeg7aHbaakiabgkHiTmaa bmaabaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaam isaiaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcacaWG1bWaaSbaaSqa aiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGjcVlaadsgacaWG0b Gaey4kaSIaamOzaiaaiIcacaWG4bGaaGykaaGaayjkaiaawMcaamaa CaaaleqabaGaaGymaiaai+cacqaHXoqyaaaakiaawEa7caGLiWoacq GHKjYOaaa@707B@

1 α 1 [ F α (x)] (α1)/α 0 x H(xt) u 2 (t)dt 0 x H(xt) u 1 (t)dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaaIXaaabaGaeqySdegaaiabgwSixpaalaaabaGaaGymaaqa amaacmaabaGaaG4waiaadAeadaahaaWcbeqaaiabeg7aHbaakiaaiI cacaWG4bGaaGykaiaai2faaiaawUhacaGL9baadaahaaWcbeqaaiaa iIcacqaHXoqycqGHsislcaaIXaGaaGykaiaai+cacqaHXoqyaaaaaO WaaqWaaeaadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGc caWGibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadwhadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcacaaMi8Uaamizaiaa dshacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYd GccaWGibGaaGikaiaadIhacqGHsislcaWG0bGaaGykaiaadwhadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaMi8Uaamizai aadshaaiaawEa7caGLiWoacqGHKjYOaaa@751F@

1 α 1 α1 α H(0)x 0 x H(xt)| u 2 (t) u 1 (t)|dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaaIXaaabaGaeqySdegaaiabgwSixpaalaaabaGaaGymaaqa amaalaaabaGaeqySdeMaeyOeI0IaaGymaaqaaiabeg7aHbaacqGHfl Y1caWGibGaaGikaiaaicdacaaIPaGaeyyXICTaamiEaaaadaWdXbqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGikaiaadI hacqGHsislcaWG0bGaaGykaiabgwSixlaaiYhacaWG1bWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0IaamyDamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYhacaaMi8Ua amizaiaadshacaaIUaaaaa@65DB@

Итак,

|(T u 2 )(x)(T u 1 )(x)| 1 (α1)H(0)x 0 x H(xt)| u 2 (t) u 1 (t)|dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaaiI cacaWGubGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaIOaGa amiEaiaaiMcacqGHsislcaaIOaGaamivaiaadwhadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaaGikaiaadIhacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykai aadIeacaaIOaGaaGimaiaaiMcacqGHflY1caWG4baaamaapehabeWc baGaaGimaaqaaiaadIhaa0Gaey4kIipakiaadIeacaaIOaGaamiEai abgkHiTiaadshacaaIPaGaeyyXICTaaGiFaiaadwhadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiDaiaaiMcacqGHsislcaWG1bWaaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGiFaiaayIW7caWG KbGaamiDaiaai6caaaa@6EA3@  (27)

Так как

| u 2 (x) u 1 (x)|= x 1/(α1) e βx | u 2 (x) u 1 (x)| x 1/(α1) e βx x 1/(α1) e βx ρ b ( u 2 , u 1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiMcacqGHsisl caWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGaaG iFaiaai2dacaWG4bWaaWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaH XoqycqGHsislcaaIXaGaaGykaaaakiaadwgadaahaaWcbeqaaiabek 7aIjaadIhaaaGcdaWcaaqaaiaaiYhacaWG1bWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadIhacaaIPaGaeyOeI0IaamyDamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG4bGaaGykaiaaiYhaaeaacaWG4bWaaWba aSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGaaG ykaaaakiaadwgadaahaaWcbeqaaiabek7aIjaadIhaaaaaaOGaeyiz ImQaamiEamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqySdeMaey OeI0IaaGymaiaaiMcaaaGccaWGLbWaaWbaaSqabeaacqaHYoGycaWG 4baaaOGaeyyXICTaeqyWdi3aaSbaaSqaaiaadkgaaeqaaOGaaGikai aadwhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyDamaaBaaaleaa caaIXaaabeaakiaaiMcacaaISaaaaa@7CAF@

то из (27), с учетом леммы 2, получим

(T u 2 )(x)(T u 1 )(x) 1 (α1)H(0)x ρ b ( u 2 , u 1 ) 0 x H(xt) t 1/(α1) e βt dt= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca aIOaGaamivaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGik aiaadIhacaaIPaGaeyOeI0IaaGikaiaadsfacaWG1bWaaSbaaSqaai aaigdaaeqaaOGaaGykaiaaiIcacaWG4bGaaGykaaGaay5bSlaawIa7 aiabgsMiJoaalaaabaGaaGymaaqaaiaaiIcacqaHXoqycqGHsislca aIXaGaaGykaiaadIeacaaIOaGaaGimaiaaiMcacqGHflY1caWG4baa aiabgwSixlabeg8aYnaaBaaaleaacaWGIbaabeaakiaaiIcacaWG1b WaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadwhadaWgaaWcbaGaaGym aaqabaGccaaIPaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRi I8aOGaamisaiaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcacaWG0bWa aWbaaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXa GaaGykaaaakiaadwgadaahaaWcbeqaaiabek7aIjaadshaaaGccaaM i8UaamizaiaadshacaaI9aaaaa@7816@

= 1 (α1)H(0)x ρ b ( u 2 , u 1 ) e βx 0 x H(xt) e β(xt) t 1/(α1) dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaaGymaaqaaiaaiIcacqaHXoqycqGHsislcaaIXaGaaGykaiaa yIW7caWGibGaaGikaiaaicdacaaIPaGaeyyXICTaamiEaaaacqGHfl Y1cqaHbpGCdaWgaaWcbaGaamOyaaqabaGccaaIOaGaamyDamaaBaaa leaacaaIYaaabeaakiaaiYcacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGykaiaadwgadaahaaWcbeqaaiabek7aIjaadIhaaaGcdaWdXbqa bSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaWGibGaaGikaiaadI hacqGHsislcaWG0bGaaGykaiaadwgadaahaaWcbeqaaiabgkHiTiab ek7aIjaaiIcacaWG4bGaeyOeI0IaamiDaiaaiMcaaaGccaWG0bWaaW baaSqabeaacaaIXaGaaG4laiaaiIcacqaHXoqycqGHsislcaaIXaGa aGykaaaakiaayIW7caWGKbGaamiDaiabgsMiJcaa@707C@

H(c) (α1)H(0)x e βx ρ b ( u 2 , u 1 ) α1 α x α/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaWGibGaaGikaiaadogacaaIPaaabaGaaGikaiabeg7aHjab gkHiTiaaigdacaaIPaGaeyyXICTaamisaiaaiIcacaaIWaGaaGykai abgwSixlaadIhaaaGaeyyXICTaamyzamaaCaaaleqabaGaeqOSdiMa amiEaaaakiabgwSixlabeg8aYnaaBaaaleaacaWGIbaabeaakiaaiI cacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadwhadaWgaaWc baGaaGymaaqabaGccaaIPaGaeyyXIC9aaSaaaeaacqaHXoqycqGHsi slcaaIXaaabaGaeqySdegaaiabgwSixlaadIhadaahaaWcbeqaaiab eg7aHjaai+cacaaIOaGaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGcca aIUaaaaa@6B97@

Следовательно,

(T u 2 )(x)(T u 1 )(x) x 1/(α1) e βx H(c) αH(0) ρ b ( u 2 , u 1 )x(0,b], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada abdaqaaiaaiIcacaWGubGaamyDamaaBaaaleaacaaIYaaabeaakiaa iMcacaaIOaGaamiEaiaaiMcacqGHsislcaaIOaGaamivaiaadwhada WgaaWcbaGaaGymaaqabaGccaaIPaGaaGikaiaadIhacaaIPaaacaGL hWUaayjcSdaabaGaamiEamaaCaaaleqabaGaaGymaiaai+cacaaIOa GaeqySdeMaeyOeI0IaaGymaiaaiMcaaaGccqGHflY1caWGLbWaaWba aSqabeaacqaHYoGycaWG4baaaaaakiabgsMiJoaalaaabaGaamisai aaiIcacaWGJbGaaGykaaqaaiabeg7aHjabgwSixlaadIeacaaIOaGa aGimaiaaiMcaaaGaeyyXICTaeqyWdi3aaSbaaSqaaiaadkgaaeqaaO GaaGikaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamyDamaa BaaaleaacaaIXaaabeaakiaaiMcacaaMf8UaeyiaIiIaamiEaiabgI GiolaaiIcacaaIWaGaaGilaiaadkgacaaIDbGaaGilaaaa@74D8@

что pавносильно неpавенству (26). Поскольку, в силу неравенства (23), коэффицент в неравенстве (26) удовлетворяет условию H(c)/ αH(0) <1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacaWGJbGaaGykaiaai+cadaWadaqaaiabeg7aHjaayIW7caWGibGa aGikaiaaicdacaaIPaaacaGLBbGaayzxaaGaaGipaiaaigdaaaa@4355@ , то оператор T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  является сжимающим.

Теорема 3 Если выполнены условия (5), (7) и (19), то интегральное уравнение (6) имеет в Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  (и в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  ) единственное решение. Это решение может быть найдено методом последовательных приближений, которые сходятся к нему по метрике (20) при любом b< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiY dacqGHEisPaaa@3911@ .

Доказательство. Запишем уравнение (6) в операторном виде: u=Tu MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWGubGaamyDaaaa@3987@ . Из леммы 1 и теоремы 2 следует, что выполнены все требования принципа сжимающих отображений, из которого непосредственно вытекает, что уравнение (6) имеет единственное решение в пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  и это решение может быть найдено методом последовательных приближений, которые сходятся к нему по метрике (20) при любом b< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaaiY dacqGHEisPaaa@3911@ .

Осталось показать, что уравнение (6) имеет единственное решение во всем классе Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  (ср. [2]). Положим P = b>0 P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaOGaaGypamaatafabeWcbaGaamOyaiaai6da caaIWaaabeqdcqWIQisvaOGaamiuamaaBaaaleaacaWGIbaabeaaaa a@3F46@ , т.е. P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaaaa@3865@  есть множество функций, определенных на полуоси [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeyOhIuQaaGykaaaa@3A6C@ , сужения которых на отрезок [0,b] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaamOyaiaai2faaaa@3A16@  принадлежат P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@ . Так как уравнение (6) имеет единственное решение в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  и коэффициент сжатия в (26) не зависит от b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DA@ , то уравнение (6) имеет единственное решение u * (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaaiIcacaWG4bGaaGykaaaa@3A3A@  в P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaaaa@3865@ . Поскольку всякое решение уравнения (6) из Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@  удовлетворяет оценкам (11), то это решение u * (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaaiIcacaWG4bGaaGykaaaa@3A3A@  будет единственным решением уравнения (6) и в Q 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIWaaabeaaaaa@37AF@ .

Таким образом, на основании теоремы ??, используя связь между решениями уравнения (6) и задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (6), установленную в лемме 2, мы можем сформулировать основной результат.

Теорема 4 Если выполнены условия (3), (4), (5) и (19), то начальная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3802@ (2) имеет в Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  (и в P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  при любом b>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai6 dacaaIWaaaaa@385C@  ) единственное решение u * (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaaiIcacaWG4bGaaGykaaaa@3A3A@ . Это решение удовлетворяет неравенствам (11), и его можно найти в полном метрическом пространстве P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGIbaabeaaaaa@37DB@  методом последовательных приближений по формуле u n =T u n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGUbaabeaakiaai2dacaWGubGaamyDamaaBaaaleaacaWG UbGaeyOeI0IaaGymaaqabaaaaa@3D77@ , n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xf H4eaaa@4316@ , со сходимостью по метpике

ρ b ( u 1 , u 2 )= sup 0<xb | u 1 (x) u 2 (x)| x 1/(α1) e βx ,гдеβ= 1 H(0) sup cxb H(x)H(0) x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaaGymaaqa baGccaaISaGaamyDamaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9a WaaybuaeqaleaacaaIWaGaaGipaiaadIhacqGHKjYOcaWGIbaabeGc baGaci4CaiaacwhacaGGWbaaamaalaaabaGaaGiFaiaadwhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiMcacqGHsislcaWG1bWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaIPaGaaGiFaaqaai aadIhadaahaaWcbeqaaiaaigdacaaIVaGaaGikaiabeg7aHjabgkHi TiaaigdacaaIPaaaaOGaeyyXICTaamyzamaaCaaaleqabaGaeqOSdi MaamiEaaaaaaGccaaISaGaaGzbVlaabodbcaqG0qGaaeyneiaaywW7 cqaHYoGycaaI9aWaaSaaaeaacaaIXaaabaGaamisaiaaiIcacaaIWa GaaGykaaaacqGHflY1daGfqbqabSqaaiaadogacqGHKjYOcaWG4bGa eyizImQaamOyaaqabOqaaiGacohacaGG1bGaaiiCaaaadaWcaaqaai aadIeacaaIOaGaamiEaiaaiMcacqGHsislcaWGibGaaGikaiaaicda caaIPaaabaGaamiEaaaacaaISaaaaa@81E4@

а число c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  определяется из условия (23). При этом справедлива следующая оценка погрешности:

ρ b ( u n , u * ) q n 1q ρ b (T u 0 , u 0 ),n, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadkgaaeqaaOGaaGikaiaadwhadaWgaaWcbaGaamOBaaqa baGccaaISaGaamyDamaaCaaaleqabaGaaGOkaaaakiaaiMcacqGHKj YOdaWcaaqaaiaadghadaahaaWcbeqaaiaad6gaaaaakeaacaaIXaGa eyOeI0IaamyCaaaacqGHflY1cqaHbpGCdaWgaaWcbaGaamOyaaqaba GccaaIOaGaamivaiaadwhadaWgaaWcbaGaaGimaaqabaGccaaISaGa amyDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaISaGaaGzbVlaad6 gacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab=vriojaaiYcaaaa@6182@

где q=H(c)/ αH(0) <1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 dacaWGibGaaGikaiaadogacaaIPaGaaG4lamaabmaabaGaeqySdeMa eyyXICTaamisaiaaiIcacaaIWaGaaGykaaGaayjkaiaawMcaaiaaiY dacaaIXaaaaa@4562@ , а u 0 (x) P b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGykaiabgIGiolaadcfa daWgaaWcbaGaamOyaaqabaaaaa@3DAB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  начальное приближение (произвольная функция).

Пример 2 Начальная задача

u α (x)=p 0 x (xt) u (t)dt,α>1,p>0,x[0,),u(0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaeqySdegaaOGaaGikaiaadIhacaaIPaGaaGypaiaadcha daWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGccaaIOaGaam iEaiabgkHiTiaadshacaaIPaGaaGjcVlqadwhagaqbaiaaiIcacaWG 0bGaaGykaiaayIW7caWGKbGaamiDaiaaiYcacaaMf8UaeqySdeMaaG OpaiaaigdacaaISaGaaGjbVlaadchacaaI+aGaaGimaiaaiYcacaaM e8UaamiEaiabgIGiolaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcaca aISaGaaGzbVlaaywW7caWG1bGaaGikaiaaicdacaaIPaGaaGypaiaa icdacaaISaaaaa@6A3B@

 имеет в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  единственное pешение

u(x)= α1 α px 1/(α1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai2dadaqadaqaamaalaaabaGaeqySdeMaeyOe I0IaaGymaaqaaiabeg7aHbaacqGHflY1caWGWbGaeyyXICTaamiEaa GaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaIOaGaeqyS deMaeyOeI0IaaGymaiaaiMcaaaGccaaIUaaaaa@4E2A@

В данном случае ядро k(x)=px MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaWGWbGaeyyXICTaamiEaaaa@3E48@ , p>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai6 dacaaIWaaaaa@386A@ , удовлетворяет всем требованиям условия (4).

Пример 2 показывет, что нелинейные однородные уравнения вольтерровского типа, в отличие от линейных уравнений, кроме тривиального решения могут иметь и не тривиальные решения.

В тех случаях, когда условия теоремы 4 не выполняются, интегро-дифференциальное уравнение (1) при f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  может либо не иметь нетривиальных решений, либо иметь континуум нетривиальных решений. Например, если α=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaigdaaaa@3914@ , h(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3AC3@  и k(x)=x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaWG4baaaa@3B09@ , то уравнение (1) при f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  не имеет в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  решений, а если α=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiaaigdaaaa@3914@ , h(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3AC3@  и k(x)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI cacaWG4bGaaGykaiaai2dacaaIXaaaaa@3AC7@ , то уравнение (1) при f(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaiabggMi6kaaicdaaaa@3BC3@  имеет в классе Q 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaDa aaleaacaaIWaaabaGaaGymaaaaaaa@386B@  континуум решений u(x)=A x q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiaai2dacaWGbbGaeyyXICTaamiEamaaCaaaleqa baGaamyCaaaaaaa@3F46@ , где A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@  и q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36E9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=rbiaaa@3801@  любые положительные числа.

В заключение отметим, что, следуя работе [12], можно рассмотреть также вопрос о численном решении начальной задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbaqcLbCaqa aaaaaaaaWdbiaa=nbiaaa@3800@ (2).

 

Работа выполнена в рамках государственного задания Минобрнауки РФ (проект FEGS-2020-0001).

×

Об авторах

Султан Нажмудинович Асхабов

Чеченский государственный педагогический университет; Чеченский государственный университет имени А. А. Кадырова

Автор, ответственный за переписку.
Email: askhabov@yandex.ru
Россия, Грозный; Грозный

Список литературы

  1. Асхабов С. Н. Нелинейные уравнения типа свертки. – М.: Физматлит, 2009.
  2. Асхабов С. Н. Интегро-дифференциальное уравнение типа свёртки со степенной нелинейностью и неоднородностью в линейной части// Диффер. уравн. – 2020. – 56, № 6. – 786–795.
  3. Асхабов С. Н. Система интегро-дифференциальных уравнений типа свёртки со степенной нелинейностью// Сиб. ж. индустр. мат. – 2021. – 24, № 3. – 5–18.
  4. Красносельский М. А. Положительные решения операторных уравнений. – М.: Физматгиз, 1962.
  5. Эдвардс Р. Функциональный анализ. – М.: Мир, 1969.
  6. Brunner H. Volterra Integral Equations: An Introduction to Theory and Applications. – Cambridge: Cambridge Univ. Press, 2017.
  7. Keller J. J. Propagation of simple nonlinear waves in gas filled tubes with friction// Z. Angew. Math. Phys. – 1981. – 32, № 2. – P. 170–181.
  8. Okrasinski W. On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation// Ann. Polon. Math. – 1979. – 36, № 1. – P. 61–72.
  9. Okrasinski W. On a non-linear convolution equation occurring in the theory of water percolation// Ann. Polon. Math. – 1980. – 37, № 3. – P. 223–229.
  10. Okrasinski W. Nonlinear Volterra equations and physical applications// Extracta Math. – 1989. – 4, № 2, P. 51–74.
  11. Schneider W. R. The general solution of a nonlinear integral equation of the convolution type// Z. Angew. Math. Phys. – 1982. – 33, № 1. – P. 140–142.
  12. Vabishchevich P. N. Numerical solution of the Cauchy problem for Volterra integro-differential equations with difference kernels// Appl. Numer. Math. – 2022. – 174, № 4. – P. 177–190.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Асхабов С.Н., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).