On the local extension of the group of parallel translations of four-dimensional space

Cover Page

Cite item

Full Text

Abstract

The problem of the search for all locally boundedly exactly doubly transitive extensions of the group of parallel translations of a four-dimensional space is reduced to the calculation of the Lie algebras of locally boundedly exactly doubly transitive extensions of the group of parallel translations. Some locally boundedly exactly doubly transitive transformation Lie groups with decomposable Lie algebras are found. 

Full Text

1.  Введение. В работе В. В. Горбацевича [3] приводится определение расширения транзитивной группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@ , действующей в многообразии M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C5@ : расширением транзитивной группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@  называется группа Ли G 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaaaaa@37A6@ , содержащая G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@  в виде подгруппы Ли и также транзитивная на M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C5@ , причем ограничение этого транзитивного действия на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@  дает исходное транзитивное действие группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@ . Примером расширения группы параллельных переносов пространства R 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaG4maaaaaaa@37B4@  является группа аффинных преобразований этого пространства.

Согласно [6, 10] можно говорить, что локально точно транзитивная группа Ли преобразований пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@  задает феноменологически симметричную геометрию двух множеств ранга (2,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaik dacaaISaGaaGOmaiaaiMcaaaa@3986@ , а локально ограниченно точно дважды транзитивная группа Ли преобразований пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@  задает феноменологически симметричную геометрию двух множеств ранга (3,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaISaGaaGOmaiaaiMcaaaa@3987@ . Отметим, что первым множеством является пространство R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , а вторым множеством является транзитивно действующая группа Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@

В данной работе ставится задача о нахождении всех локальных ограниченно точно дважды транзитивных расширений группы параллельных переносов пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ . Результаты исследований изложены в [7, 9] на примере классификации локальных ограниченно точно дважды транзитивных расширений группы параллельных переносов плоскости R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGOmaaaaaaa@37B3@ , а также в [5, 8] на примере классификации локальных ограниченно точно дважды транзитивных расширений группы параллельных переносов прострнаства R 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaG4maaaaaaa@37B4@ .

2.  Основные определения. Следуя [1, 6], определим локальное действие класса C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGOmaaaaaaa@37A4@  группы Ли G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36BF@ , dimG=n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacM gacaGGTbGaam4raiaai2dacaWGUbaaaa@3B41@ , в пространстве R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ .

Определение 1 Дифференцируемое отображение π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  класса C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGOmaaaaaaa@37A4@  называется эффективным локальным действием, если выполняются следующие свойства:

  1. π(a,e)=a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadggacaaISaGaamyzaiaaiMcacaaI9aGaamyyaaaa@3D48@  для всех aW MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI GiolaadEfaaaa@3939@ , где W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36CF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  область в R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , eG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiabgI GiolaadEeaaaa@392D@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ единица;
  2. π(π(a, h 1 ), h 2 )=π(a, h 1 h 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiabec8aWjaaiIcacaWGHbGaaGilaiaadIgadaWgaaWcbaGaaGym aaqabaGccaaIPaGaaGilaiaadIgadaWgaaWcbaGaaGOmaaqabaGcca aIPaGaaGypaiabec8aWjaaiIcacaWGHbGaaGilaiaadIgadaWgaaWc baGaaGymaaqabaGccaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaGykaa aa@4B88@  для всех aW MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI GiolaadEfaaaa@3939@ , где h 1 , h 2 G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGObWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4Saam4raaaa@3CB6@ ;
  3. π(a,h)=a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadggacaaISaGaamiAaiaaiMcacaaI9aGaamyyaaaa@3D4B@  для всех aW MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiabgI GiolaadEfaaaa@3939@ , где hG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadEeaaaa@3930@ , тогда и только тогда, когда h=e MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaai2 dacaWGLbaaaa@3891@ ;
  4. π h : R 4 R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaadIgaaeqaaOGaaGOoaiaadkfadaahaaWcbeqaaiaaisda aaGccqGHsgIRcaWGsbWaaWbaaSqabeaacaaI0aaaaaaa@3F12@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ локальный диффеоморфизм для всякого hG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgI GiolaadEeaaaa@3930@ .

Тройка ( R 4 ,G,π) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadk fadaahaaWcbeqaaiaaisdaaaGccaaISaGaam4raiaaiYcacqaHapaC caaIPaaaaa@3D19@  называется локальной группой Ли преобразований многообразия R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ .

Обозначим через L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  алгебру Ли данной группы преобразований. Базис этой алгебры Ли состоит из операторов

Z i = Z i 1 x + Z i 2 y + Z i 3 z + Z i 4 w ,i=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbaabeaakiaai2dacaWGAbWaa0baaSqaaiaadMgaaeaa caaIXaaaaOGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaam OwamaaDaaaleaacaWGPbaabaGaaGOmaaaakiabgkGi2oaaBaaaleaa caWG5baabeaakiabgUcaRiaadQfadaqhaaWcbaGaamyAaaqaaiaaio daaaGccqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGAbWa a0baaSqaaiaadMgaaeaacaaI0aaaaOGaeyOaIy7aaSbaaSqaaiaadE haaeqaaOGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaeSOj GSKaaGilaiaad6gaaaa@5900@  (2.1)

Определение 2 Эффективное локальное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  называется локально ограниченно точно дважды транзитивным, если дополнительно выполняются следующие свойства:

  1.   1. n=8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaI4aaaaa@386F@
  2.   матрица

V= Z 1 1 (a) Z 1 2 (a) Z 1 3 (a) Z 1 4 (a) Z 1 1 (b) Z 1 2 (b) Z 1 3 (b) Z 1 4 (b) Z 2 1 (a) Z 2 2 (a) Z 2 3 (a) Z 2 4 (a) Z 2 1 (b) Z 2 2 (b) Z 2 3 (b) Z 2 4 (b) Z 3 1 (a) Z 3 2 (a) Z 3 3 (a) Z 3 4 (a) Z 3 1 (b) Z 3 2 (b) Z 3 3 (b) Z 1 4 (b) Z 4 1 (a) Z 4 2 (a) Z 4 3 (a) Z 4 4 (a) Z 4 1 (b) Z 4 2 (b) Z 4 3 (b) Z 4 4 (b) Z 5 1 (a) Z 5 2 (a) Z 5 3 (a) Z 5 4 (a) Z 5 1 (b) Z 5 2 (b) Z 5 3 (b) Z 5 4 (b) Z 6 1 (a) Z 6 2 (a) Z 6 3 (a) Z 6 4 (a) Z 6 1 (b) Z 6 2 (b) Z 6 3 (b) Z 6 4 (b) Z 7 1 (a) Z 7 2 (a) Z 7 3 (a) Z 7 4 (a) Z 7 1 (b) Z 7 2 (b) Z 7 3 (b) Z 7 4 (b) Z 8 1 (a) Z 8 2 (a) Z 8 3 (a) Z 8 4 (a) Z 8 1 (b) Z 8 2 (b) Z 8 3 (b) Z 8 4 (b) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqajGaaaaaaaaqaaiaadQfadaqhaaWcbaGaaGym aaqaaiaaigdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaaGikaiaadggacaaIPaaabaGaamOw amaaDaaaleaacaaIXaaabaGaaG4maaaakiaaiIcacaWGHbGaaGykaa qaaiaadQfadaqhaaWcbaGaaGymaaqaaiaaisdaaaGccaaIOaGaamyy aiaaiMcaaeaacaWGAbWaa0baaSqaaiaaigdaaeaacaaIXaaaaOGaaG ikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaacaaIXaaabaGaaGOm aaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGymaa qaaiaaiodaaaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqa aiaaigdaaeaacaaI0aaaaOGaaGikaiaadkgacaaIPaaabaGaamOwam aaDaaaleaacaaIYaaabaGaaGymaaaakiaaiIcacaWGHbGaaGykaaqa aiaadQfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIOaGaamyyai aaiMcaaeaacaWGAbWaa0baaSqaaiaaikdaaeaacaaIZaaaaOGaaGik aiaadggacaaIPaaabaGaamOwamaaDaaaleaacaaIYaaabaGaaGinaa aakiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGOmaaqa aiaaigdaaaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaai aaikdaaeaacaaIYaaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaa DaaaleaacaaIYaaabaGaaG4maaaakiaaiIcacaWGIbGaaGykaaqaai aadQfadaqhaaWcbaGaaGOmaaqaaiaaisdaaaGccaaIOaGaamOyaiaa iMcaaeaacaWGAbWaa0baaSqaaiaaiodaaeaacaaIXaaaaOGaaGikai aadggacaaIPaaabaGaamOwamaaDaaaleaacaaIZaaabaGaaGOmaaaa kiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaG4maaqaai aaiodaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaa iodaaeaacaaI0aaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDa aaleaacaaIZaaabaGaaGymaaaakiaaiIcacaWGIbGaaGykaaqaaiaa dQfadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaaIOaGaamOyaiaaiM caaeaacaWGAbWaa0baaSqaaiaaiodaaeaacaaIZaaaaOGaaGikaiaa dkgacaaIPaaabaGaamOwamaaDaaaleaacaaIXaaabaGaaGinaaaaki aaiIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGinaaqaaiaa igdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaais daaeaacaaIYaaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDaaa leaacaaI0aaabaGaaG4maaaakiaaiIcacaWGHbGaaGykaaqaaiaadQ fadaqhaaWcbaGaaGinaaqaaiaaisdaaaGccaaIOaGaamyyaiaaiMca aeaacaWGAbWaa0baaSqaaiaaisdaaeaacaaIXaaaaOGaaGikaiaadk gacaaIPaaabaGaamOwamaaDaaaleaacaaI0aaabaGaaGOmaaaakiaa iIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGinaaqaaiaaio daaaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaisda aeaacaaI0aaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaale aacaaI1aaabaGaaGymaaaakiaaiIcacaWGHbGaaGykaaqaaiaadQfa daqhaaWcbaGaaGynaaqaaiaaikdaaaGccaaIOaGaamyyaiaaiMcaae aacaWGAbWaa0baaSqaaiaaiwdaaeaacaaIZaaaaOGaaGikaiaadgga caaIPaaabaGaamOwamaaDaaaleaacaaI1aaabaGaaGinaaaakiaaiI cacaWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGynaaqaaiaaigda aaGccaaIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiwdaae aacaaIYaaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaa caaI1aaabaGaaG4maaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfada qhaaWcbaGaaGynaaqaaiaaisdaaaGccaaIOaGaamOyaiaaiMcaaeaa caWGAbWaa0baaSqaaiaaiAdaaeaacaaIXaaaaOGaaGikaiaadggaca aIPaaabaGaamOwamaaDaaaleaacaaI2aaabaGaaGOmaaaakiaaiIca caWGHbGaaGykaaqaaiaadQfadaqhaaWcbaGaaGOnaaqaaiaaiodaaa GccaaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiAdaaeaa caaI0aaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDaaaleaaca aI2aaabaGaaGymaaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfadaqh aaWcbaGaaGOnaaqaaiaaikdaaaGccaaIOaGaamOyaiaaiMcaaeaaca WGAbWaa0baaSqaaiaaiAdaaeaacaaIZaaaaOGaaGikaiaadkgacaaI PaaabaGaamOwamaaDaaaleaacaaI2aaabaGaaGinaaaakiaaiIcaca WGIbGaaGykaaqaaiaadQfadaqhaaWcbaGaaG4naaqaaiaaigdaaaGc caaIOaGaamyyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiEdaaeaaca aIYaaaaOGaaGikaiaadggacaaIPaaabaGaamOwamaaDaaaleaacaaI 3aaabaGaaG4maaaakiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaa WcbaGaaG4naaqaaiaaisdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWG AbWaa0baaSqaaiaaiEdaaeaacaaIXaaaaOGaaGikaiaadkgacaaIPa aabaGaamOwamaaDaaaleaacaaI3aaabaGaaGOmaaaakiaaiIcacaWG IbGaaGykaaqaaiaadQfadaqhaaWcbaGaaG4naaqaaiaaiodaaaGcca aIOaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiEdaaeaacaaI 0aaaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaacaaI4a aabaGaaGymaaaakiaaiIcacaWGHbGaaGykaaqaaiaadQfadaqhaaWc baGaaGioaaqaaiaaikdaaaGccaaIOaGaamyyaiaaiMcaaeaacaWGAb Waa0baaSqaaiaaiIdaaeaacaaIZaaaaOGaaGikaiaadggacaaIPaaa baGaamOwamaaDaaaleaacaaI4aaabaGaaGinaaaakiaaiIcacaWGHb GaaGykaaqaaiaadQfadaqhaaWcbaGaaGioaaqaaiaaigdaaaGccaaI OaGaamOyaiaaiMcaaeaacaWGAbWaa0baaSqaaiaaiIdaaeaacaaIYa aaaOGaaGikaiaadkgacaaIPaaabaGaamOwamaaDaaaleaacaaI4aaa baGaaG4maaaakiaaiIcacaWGIbGaaGykaaqaaiaadQfadaqhaaWcba GaaGioaaqaaiaaisdaaaGccaaIOaGaamOyaiaaiMcaaeaaaeaaaeaa aeaaaeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGaaGilaaaa@7153@  (2.2)

составленная из коэффициентов операторовЁ(0.2.1)б невырождена для любых точек некоторых окрестностей U( a ),U( b )W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiaaiI caceWGHbGbauaacaaIPaGaaGilaiaadwfacaaIOaGabmOyayaafaGa aGykaiabgkOimlaadEfaaaa@3FE4@ .

Свойства (v) и (vi) равносильны тому, что действие π×π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaey 41aqRaeqiWdahaaa@3B84@  в R 4 × R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaakiabgEna0kaadkfadaahaaWcbeqaaiaaisda aaaaaa@3B98@  локально точно транзитивно.

Определение 3 Будем говорить, что локально ограниченно точно дважды транзитивное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  является локальным расширением группы параллельных переносов, если базис его алгебры Ли L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  состоит из операторов

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = A i x + B i y + C i z + D i w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadM fadaWgaaWcbaGaamyAaaqabaGccaaI9aGaamyqamaaBaaaleaacaWG PbaabeaakiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadk eadaWgaaWcbaGaamyAaaqabaGccqGHciITdaWgaaWcbaGaamyEaaqa baGccqGHRaWkcaWGdbWaaSbaaSqaaiaadMgaaeqaaOGaeyOaIy7aaS baaSqaaiaadQhaaeqaaOGaey4kaSIaamiramaaBaaaleaacaWGPbaa beaakiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaaa@6BFC@  (2.3)

причём A i = A i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaakiaai2dacaWGbbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@420B@ , B i = B i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGPbaabeaakiaai2dacaWGcbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@420D@ , C i = C i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaakiaai2dacaWGdbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@420F@ , D i = D i (x,y,z,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaakiaai2dacaWGebWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaaaaa@4211@ , i=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaaG4maiaaiYcacaaI0aaaaa@3CBC@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  дифференцируемые функции класса гладкости C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGymaaaaaaa@37A3@ .

В таком случае в алгебре Ли L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  выделяется коммутативная трехмерная подалгебра J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@ , образованная операторами X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ . Произвольный оператор Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaaaa@36D1@  является линейной комбинацией с постоянными коэффициентами базисных операторов.

Теорема 1 Локальное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  с операторами ее алгебры Ли (2.3) локально ограниченно точно дважды транзитивно тогда и только тогда, когда матрица K(b)K(a) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWGIbGaaGykaiabgkHiTiaadUeacaaIOaGaamyyaiaaiMcaaaa@3D17@  невырождена, где

K(a)= A 1 ( x a , y a , z a , w a ) B 1 ( x a , y a , z a , w a ) C 1 ( x a , y a , z a , w a ) D 1 ( x a , y a , z a , w a ) A 2 ( x a , y a , z a , w a ) B 2 ( x a , y a , z a , w a ) C 2 ( x a , y a , z a , w a ) D 2 ( x a , y a , z a , w a ) A 3 ( x a , y a , z a , w a ) B 3 ( x a , y a , z a , w a ) C 3 ( x a , y a , z a , w a ) D 3 ( x a , y a , z a , w a ) A 4 ( x a , y a , z a , w a ) B 4 ( x a , y a , z a , w a ) C 4 ( x a , y a , z a , w a ) D 4 ( x a , y a , z a , w a ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWGHbGaaGykaiaai2dadaqadaqaauaabeqaeqaaaaaabaGaamyq amaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadg gaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaamyyaaqabaGccaaISaGa amOEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG3bWaaSbaaSqaai aadggaaeqaaOGaaGykaaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGc caaIOaGaamiEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG5bWaaS baaSqaaiaadggaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyyaaqa baGccaaISaGaam4DamaaBaaaleaacaWGHbaabeaakiaaiMcaaeaaca WGdbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhadaWgaaWcbaGa amyyaaqabaGccaaISaGaamyEamaaBaaaleaacaWGHbaabeaakiaaiY cacaWG6bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadEhadaWgaaWc baGaamyyaaqabaGccaaIPaaabaGaamiramaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadMha daWgaaWcbaGaamyyaaqabaGccaaISaGaamOEamaaBaaaleaacaWGHb aabeaakiaaiYcacaWG3bWaaSbaaSqaaiaadggaaeqaaOGaaGykaaqa aiaadgeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEamaaBaaale aacaWGHbaabeaakiaaiYcacaWG5bWaaSbaaSqaaiaadggaaeqaaOGa aGilaiaadQhadaWgaaWcbaGaamyyaaqabaGccaaISaGaam4DamaaBa aaleaacaWGHbaabeaakiaaiMcaaeaacaWGcbWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadIhadaWgaaWcbaGaamyyaaqabaGccaaISaGaam yEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaa dggaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaamyyaaqabaGccaaIPa aabaGaam4qamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bWaaSba aSqaaiaadggaaeqaaOGaaGilaiaadMhadaWgaaWcbaGaamyyaaqaba GccaaISaGaamOEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG3bWa aSbaaSqaaiaadggaaeqaaOGaaGykaaqaaiaadseadaWgaaWcbaGaaG OmaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGHbaabeaakiaaiYca caWG5bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadQhadaWgaaWcba GaamyyaaqabaGccaaISaGaam4DamaaBaaaleaacaWGHbaabeaakiaa iMcaaeaacaWGbbWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadIhada WgaaWcbaGaamyyaaqabaGccaaISaGaamyEamaaBaaaleaacaWGHbaa beaakiaaiYcacaWG6bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadE hadaWgaaWcbaGaamyyaaqabaGccaaIPaaabaGaamOqamaaBaaaleaa caaIZaaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadggaaeqaaOGaaG ilaiaadMhadaWgaaWcbaGaamyyaaqabaGccaaISaGaamOEamaaBaaa leaacaWGHbaabeaakiaaiYcacaWG3bWaaSbaaSqaaiaadggaaeqaaO GaaGykaaqaaiaadoeadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiE amaaBaaaleaacaWGHbaabeaakiaaiYcacaWG5bWaaSbaaSqaaiaadg gaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyyaaqabaGccaaISaGa am4DamaaBaaaleaacaWGHbaabeaakiaaiMcaaeaacaWGebWaaSbaaS qaaiaaiodaaeqaaOGaaGikaiaadIhadaWgaaWcbaGaamyyaaqabaGc caaISaGaamyEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG6bWaaS baaSqaaiaadggaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaamyyaaqa baGccaaIPaaabaGaamyqamaaBaaaleaacaaI0aaabeaakiaaiIcaca WG4bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadMhadaWgaaWcbaGa amyyaaqabaGccaaISaGaamOEamaaBaaaleaacaWGHbaabeaakiaaiY cacaWG3bWaaSbaaSqaaiaadggaaeqaaOGaaGykaaqaaiaadkeadaWg aaWcbaGaaGinaaqabaGccaaIOaGaamiEamaaBaaaleaacaWGHbaabe aakiaaiYcacaWG5bWaaSbaaSqaaiaadggaaeqaaOGaaGilaiaadQha daWgaaWcbaGaamyyaaqabaGccaaISaGaam4DamaaBaaaleaacaWGHb aabeaakiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaisdaaeqaaOGaaGik aiaadIhadaWgaaWcbaGaamyyaaqabaGccaaISaGaamyEamaaBaaale aacaWGHbaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaadggaaeqaaOGa aGilaiaadEhadaWgaaWcbaGaamyyaaqabaGccaaIPaaabaGaamiram aaBaaaleaacaaI0aaabeaakiaaiIcacaWG4bWaaSbaaSqaaiaadgga aeqaaOGaaGilaiaadMhadaWgaaWcbaGaamyyaaqabaGccaaISaGaam OEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG3bWaaSbaaSqaaiaa dggaaeqaaOGaaGykaaaaaiaawIcacaGLPaaacaaISaaaaa@16A4@

причем a=( x a , y a , z a , w a )U( a )W R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaai2 dacaaIOaGaamiEamaaBaaaleaacaWGHbaabeaakiaaiYcacaWG5bWa aSbaaSqaaiaadggaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyyaa qabaGccaaISaGaam4DamaaBaaaleaacaWGHbaabeaakiaaiMcacqGH iiIZcaWGvbGaaGikaiqadggagaqbaiaaiMcacqGHckcZcaWGxbGaey OGIWSaamOuamaaCaaaleqabaGaaGinaaaaaaa@4ED8@ .

Доказательство. Матрица (2.2) для действия π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  с операторами ее алгебры Ли (2.3) принимает следующий вид:

V= E E K(a) K(b) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaciaaaeaacaWGfbaabaGaamyraaqaaiaadUea caaIOaGaamyyaiaaiMcaaeaacaWGlbGaaGikaiaadkgacaaIPaaaaa GaayjkaiaawMcaaiaaiYcaaaa@41AF@

где E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraaaa@36BD@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  единичная (4×4) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaais dacqGHxdaTcaaI0aGaaGykaaaa@3AEB@  =матрица. Согласно формуле Шура (см. [2, с.~59]) |V|=|K(b)K(a)| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA facaaI8bGaaGypaiaaiYhacaWGlbGaaGikaiaadkgacaaIPaGaeyOe I0Iaam4saiaaiIcacaWGHbGaaGykaiaaiYhaaaa@42D1@ . Если действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  локально ограниченно точно дважды транзитивно, то |V|0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA facaaI8bGaeyiyIKRaaGimaaaa@3B5B@  и поэтому |K(b)K(a)|0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadU eacaaIOaGaamOyaiaaiMcacqGHsislcaWGlbGaaGikaiaadggacaaI PaGaaGiFaiabgcMi5kaaicdaaaa@41A4@ . Справедливо и обратное.

Следствие Локальное действие π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  с операторами алгебры Ли вида

X 1 = x , X 2 = y , X 3 = z , X 4 = w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaaaa@5235@

Y i = A i (x,y,z,w) x + B i (x,y,z,w) y + C i (x,y,z,w) z ,i=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGPbaabeaakiaai2dacaWGbbWaaSbaaSqaaiaadMgaaeqa aOGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGilaiaadE hacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOq amaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadMhaca aISaGaamOEaiaaiYcacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG 5baabeaakiabgUcaRiaadoeadaWgaaWcbaGaamyAaaqabaGccaaIOa GaamiEaiaaiYcacaWG5bGaaGilaiaadQhacaaISaGaam4DaiaaiMca cqGHciITdaWgaaWcbaGaamOEaaqabaGccaaISaGaaGzbVlaadMgaca aI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodacaaISaGaaGinaaaa @6793@

не является локально ограниченно точно дважды транзитивным.

3. Системы линейных уравнений. Из свойства замкнутости относительно операции коммутирования, следует, что и коммутаторы [ X j , Y k ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamOAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Rbaabeaakiaai2faaaa@3C7B@ , j,k=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaaiY cacaWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E63@ , принадлежат этой же алгебре Ли (см. [12]). ВЁкоординатной записи, с учетом (2.3), это свойство приводит к системе дифференциальных уравнений на коэффициенты A i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaaaaa@37D3@ , B i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGPbaabeaaaaa@37D4@ , C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGPbaabeaaaaa@37D5@ , D i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGPbaabeaaaaa@37D6@ :

A x = T 1 A + G 1 , A y = T 2 A + P 1 , A z = T 3 A + Q 1 , A w = T 4 A + R 1 , B x = T 1 B + G 2 , B y = T 2 B + P 2 , B z = T 3 B + Q 2 , B w = T 4 B + R 2 , C x = T 1 C + G 3 , C y = T 2 C + P 3 , C z = T 3 C + Q 3 , C w = T 4 C + R 3 , D x = T 1 D + G 4 , D y = T 2 D + P 4 , D z = T 3 D + Q 4 , D w = T 4 D + R 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqqaaa aabaWaa8raaeaacaWGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaGc caaI9aGaamivamaaBaaaleaacaaIXaaabeaakmaaFeaabaGaamyqaa Gaay51GaGaey4kaSYaa8raaeaacaWGhbaacaGLxdcadaahaaWcbeqa aiaaigdaaaGccaaISaGaaGzbVpaaFeaabaGaamyqaaGaay51GaWaaS baaSqaaiaadMhaaeqaaOGaaGypaiaadsfadaWgaaWcbaGaaGOmaaqa baGcdaWhbaqaaiaadgeaaiaawEniaiabgUcaRmaaFeaabaGaamiuaa Gaay51GaWaaWbaaSqabeaacaaIXaaaaOGaaGilaiaaywW7daWhbaqa aiaadgeaaiaawEniamaaBaaaleaacaWG6baabeaakiaai2dacaWGub WaaSbaaSqaaiaaiodaaeqaaOWaa8raaeaacaWGbbaacaGLxdcacqGH RaWkdaWhbaqaaiaadgfaaiaawEniamaaCaaaleqabaGaaGymaaaaki aaiYcacaaMf8+aa8raaeaacaWGbbaacaGLxdcadaWgaaWcbaGaam4D aaqabaGccaaI9aGaamivamaaBaaaleaacaaI0aaabeaakmaaFeaaba GaamyqaaGaay51GaGaey4kaSYaa8raaeaacaWGsbaacaGLxdcadaah aaWcbeqaaiaaigdaaaGccaaISaaabaWaa8raaeaacaWGcbaacaGLxd cadaWgaaWcbaGaamiEaaqabaGccaaI9aGaamivamaaBaaaleaacaaI XaaabeaakmaaFeaabaGaamOqaaGaay51GaGaey4kaSYaa8raaeaaca WGhbaacaGLxdcadaahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVpaa FeaabaGaamOqaaGaay51GaWaaSbaaSqaaiaadMhaaeqaaOGaaGypai aadsfadaWgaaWcbaGaaGOmaaqabaGcdaWhbaqaaiaadkeaaiaawEni aiabgUcaRmaaFeaabaGaamiuaaGaay51GaWaaWbaaSqabeaacaaIYa aaaOGaaGilaiaaywW7daWhbaqaaiaadkeaaiaawEniamaaBaaaleaa caWG6baabeaakiaai2dacaWGubWaaSbaaSqaaiaaiodaaeqaaOWaa8 raaeaacaWGcbaacaGLxdcacqGHRaWkdaWhbaqaaiaadgfaaiaawEni amaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8+aa8raaeaacaWGcb aacaGLxdcadaWgaaWcbaGaam4DaaqabaGccaaI9aGaamivamaaBaaa leaacaaI0aaabeaakmaaFeaabaGaamOqaaGaay51GaGaey4kaSYaa8 raaeaacaWGsbaacaGLxdcadaahaaWcbeqaaiaaikdaaaGccaaISaaa baWaa8raaeaacaWGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaGcca aI9aGaamivamaaBaaaleaacaaIXaaabeaakmaaFeaabaGaam4qaaGa ay51GaGaey4kaSYaa8raaeaacaWGhbaacaGLxdcadaahaaWcbeqaai aaiodaaaGccaaISaGaaGzbVpaaFeaabaGaam4qaaGaay51GaWaaSba aSqaaiaadMhaaeqaaOGaaGypaiaadsfadaWgaaWcbaGaaGOmaaqaba GcdaWhbaqaaiaadoeaaiaawEniaiabgUcaRmaaFeaabaGaamiuaaGa ay51GaWaaWbaaSqabeaacaaIZaaaaOGaaGilaiaaywW7daWhbaqaai aadoeaaiaawEniamaaBaaaleaacaWG6baabeaakiaai2dacaWGubWa aSbaaSqaaiaaiodaaeqaaOWaa8raaeaacaWGdbaacaGLxdcacqGHRa WkdaWhbaqaaiaadgfaaiaawEniamaaCaaaleqabaGaaG4maaaakiaa iYcacaaMf8+aa8raaeaacaWGdbaacaGLxdcadaWgaaWcbaGaam4Daa qabaGccaaI9aGaamivamaaBaaaleaacaaI0aaabeaakmaaFeaabaGa am4qaaGaay51GaGaey4kaSYaa8raaeaacaWGsbaacaGLxdcadaahaa WcbeqaaiaaiodaaaGccaaISaaabaWaa8raaeaacaWGebaacaGLxdca daWgaaWcbaGaamiEaaqabaGccaaI9aGaamivamaaBaaaleaacaaIXa aabeaakmaaFeaabaGaamiraaGaay51GaGaey4kaSYaa8raaeaacaWG hbaacaGLxdcadaahaaWcbeqaaiaaisdaaaGccaaISaGaaGzbVpaaFe aabaGaamiraaGaay51GaWaaSbaaSqaaiaadMhaaeqaaOGaaGypaiaa dsfadaWgaaWcbaGaaGOmaaqabaGcdaWhbaqaaiaadseaaiaawEniai abgUcaRmaaFeaabaGaamiuaaGaay51GaWaaWbaaSqabeaacaaI0aaa aOGaaGilaiaaywW7daWhbaqaaiaadseaaiaawEniamaaBaaaleaaca WG6baabeaakiaai2dacaWGubWaaSbaaSqaaiaaiodaaeqaaOWaa8ra aeaacaWGebaacaGLxdcacqGHRaWkdaWhbaqaaiaadgfaaiaawEniam aaCaaaleqabaGaaGinaaaakiaaiYcacaaMf8+aa8raaeaacaWGebaa caGLxdcadaWgaaWcbaGaam4DaaqabaGccaaI9aGaamivamaaBaaale aacaaI0aaabeaakmaaFeaabaGaamiraaGaay51GaGaey4kaSYaa8ra aeaacaWGsbaacaGLxdcadaahaaWcbeqaaiaaisdaaaGccaaISaaaaa aa@257B@  (3.1)

 где введены матричные обозначения:

T 1 = a 1 1 a 1 2 a 1 3 a 1 4 a 2 1 a 2 2 a 2 3 a 2 4 a 3 1 a 3 2 a 3 3 a 3 4 a 4 1 a 4 2 a 4 3 a 4 4 , T 2 = b 1 1 b 1 2 b 1 3 b 1 4 b 2 1 b 2 2 b 2 3 b 2 4 b 3 1 b 3 2 b 3 3 b 3 4 b 4 1 b 4 2 b 4 3 b 4 4 , T 3 = c 1 1 c 1 2 c 1 3 c 1 4 c 2 1 c 2 2 c 2 3 c 2 4 c 3 1 c 3 2 c 3 3 c 3 4 c 4 1 c 4 2 c 4 3 c 4 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa amyyamaaDaaaleaacaaIXaaabaGaaGymaaaaaOqaaiaadggadaqhaa WcbaGaaGymaaqaaiaaikdaaaaakeaacaWGHbWaa0baaSqaaiaaigda aeaacaaIZaaaaaGcbaGaamyyamaaDaaaleaacaaIXaaabaGaaGinaa aaaOqaaiaadggadaqhaaWcbaGaaGOmaaqaaiaaigdaaaaakeaacaWG HbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaamyyamaaDaaale aacaaIYaaabaGaaG4maaaaaOqaaiaadggadaqhaaWcbaGaaGOmaaqa aiaaisdaaaaakeaacaWGHbWaa0baaSqaaiaaiodaaeaacaaIXaaaaa GcbaGaamyyamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiaadgga daqhaaWcbaGaaG4maaqaaiaaiodaaaaakeaacaWGHbWaa0baaSqaai aaiodaaeaacaaI0aaaaaGcbaGaamyyamaaDaaaleaacaaI0aaabaGa aGymaaaaaOqaaiaadggadaqhaaWcbaGaaGinaaqaaiaaikdaaaaake aacaWGHbWaa0baaSqaaiaaisdaaeaacaaIZaaaaaGcbaGaamyyamaa DaaaleaacaaI0aaabaGaaGinaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVlaadsfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaeWaaeaa faqabeabeaaaaaqaaiaadkgadaqhaaWcbaGaaGymaaqaaiaaigdaaa aakeaacaWGIbWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaamOy amaaDaaaleaacaaIXaaabaGaaG4maaaaaOqaaiaadkgadaqhaaWcba GaaGymaaqaaiaaisdaaaaakeaacaWGIbWaa0baaSqaaiaaikdaaeaa caaIXaaaaaGcbaGaamOyamaaDaaaleaacaaIYaaabaGaaGOmaaaaaO qaaiaadkgadaqhaaWcbaGaaGOmaaqaaiaaiodaaaaakeaacaWGIbWa a0baaSqaaiaaikdaaeaacaaI0aaaaaGcbaGaamOyamaaDaaaleaaca aIZaaabaGaaGymaaaaaOqaaiaadkgadaqhaaWcbaGaaG4maaqaaiaa ikdaaaaakeaacaWGIbWaa0baaSqaaiaaiodaaeaacaaIZaaaaaGcba GaamOyamaaDaaaleaacaaIZaaabaGaaGinaaaaaOqaaiaadkgadaqh aaWcbaGaaGinaaqaaiaaigdaaaaakeaacaWGIbWaa0baaSqaaiaais daaeaacaaIYaaaaaGcbaGaamOyamaaDaaaleaacaaI0aaabaGaaG4m aaaaaOqaaiaadkgadaqhaaWcbaGaaGinaaqaaiaaisdaaaaaaaGcca GLOaGaayzkaaGaaGilaiaaywW7caWGubWaaSbaaSqaaiaaiodaaeqa aOGaaGypamaabmaabaqbaeqabqabaaaaaeaacaWGJbWaa0baaSqaai aaigdaaeaacaaIXaaaaaGcbaGaam4yamaaDaaaleaacaaIXaaabaGa aGOmaaaaaOqaaiaadogadaqhaaWcbaGaaGymaaqaaiaaiodaaaaake aacaWGJbWaa0baaSqaaiaaigdaaeaacaaI0aaaaaGcbaGaam4yamaa DaaaleaacaaIYaaabaGaaGymaaaaaOqaaiaadogadaqhaaWcbaGaaG OmaaqaaiaaikdaaaaakeaacaWGJbWaa0baaSqaaiaaikdaaeaacaaI ZaaaaaGcbaGaam4yamaaDaaaleaacaaIYaaabaGaaGinaaaaaOqaai aadogadaqhaaWcbaGaaG4maaqaaiaaigdaaaaakeaacaWGJbWaa0ba aSqaaiaaiodaaeaacaaIYaaaaaGcbaGaam4yamaaDaaaleaacaaIZa aabaGaaG4maaaaaOqaaiaadogadaqhaaWcbaGaaG4maaqaaiaaisda aaaakeaacaWGJbWaa0baaSqaaiaaisdaaeaacaaIXaaaaaGcbaGaam 4yamaaDaaaleaacaaI0aaabaGaaGOmaaaaaOqaaiaadogadaqhaaWc baGaaGinaaqaaiaaiodaaaaakeaacaWGJbWaa0baaSqaaiaaisdaae aacaaI0aaaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@C432@

T 4 = d 1 1 d 1 2 d 1 3 d 1 4 d 2 1 d 2 2 d 2 3 d 2 4 d 3 1 d 3 2 d 3 3 d 3 4 d 4 1 d 4 2 d 4 3 d 4 4 , A = A 1 A 2 A 3 A 4 , B = B 1 B 2 B 3 B 4 , C = C 1 C 2 C 3 C 4 , D = D 1 D 2 D 3 D 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa amizamaaDaaaleaacaaIXaaabaGaaGymaaaaaOqaaiaadsgadaqhaa WcbaGaaGymaaqaaiaaikdaaaaakeaacaWGKbWaa0baaSqaaiaaigda aeaacaaIZaaaaaGcbaGaamizamaaDaaaleaacaaIXaaabaGaaGinaa aaaOqaaiaadsgadaqhaaWcbaGaaGOmaaqaaiaaigdaaaaakeaacaWG KbWaa0baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaamizamaaDaaale aacaaIYaaabaGaaG4maaaaaOqaaiaadsgadaqhaaWcbaGaaGOmaaqa aiaaisdaaaaakeaacaWGKbWaa0baaSqaaiaaiodaaeaacaaIXaaaaa GcbaGaamizamaaDaaaleaacaaIZaaabaGaaGOmaaaaaOqaaiaadsga daqhaaWcbaGaaG4maaqaaiaaiodaaaaakeaacaWGKbWaa0baaSqaai aaiodaaeaacaaI0aaaaaGcbaGaamizamaaDaaaleaacaaI0aaabaGa aGymaaaaaOqaaiaadsgadaqhaaWcbaGaaGinaaqaaiaaikdaaaaake aacaWGKbWaa0baaSqaaiaaisdaaeaacaaIZaaaaaGcbaGaamizamaa DaaaleaacaaI0aaabaGaaGinaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVpaaFeaabaGaamyqaaGaay51GaGaaGypamaabmaabaqbaeqa bqqaaaaabaGaamyqamaaBaaaleaacaaIXaaabeaaaOqaaiaadgeada WgaaWcbaGaaGOmaaqabaaakeaacaWGbbWaaSbaaSqaaiaaiodaaeqa aaGcbaGaamyqamaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPa aacaaISaGaaGzbVpaaFeaabaGaamOqaaGaay51GaGaaGypamaabmaa baqbaeqabqqaaaaabaGaamOqamaaBaaaleaacaaIXaaabeaaaOqaai aadkeadaWgaaWcbaGaaGOmaaqabaaakeaacaWGcbWaaSbaaSqaaiaa iodaaeqaaaGcbaGaamOqamaaBaaaleaacaaI0aaabeaaaaaakiaawI cacaGLPaaacaaISaGaaGzbVpaaFeaabaGaam4qaaGaay51GaGaaGyp amaabmaabaqbaeqabqqaaaaabaGaam4qamaaBaaaleaacaaIXaaabe aaaOqaaiaadoeadaWgaaWcbaGaaGOmaaqabaaakeaacaWGdbWaaSba aSqaaiaaiodaaeqaaaGcbaGaam4qamaaBaaaleaacaaI0aaabeaaaa aakiaawIcacaGLPaaacaaISaGaaGzbVpaaFeaabaGaamiraaGaay51 GaGaaGypamaabmaabaqbaeqabqqaaaaabaGaamiramaaBaaaleaaca aIXaaabeaaaOqaaiaadseadaWgaaWcbaGaaGOmaaqabaaakeaacaWG ebWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamiramaaBaaaleaacaaI0a aabeaaaaaakiaawIcacaGLPaaacaaISaaaaa@9C94@

G j = g 1 j g 2 j g 3 j g 4 j , Q j = q 1 j q 2 j q 3 j q 4 j , P j = p 1 j p 2 j p 3 j p 4 j , R j = r 1 j r 2 j r 3 j r 4 j , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGhbaacaGLxdcadaahaaWcbeqaaiaadQgaaaGccaaI9aWaaeWaaeaa faqabeabbaaaaeaacaWGNbWaa0baaSqaaiaaigdaaeaacaWGQbaaaa GcbaGaam4zamaaDaaaleaacaaIYaaabaGaamOAaaaaaOqaaiaadEga daqhaaWcbaGaaG4maaqaaiaadQgaaaaakeaacaWGNbWaa0baaSqaai aaisdaaeaacaWGQbaaaaaaaOGaayjkaiaawMcaaiaaiYcacaaMf8+a a8raaeaacaWGrbaacaGLxdcadaahaaWcbeqaaiaadQgaaaGccaaI9a WaaeWaaeaafaqabeabbaaaaeaacaWGXbWaa0baaSqaaiaaigdaaeaa caWGQbaaaaGcbaGaamyCamaaDaaaleaacaaIYaaabaGaamOAaaaaaO qaaiaadghadaqhaaWcbaGaaG4maaqaaiaadQgaaaaakeaacaWGXbWa a0baaSqaaiaaisdaaeaacaWGQbaaaaaaaOGaayjkaiaawMcaaiaaiY cacaaMf8+aa8raaeaacaWGqbWaaWbaaSqabeaacaWGQbaaaaGccaGL xdcacaaI9aWaaeWaaeaafaqabeabbaaaaeaacaWGWbWaa0baaSqaai aaigdaaeaacaWGQbaaaaGcbaGaamiCamaaDaaaleaacaaIYaaabaGa amOAaaaaaOqaaiaadchadaqhaaWcbaGaaG4maaqaaiaadQgaaaaake aacaWGWbWaa0baaSqaaiaaisdaaeaacaWGQbaaaaaaaOGaayjkaiaa wMcaaiaaiYcacaaMf8+aa8raaeaacaWGsbWaaWbaaSqabeaacaWGQb aaaaGccaGLxdcacaaI9aWaaeWaaeaafaqabeabbaaaaeaacaWGYbWa a0baaSqaaiaaigdaaeaacaWGQbaaaaGcbaGaamOCamaaDaaaleaaca aIYaaabaGaamOAaaaaaOqaaiaadkhadaqhaaWcbaGaaG4maaqaaiaa dQgaaaaakeaacaWGYbWaa0baaSqaaiaaisdaaeaacaWGQbaaaaaaaO GaayjkaiaawMcaaiaaiYcaaaa@830B@

причем a i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E3@ , b i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E4@ , c i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E5@ , d i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E6@ , g i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38E9@ , q i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38F3@ , p i j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaDa aaleaacaWGPbaabaGaamOAaaaaaaa@38F2@ , r i j =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaDa aaleaacaWGPbaabaGaamOAaaaakiaai2dacaWGJbGaam4Baiaad6ga caWGZbGaamiDaaaa@3E85@ , i,j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E61@ .

Из свойства независимости частных производных относительно порядка дифференцирования вытекают соотношения:

( T i T j T j T i ) A = const ,( T i T j T j T i ) B = const , ( T i T j T j T i ) C = const ,( T i T j T j T i ) D = const , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaaiIcacaWGubWaaSbaaSqaaiaadMgaaeqaaOGaamivamaaBaaa leaacaWGQbaabeaakiabgkHiTiaadsfadaWgaaWcbaGaamOAaaqaba GccaWGubWaaSbaaSqaaiaadMgaaeqaaOGaaGykamaaFeaabaGaamyq aaGaay51GaGaaGypamaaFeaabaGaam4yaiaad+gacaWGUbGaam4Cai aadshaaiaawEniaiaaiYcacaaMf8UaaGikaiaadsfadaWgaaWcbaGa amyAaaqabaGccaWGubWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0Iaam ivamaaBaaaleaacaWGQbaabeaakiaadsfadaWgaaWcbaGaamyAaaqa baGccaaIPaWaa8raaeaacaWGcbaacaGLxdcacaaI9aWaa8raaeaaca WGJbGaam4Baiaad6gacaWGZbGaamiDaaGaay51GaGaaGilaaqaaiaa iIcacaWGubWaaSbaaSqaaiaadMgaaeqaaOGaamivamaaBaaaleaaca WGQbaabeaakiabgkHiTiaadsfadaWgaaWcbaGaamOAaaqabaGccaWG ubWaaSbaaSqaaiaadMgaaeqaaOGaaGykamaaFeaabaGaam4qaaGaay 51GaGaaGypamaaFeaabaGaam4yaiaad+gacaWGUbGaam4Caiaadsha aiaawEniaiaaiYcacaaMf8UaaGikaiaadsfadaWgaaWcbaGaamyAaa qabaGccaWGubWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0Iaamivamaa BaaaleaacaWGQbaabeaakiaadsfadaWgaaWcbaGaamyAaaqabaGcca aIPaWaa8raaeaacaWGebaacaGLxdcacaaI9aWaa8raaeaacaWGJbGa am4Baiaad6gacaWGZbGaamiDaaGaay51GaGaaGilaaaaaaa@8BE5@  (3.2)

где i<j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY dacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E71@ . Линейные системы (0.3.1), очевидно, совместны.

Теорема 2 Подалгебра Ли J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@  алгебры Ли L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  является идеалом тогда и только тогда, когда векторы A x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3995@ , B x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3996@ , C x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3997@ , D x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3998@ , A y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3996@ , B y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3997@ , C y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3998@ , D y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3999@ , A z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3997@ , B z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3998@ , C z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3999@ , D z , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamOEaaqabaGccaaISaaaaa@3A5A@   A w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3994@ , B w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3995@ , C w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3996@ , D w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3997@  постоянные.

Доказательство. Пусть сначала J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ . Заметим, что J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@  является идеалом тогда и только тогда, когда

[ X i , Y k ]= μ 1 X 1 + μ 2 X 2 + μ 3 X 3 + μ 4 X 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Rbaabeaakiaai2facaaI9aGaeqiVd02aaSbaaSqaaiaaigdaaeqaaO GaamiwamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeY7aTnaaBaaa leaacaaIYaaabeaakiaadIfadaWgaaWcbaGaaGOmaaqabaGccqGHRa WkcqaH8oqBdaWgaaWcbaGaaG4maaqabaGccaWGybWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqaaiaaisdaaeqaaOGaam iwamaaBaaaleaacaaI0aaabeaakiaaiYcaaaa@527D@

причем μ 1 , μ 2 , μ 3 , μ 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaaGilaiabeY7aTnaaBaaaleaacaaIYaaa beaakiaaiYcacqaH8oqBdaWgaaWcbaGaaG4maaqabaGccaaISaGaeq iVd02aaSbaaSqaaiaaisdaaeqaaOGaaGypaiaadogacaWGVbGaamOB aiaadohacaWG0baaaa@483E@ , i,k=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E62@ . Тогда векторы A x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3995@ , B x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3996@ , C x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3997@  , D x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3998@ , A y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3996@ , B y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3997@ , C y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3998@ , D y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamyEaaqabaaaaa@3999@ , A z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3997@ , B z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3998@ , C z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamOEaaqabaaaaa@3999@ , D z , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamOEaaqabaGccaaISaaaaa@3A5A@   A w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3994@ , B w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3995@ , C w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3996@ , D w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaam4Daaqabaaaaa@3997@  постоянные.

Обратно, пусть производные коэффициентов операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  постоянны; тогда коммутаторы [ X i , Y k ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Rbaabeaakiaai2faaaa@3C7A@  будут линейно выражаться через операторы X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , поэтому J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ .

Следствие T 1 = T 2 = T 3 = T 4 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaWGubWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadsfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamivam aaBaaaleaacaaI0aaabeaakiaai2dacaaIWaaaaa@40F7@  тогда и только тогда, когда J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ .

Доказательство. Если T 1 = T 2 = T 3 = T 4 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaWGubWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadsfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamivam aaBaaaleaacaaI0aaabeaakiaai2dacaaIWaaaaa@40F7@ , то из системы (3.1) получаем, что производные векторов A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcaaaa@386C@ , B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcaaaa@386D@ , C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcaaaa@386E@ , D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcaaaa@386F@  по переменным x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ , y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F1@ , z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36F2@ , w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daaaa@36EF@  постоянны, и поэтому J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@  (теорема 2).

Пусть J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  идеал в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ . Предположим для определенности, что T 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiabgcMi5kaaicdaaaa@3A3E@ . Тогда согласно системе (3.2) хотя бы одна из производных A x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3995@ , B x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGcbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3996@ , C x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGdbaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3997@ , D x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGebaacaGLxdcadaWgaaWcbaGaamiEaaqabaaaaa@3998@  не постоянна. Поэтому согласно теореме 2 получаем, что J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@  не является идеалом в L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaaaa@36C4@ . Противоречие.

Теорема 3 Матрицы коэффициентов системы (3.1) взаимно коммутативны, т.е.

T i T j T j T i =0,i<j=1,2,3,4. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaakiaadsfadaWgaaWcbaGaamOAaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaadQgaaeqaaOGaamivamaaBaaaleaaca WGPbaabeaakiaai2dacaaIWaGaaGilaiaaywW7caWGPbGaaGipaiaa dQgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodacaaISaGaaG inaiaai6caaaa@4BD1@

Доказательство. Пусть одна из пар матриц коэффициентов системы (3.1) некоммутативна, т.е. T 1 T 2 T 2 T 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaaca aIXaaabeaakiabgcMi5kaaicdaaaa@408B@ . В таком случае ранг матрицы T 1 T 2 T 2 T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaaca aIXaaabeaaaaa@3E00@  равен либо 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaaaa@36B1@ , либо 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maaaa@36B0@ , либо 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36AF@ , либо 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@36AE@ . Эквивалентными преобразованиями добьемся упрощения систем линейных уравнений

( T 1 T 2 T 2 T 1 ) A = R 1 ,( T 1 T 2 T 2 T 1 ) B = R 2 ,( T 1 T 2 T 2 T 1 ) C = R 3 ,( T 1 T 2 T 2 T 1 ) D = R 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaads fadaWgaaWcbaGaaGymaaqabaGccaWGubWaaSbaaSqaaiaaikdaaeqa aOGaeyOeI0IaamivamaaBaaaleaacaaIYaaabeaakiaadsfadaWgaa WcbaGaaGymaaqabaGccaaIPaWaa8raaeaacaWGbbaacaGLxdcacaaI 9aWaa8raaeaacaWGsbaacaGLxdcadaWgaaWcbaGaaGymaaqabaGcca aISaGaaGzbVlaaiIcacaWGubWaaSbaaSqaaiaaigdaaeqaaOGaamiv amaaBaaaleaacaaIYaaabeaakiabgkHiTiaadsfadaWgaaWcbaGaaG OmaaqabaGccaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaGykamaaFeaa baGaamOqaaGaay51GaGaaGypamaaFeaabaGaamOuaaGaay51GaWaaS baaSqaaiaaikdaaeqaaOGaaGilaiaaywW7caaIOaGaamivamaaBaaa leaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGHsi slcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaacaaI XaaabeaakiaaiMcadaWhbaqaaiaadoeaaiaawEniaiaai2dadaWhba qaaiaadkfaaiaawEniamaaBaaaleaacaaIZaaabeaakiaaiYcacaaM f8UaaGikaiaadsfadaWgaaWcbaGaaGymaaqabaGccaWGubWaaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaamivamaaBaaaleaacaaIYaaabeaa kiaadsfadaWgaaWcbaGaaGymaaqabaGccaaIPaWaa8raaeaacaWGeb aacaGLxdcacaaI9aWaa8raaeaacaWGsbaacaGLxdcadaWgaaWcbaGa aGinaaqabaGccaaIUaaaaa@7E5F@

Тогда в эквивалентных системах матрица коэффициентов T 1 T 2 T 2 T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBaaaleaaca aIXaaabeaaaaa@3E00@  принимает один из следующих видов:

1 0 0 0 , 0 1 0 0 , 0 0 1 0 , 0 0 0 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicda aeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacq WIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlct aeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaaaacaGLOaGaayzkaa GaaGilaiaaywW7daqadaqaauaabeqaeqaaaaaabaGaeS47IWeabaGa eS47IWeabaGaeS47IWeabaGaeS47IWeabaGaaGimaaqaaiaaigdaae aacaaIWaaabaGaaGimaaqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Ui mbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaai abl+UimbaaaiaawIcacaGLPaaacaaISaGaaGzbVpaabmaabaqbaeqa bqabaaaaaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVl ctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaacqWIVlctaeaa caaIWaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaabaGaeS47IWeaba GaeS47IWeabaGaeS47IWeabaGaeS47IWeaaaGaayjkaiaawMcaaiaa iYcacaaMf8+aaeWaaeaafaqabeqbeaaaaaqaaiabl+Uimbqaaiabl+ Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqa aiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+Uimbqaaiabl+ Uimbqaaiabl+UimbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa igdaaeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGaaGOlaaaa@AC64@

Значит, A 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D31@ , B 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D32@ , C 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D33@ , D 1 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIXaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , или A 2 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D32@ , B 2 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D33@ , C 2 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , D2=const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiaaik dacaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3CFF@ , или A 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D33@ , B 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , C 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D35@ , D 3 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaIZaaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D36@ , или A 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D34@ , B 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D35@ , C 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D36@ , D 4 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaaI0aaabeaakiaai2dacaWGJbGaam4Baiaad6gacaWGZbGa amiDaaaa@3D37@ . Поэтому, соответственно, оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , или Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , или Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , или Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  из системы (2.3) линейно выражается через операторы X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , что противоречит линейной независимости базисных операторов (2.3). Аналогичная проверка проводится и относительно систем из (3.2) с матрицами коэффициентов T i T j T j T i =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaakiaadsfadaWgaaWcbaGaamOAaaqabaGccqGH sislcaWGubWaaSbaaSqaaiaadQgaaeqaaOGaamivamaaBaaaleaaca WGPbaabeaakiaai2dacaaIWaaaaa@4057@ , i<j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY dacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E71@ .

Теорема 4 Для алгебры Ли локально ограниченно точно дважды транзитивного действия π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  в подходящем базисе матрица T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  принимает следующий вид:

1) J 1, λ 1 J 1, λ 2 J 1, λ 3 J 1, λ 4 ; 2) J 2, λ 5 J 1, λ 6 J 1, λ 7 ; 3) J 2, λ 5 J 2, λ 8 ; 4) J 3, λ 9 J 1, λ 10 ; 5) J 4,λ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaaGymaiaaiMcaaeaacaaMf8UaamOsamaaBaaaleaacaaIXaGa aGilaiabeU7aSnaaBaaabaGaaGymaaqabaaabeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8hfIOUaamOsamaaBaaa leaacaaIXaGaaGilaiabeU7aSnaaBaaabaGaaGOmaaqabaaabeaaki ab=rHiQlaadQeadaWgaaWcbaGaaGymaiaaiYcacqaH7oaBdaWgaaqa aiaaiodaaeqaaaqabaGccqWFuiI6caWGkbWaaSbaaSqaaiaaigdaca aISaGaeq4UdW2aaSbaaeaacaaI0aaabeaaaeqaaOGaaG4oaaqaaiaa ikdacaaIPaaabaGaaGzbVlaadQeadaWgaaWcbaGaaGOmaiaaiYcacq aH7oaBdaWgaaqaaiaaiwdaaeqaaaqabaGccqWFuiI6caWGkbWaaSba aSqaaiaaigdacaaISaGaeq4UdW2aaSbaaeaacaaI2aaabeaaaeqaaO Gae8hfIOUaamOsamaaBaaaleaacaaIXaGaaGilaiabeU7aSnaaBaaa baGaaG4naaqabaaabeaakiaaiUdaaeaacaaIZaGaaGykaaqaaiaayw W7caWGkbWaaSbaaSqaaiaaikdacaaISaGaeq4UdW2aaSbaaeaacaaI 1aaabeaaaeqaaOGae8hfIOUaamOsamaaBaaaleaacaaIYaGaaGilai abeU7aSnaaBaaabaGaaGioaaqabaaabeaakiaaiUdaaeaacaaI0aGa aGykaaqaaiaaywW7caWGkbWaaSbaaSqaaiaaiodacaaISaGaeq4UdW 2aaSbaaeaacaaI5aaabeaaaeqaaOGae8hfIOUaamOsamaaBaaaleaa caaIXaGaaGilaiabeU7aSnaaBaaabaGaaGymaiaaicdaaeqaaaqaba GccaaI7aaabaGaaGynaiaaiMcaaeaacaaMf8UaamOsamaaBaaaleaa caaI0aGaaGilaiabeU7aSbqabaGccaaISaaaaaaa@9A2E@  (3.3)

где J m,μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsamaaBa aaleaacaWGTbGaaGilaiabeY7aTbqabaaaaa@3A4C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  жорданова клетка порядка m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E5@ , соответствующая собственному значению μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@37A9@ .

Доказательство. Базис алгебры Ли локально ограниченно точно дважды транзитивного действия π: R 4 ×G R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG OoaiaadkfadaahaaWcbeqaaiaaisdaaaGccqGHxdaTcaWGhbGaeyOK H4QaamOuamaaCaaaleqabaGaaGinaaaaaaa@40D2@  задается операторами (2.3). Перейдем к новому базису

X i = X i , Y i = j=1 4 χ i j Y j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaadIfadaWgaaWcbaGaamyA aaqabaGccaaISaGaaGzbVlqadMfagaqbamaaBaaaleaacaWGPbaabe aakiaai2dadaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaaisda a0GaeyyeIuoakiabeE8aJnaaDaaaleaacaWGPbaabaGaamOAaaaaki aadMfadaWgaaWcbaGaamOAaaqabaaaaa@4B21@

при помощи невырожденной матрицы коэффициентов χ=( χ i j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ypaiaaiIcacqaHhpWydaqhaaWcbaGaamyAaaqaaiaadQgaaaGccaaI Paaaaa@3DA1@ . Тогда выражения (2.3) принимают следующий вид:

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = A i x + B i y + C i z + D i w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlqadM fagaqbamaaBaaaleaacaWGPbaabeaakiaai2daceWGbbGbauaadaWg aaWcbaGaamyAaaqabaGccqGHciITdaWgaaWcbaGaamiEaaqabaGccq GHRaWkceWGcbGbauaadaWgaaWcbaGaamyAaaqabaGccqGHciITdaWg aaWcbaGaamyEaaqabaGccqGHRaWkceWGdbGbauaadaWgaaWcbaGaam yAaaqabaGccqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkceWG ebGbauaadaWgaaWcbaGaamyAaaqabaGccqGHciITdaWgaaWcbaGaam 4DaaqabaGccaaISaaaaa@6C38@

причем

A =χ A , B =χ B , C =χ C , D =χ D . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaace WGbbGbauaaaiaawEniaiaai2dacqaHhpWydaWhbaqaaiaadgeaaiaa wEniaiaaiYcacaaMf8+aa8raaeaaceWGcbGbauaaaiaawEniaiaai2 dacqaHhpWydaWhbaqaaiaadkeaaiaawEniaiaaiYcacaaMf8+aa8ra aeaaceWGdbGbauaaaiaawEniaiaai2dacqaHhpWydaWhbaqaaiaado eaaiaawEniaiaaiYcacaaMf8+aa8raaeaaceWGebGbauaaaiaawEni aiaai2dacqaHhpWydaWhbaqaaiaadseaaiaawEniaiaai6caaaa@5B73@   (0.3.4)

Вычисляя коммутаторы [ X i , Y j ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadI fadaWgaaWcbaGaamyAaaqabaGccaaISaGabmywayaafaWaaSbaaSqa aiaadQgaaeqaaOGaaGyxaaaa@3C85@ , учитывая их замкнутость и сравнивая коэффициенты при x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadIhaaeqaaaaa@3882@ , y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadMhaaeqaaaaa@3883@ , z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadQhaaeqaaaaa@3884@  и w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaS baaSqaaiaadEhaaeqaaaaa@3881@ , получаем векторные уравнения

A x = T 1 A + G 1 , A y = T 2 A + P 1 , A z = T 3 A + Q 1 , A w = T 4 A + R 1 , B x = T 1 B + G 2 , B y = T 2 B + P 2 , B z = T 3 B + Q 2 , B w = T 4 B + R 2 , C x = T 1 C + G 3 , C y = T 2 C + P 3 , C z = T 3 C + Q 3 , C w = T 4 C + R 3 , D x = T 1 D + G 4 , D y = T 2 D + P 4 , D z = T 3 D + Q 4 , D w = T 4 D + R 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeabiaaaaaaabaaabaWaa8raaeaaceWGbbGbauaaaiaawEniamaa BaaaleaacaWG4baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaG ymaaqabaGcdaWhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8ra aeaaceWGhbGbauaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiY caaeaacaaMf8oabaWaa8raaeaaceWGbbGbauaaaiaawEniamaaBaaa leaacaWG5baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaGOmaa qabaGcdaWhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8raaeaa ceWGqbGbauaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiYcaae aacaaMf8oabaWaa8raaeaaceWGbbGbauaaaiaawEniamaaBaaaleaa caWG6baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaG4maaqaba GcdaWhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWG rbGbauaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiYcaaeaaca aMf8oabaWaa8raaeaaceWGbbGbauaaaiaawEniamaaBaaaleaacaWG 3baabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaGinaaqabaGcda WhbaqaaiqadgeagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGsbGb auaaaiaawEniamaaCaaaleqabaGaaGymaaaakiaaiYcaaeaaaeaada WhbaqaaiqadkeagaqbaaGaay51GaWaaSbaaSqaaiaadIhaaeqaaOGa aGypaiqadsfagaqbamaaBaaaleaacaaIXaaabeaakmaaFeaabaGabm OqayaafaaacaGLxdcacqGHRaWkdaWhbaqaaiqadEeagaqbaaGaay51 GaWaaWbaaSqabeaacaaIYaaaaOGaaGilaaqaaiaaywW7aeaadaWhba qaaiqadkeagaqbaaGaay51GaWaaSbaaSqaaiaadMhaaeqaaOGaaGyp aiqadsfagaqbamaaBaaaleaacaaIYaaabeaakmaaFeaabaGabmOqay aafaaacaGLxdcacqGHRaWkdaWhbaqaaiqadcfagaqbaaGaay51GaWa aWbaaSqabeaacaaIYaaaaOGaaGilaaqaaiaaywW7aeaadaWhbaqaai qadkeagaqbaaGaay51GaWaaSbaaSqaaiaadQhaaeqaaOGaaGypaiqa dsfagaqbamaaBaaaleaacaaIZaaabeaakmaaFeaabaGabmOqayaafa aacaGLxdcacqGHRaWkdaWhbaqaaiqadgfagaqbaaGaay51GaWaaWba aSqabeaacaaIYaaaaOGaaGilaaqaaiaaywW7aeaadaWhbaqaaiqadk eagaqbaaGaay51GaWaaSbaaSqaaiaadEhaaeqaaOGaaGypaiqadsfa gaqbamaaBaaaleaacaaI0aaabeaakmaaFeaabaGabmOqayaafaaaca GLxdcacqGHRaWkdaWhbaqaaiqadkfagaqbaaGaay51GaWaaWbaaSqa beaacaaIYaaaaOGaaGilaaqaaaqaamaaFeaabaGabm4qayaafaaaca GLxdcadaWgaaWcbaGaamiEaaqabaGccaaI9aGabmivayaafaWaaSba aSqaaiaaigdaaeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgU caRmaaFeaabaGabm4rayaafaaacaGLxdcadaahaaWcbeqaaiaaioda aaGccaaISaaabaGaaGzbVdqaamaaFeaabaGabm4qayaafaaacaGLxd cadaWgaaWcbaGaamyEaaqabaGccaaI9aGabmivayaafaWaaSbaaSqa aiaaikdaaeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgUcaRm aaFeaabaGabmiuayaafaaacaGLxdcadaahaaWcbeqaaiaaiodaaaGc caaISaaabaGaaGzbVdqaamaaFeaabaGabm4qayaafaaacaGLxdcada WgaaWcbaGaamOEaaqabaGccaaI9aGabmivayaafaWaaSbaaSqaaiaa iodaaeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgUcaRmaaFe aabaGabmyuayaafaaacaGLxdcadaahaaWcbeqaaiaaiodaaaGccaaI SaaabaGaaGzbVdqaamaaFeaabaGabm4qayaafaaacaGLxdcadaWgaa WcbaGaam4DaaqabaGccaaI9aGabmivayaafaWaaSbaaSqaaiaaisda aeqaaOWaa8raaeaaceWGdbGbauaaaiaawEniaiabgUcaRmaaFeaaba GabmOuayaafaaacaGLxdcadaahaaWcbeqaaiaaiodaaaGccaaISaaa baaabaWaa8raaeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG4b aabeaakiaai2daceWGubGbauaadaWgaaWcbaGaaGymaaqabaGcdaWh baqaaiqadseagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGhbGbau aaaiaawEniamaaCaaaleqabaGaaGinaaaakiaaiYcaaeaacaaMf8oa baWaa8raaeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG5baabe aakiaai2daceWGubGbauaadaWgaaWcbaGaaGOmaaqabaGcdaWhbaqa aiqadseagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGqbGbauaaai aawEniamaaCaaaleqabaGaaGinaaaakiaaiYcaaeaacaaMf8oabaWa a8raaeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG6baabeaaki aai2daceWGubGbauaadaWgaaWcbaGaaG4maaqabaGcdaWhbaqaaiqa dseagaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGrbGbauaaaiaawE niamaaCaaaleqabaGaaGinaaaakiaaiYcaaeaacaaMf8oabaWaa8ra aeaaceWGebGbauaaaiaawEniamaaBaaaleaacaWG3baabeaakiaai2 daceWGubGbauaadaWgaaWcbaGaaGinaaqabaGcdaWhbaqaaiqadsea gaqbaaGaay51GaGaey4kaSYaa8raaeaaceWGsbGbauaaaiaawEniam aaCaaaleqabaGaaGinaaaakiaai6caaaaacaGL7baaaaa@29BA@

Подставляя в последнюю систему выражения (3.4) и сравнивая с (3.1), находим

T 1 = χ 1 T 1 χ, T 2 = χ 1 T 2 χ, T 3 = χ 1 T 3 χ, T 4 = χ 1 T 4 χ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacqaHhpWydaahaaWcbeqaaiabgkHi TiaaigdaaaGcceWGubGbauaadaWgaaWcbaGaaGymaaqabaGccqaHhp WycaaISaGaaGzbVlaadsfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGa eq4Xdm2aaWbaaSqabeaacqGHsislcaaIXaaaaOGabmivayaafaWaaS baaSqaaiaaikdaaeqaaOGaeq4XdmMaaGilaiaaywW7caWGubWaaSba aSqaaiaaiodaaeqaaOGaaGypaiabeE8aJnaaCaaaleqabaGaeyOeI0 IaaGymaaaakiqadsfagaqbamaaBaaaleaacaaIZaaabeaakiabeE8a JjaaiYcacaaMf8UaamivamaaBaaaleaacaaI0aaabeaakiaai2dacq aHhpWydaahaaWcbeqaaiabgkHiTiaaigdaaaGcceWGubGbauaadaWg aaWcbaGaaGinaaqabaGccqaHhpWycaaIUaaaaa@6453@

Поскольку матрицу T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  можно привести к жордановому виду при помощи надлежащего выбора невырожденной матрицы χ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdmgaaa@37AA@  (см. [4, с.~482]), приходим к утверждению теоремы.

Отметим, что в теореме 4 собственные значения матриц могут быть как вещественными, так и комплексно сопряженными, поэтому в явном виде эти матрицы, с учетом вещественных форм, принимают следующий вид:

null (3.5)

причём β 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaigdaaeqaaOGaeyiyIKRaaGimaaaa@3B06@ , β 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3B07@ , β 3 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaiodaaeqaaOGaeyiyIKRaaGimaaaa@3B08@ , β 4 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaaisdaaeqaaOGaeyiyIKRaaGimaaaa@3B09@ . Заметим, что в этих матрицах все элементы MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  вещественные числа.

Теорема 5 Пусть T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  вещественная форма (3.5) жордановой матрицы из (3.3). Справедливы следующие утверждения. [ 1.]

1. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 1 из (3.5), с точностью до перестановки строк и столбцов, возможны соответственно четыре различных случая:

a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 a 14 a 15 a 16 , λ 1 = λ 2 = λ 3 = λ 4 ; a 1 a 2 a 3 0 a 5 a 6 a 7 0 a 9 a 10 a 11 0 0 0 0 a 16 , λ 1 = λ 2 = λ 3 λ 4 ; a 1 a 2 0 0 a 5 a 6 0 0 0 0 a 11 0 0 0 0 a 16 , λ 1 = λ 2 λ 3 λ 4 , λ 1 = λ 2 λ 4 ; a 1 0 0 0 0 a 6 0 0 0 0 a 11 0 0 0 0 a 16 дляпопарнораз личных λ 1 , λ 2 , λ 3 , λ 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiabaa aabaaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGa aGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaam yyamaaBaaaleaacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGin aaqabaaakeaacaWGHbWaaSbaaSqaaiaaiwdaaeqaaaGcbaGaamyyam aaBaaaleaacaaI2aaabeaaaOqaaiaadggadaWgaaWcbaGaaG4naaqa baaakeaacaWGHbWaaSbaaSqaaiaaiIdaaeqaaaGcbaGaamyyamaaBa aaleaacaaI5aaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaicda aeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaaca WGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWc baGaaGymaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaG inaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaI1aaabeaaaOqa aiaadggadaWgaaWcbaGaaGymaiaaiAdaaeqaaaaaaOGaayjkaiaawM caaiaaiYcacaaMe8Uaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaGyp aiabeU7aSnaaBaaaleaacaaIYaaabeaakiaai2dacqaH7oaBdaWgaa WcbaGaaG4maaqabaGccaaI9aGaeq4UdW2aaSbaaSqaaiaaisdaaeqa aOGaaG4oaaqaaaqaamaabmaabaqbaeqabqabaaaaaeaacaWGHbWaaS baaSqaaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaa aOqaaiaadggadaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaam yyamaaBaaaleaacaaI1aaabeaaaOqaaiaadggadaWgaaWcbaGaaGOn aaqabaaakeaacaWGHbWaaSbaaSqaaiaaiEdaaeqaaaGcbaGaaGimaa qaaiaadggadaWgaaWcbaGaaGyoaaqabaaakeaacaWGHbWaaSbaaSqa aiaaigdacaaIWaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaig daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaadggadaWgaaWcbaGaaGymaiaaiAdaaeqaaaaaaOGaayjkaiaawM caaiaaiYcacaaMe8Uaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaGyp aiabeU7aSnaaBaaaleaacaaIYaaabeaakiaai2dacqaH7oaBdaWgaa WcbaGaaG4maaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGinaaqa baGccaaI7aaabaaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggada WgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaiwdaae qaaaGcbaGaamyyamaaBaaaleaacaaI2aaabeaaaOqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaig dacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawI cacaGLPaaacaaISaqbaeaabiGaaaqaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaakiaai2dacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccq GHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccqGHGjsUcqaH7oaB daWgaaWcbaGaaGinaaqabaGccaaISaaabaaabaGaeq4UdW2aaSbaaS qaaiaaigdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaIYaaabeaa kiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiUdaaaaaba aabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGym aaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaamyyamaaBaaaleaacaaI2aaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXa aabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa caWGHbWaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawIcacaGLPa aacaaMe8EbaeaabiGaaaqaaaqaaiaabsdbcaqG7qGaae4teiaab+db caqG+qGaae4peiaabcdbcaqGarGaaeypeiaab6dbcaqGarGaaeimei aabEdbcqGHsislaeaaaeaacaqG7qGaaeioeiaabEebcaqG9qGaae4s eiaabwebcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4UdW 2aaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaI ZaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGinaaqabaGccaaIUa aaaaaaaaa@F916@  (3.6)

2. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 2 из (3.5), с точностью до перестановки строк и столбцов, возможны соответственно два различных случая:

a 1 a 2 0 0 a 5 a 6 0 0 0 0 a 11 a 12 0 0 a 12 a 11 , λ 1 = λ 2 ; a 1 0 0 0 0 a 6 0 0 0 0 a 11 a 12 0 0 a 12 a 11 , λ 1 λ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca WGHbWaaSbaaSqaaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI 2aaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiabgkHiTiaa dggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadgga daWgaaWcbaGaaGymaiaaigdaaeqaaaaaaOGaayjkaiaawMcaaiaaiY cacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaikdaaeqaaOGaaG4oaiaaywW7daqadaqaauaabeqaeqaaaa aabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaiAdaae qaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa dggadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaeyOeI0Iaamyyam aaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqa aiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGymaaqabaaaaaGccaGLOaGaayzkaaGaaGilaiaa ysW7cqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHGjsUcqaH7oaBda WgaaWcbaGaaGOmaaqabaGccaaIUaaaaa@7B08@  (3.7)

3. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 3 из (3.5), с точностью до перестановки строк и столбцов, возможен случай

a 1 a 2 0 0 a 2 a 1 0 0 0 0 a 11 a 12 0 0 a 12 a 11 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacqGH sislcaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaa leaacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai aaicdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiab gkHiTiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGimaa qaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqa aiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaaaaaOGaayjkaiaawM caaiaai6caaaa@51A6@  (3.8)

4. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 4 из (3.5), с точностью до перестановки строк и столбцов, возможны четыре различных случая:

a 1 a 2 a 3 a 4 0 a 1 0 0 0 a 10 a 11 a 12 0 a 14 a 15 a 16 , λ 5 = λ 6 = λ 7 ; a 1 a 2 a 3 0 0 a 1 0 0 0 a 10 a 11 0 0 0 0 a 16 , λ 5 = λ 6 λ 7 ; a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 a 12 0 0 a 15 a 16 , λ 5 λ 6 = λ 7 ; a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 0 0 0 0 a 16 , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiabaa aabaaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGa aGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaam yyamaaBaaaleaacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGin aaqabaaakeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaO qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadggadaWgaaWcbaGa aGymaiaaicdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGymaa qabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaa icdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaadg gadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaa caaIXaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaGilaiabeU7aSn aaBaaaleaacaaI1aaabeaakiaai2dacqaH7oaBdaWgaaWcbaGaaGOn aaqabaGccaaI9aGaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaG4oaa qaaiaaywW7aeaadaqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaa leaacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaake aacaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGaaGimaaqaaiaaicda aeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXaGaaGimaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaa igdacaaI2aaabeaaaaaakiaawIcacaGLPaaacaaISaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI2aaa beaakiabgcMi5kabeU7aSnaaBaaaleaacaaI3aaabeaakiaaiUdaae aaaeaadaqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaaleaacaaI XaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqa aaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaadg gadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaa caaIXaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaadggada WgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaGilaiabeU7aSnaaBa aaleaacaaI1aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI2aaa beaakiaai2dacqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaI7aaaba GaaGzbVdqaamaabmaabaqbaeqabqabaaaaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiaadggadaWgaaWcbaGaaGym aaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaba GaamyyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXa GaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaGilauaabaqadiaaaeaa aeaacqaH7oaBdaWgaaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBda WgaaWcbaGaaGOnaaqabaGccaaISaaabaaabaGaeq4UdW2aaSbaaSqa aiaaiwdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaO GaaGilaaqaaaqaaiabeU7aSnaaBaaaleaacaaI2aaabeaakiabgcMi 5kabeU7aSnaaBaaaleaacaaI3aaabeaakiaai6caaaaaaaaa@D61F@  (3.9)

5. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 5 из (3.5), с точностью до перестановки строк и столбцов, возможен случай

a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 a 12 0 0 a 12 a 11 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaig dacaaIXaaabeaaaOqaaiabgkHiTiaadggadaWgaaWcbaGaaGymaiaa ikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaai aaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaigda aeqaaaaaaOGaayjkaiaawMcaaiaai6caaaa@4F9B@  (3.10)

6. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 6 из (3.5), с точностью до перестановки строк и столбцов, возможны два различных случая:

a 1 a 2 a 3 a 4 0 a 1 0 a 3 a 9 a 10 a 11 a 12 0 a 9 0 a 11 , λ 5 = λ 8 ; a 1 a 2 0 0 0 a 1 0 0 0 0 a 11 a 12 0 0 0 a 11 , λ 5 λ 8 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZa aabeaaaOqaaiaadggadaWgaaWcbaGaaGinaaqabaaakeaacaaIWaaa baGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaWGHb WaaSbaaSqaaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaI5aaa beaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaicdaaeqaaaGcbaGaam yyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqa aiaaigdacaaIYaaabeaaaOqaaiaaicdaaeaacaWGHbWaaSbaaSqaai aaiMdaaeqaaaGcbaGaaGimaaqaaiaadggadaWgaaWcbaGaaGymaiaa igdaaeqaaaaaaOGaayjkaiaawMcaaiaaiYcacqaH7oaBdaWgaaWcba GaaGynaaqabaGccaaI9aGaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGa aG4oaiaaywW7daqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaale aacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaig daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaaaakiaawI cacaGLPaaacaaISaGaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaOGaeyiy IKRaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaGOlaaaa@7B75@  (3.11)

7. Для матрицы T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующей с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 7 из (3.5), с точностью до перестановки строк и столбцов, возможны соответственно два различных случая:

a 1 a 2 a 3 a 4 0 a 1 a 2 0 0 0 a 1 0 0 0 a 15 a 16 , λ 9 = λ 10 ; a 1 a 2 a 3 0 0 a 1 a 2 0 0 0 a 1 0 0 0 0 a 16 , λ 9 λ 10 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZa aabeaaaOqaaiaadggadaWgaaWcbaGaaGinaaqabaaakeaacaaIWaaa baGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggadaWgaaWcba GaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWG HbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaamyyamaaBaaaleaacaaIXaGaaGynaaqabaaakeaacaWG HbWaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawIcacaGLPaaaca aISaGaeq4UdW2aaSbaaSqaaiaaiMdaaeqaaOGaaGypaiabeU7aSnaa BaaaleaacaaIXaGaaGimaaqabaGccaaI7aGaaGzbVpaabmaabaqbae qabqabaaaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyy amaaBaaaleaacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maa qabaaakeaacaaIWaaabaGaaGimaaqaaiaadggadaWgaaWcbaGaaGym aaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXaaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaWGHb WaaSbaaSqaaiaaigdacaaI2aaabeaaaaaakiaawIcacaGLPaaacaaI SaGaeq4UdW2aaSbaaSqaaiaaiMdaaeqaaOGaeyiyIKRaeq4UdW2aaS baaSqaaiaaigdacaaIWaaabeaakiaai6caaaa@77BC@  (3.12)

8. Матрица T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@ , коммутирующая с матрицей T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  вида 8 из (3.5), имеет вид

a 1 a 2 a 3 a 4 0 a 1 a 2 a 3 0 0 a 1 a 2 0 0 0 a 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZa aabeaaaOqaaiaadggadaWgaaWcbaGaaGinaaqabaaakeaacaaIWaaa baGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggadaWgaaWcba GaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcba GaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaadggadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOa GaayzkaaGaaGOlaaaa@4F20@  (3.13)

Доказательство. данной теоремы сводится к вычислению матричных коммутаторов и приравниванию их к нулевой матрице: T 1 TT T 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfacqGHsislcaWGubGaamivamaaBaaa leaacaaIXaaabeaakiaai2dacaaIWaaaaa@3DA7@ . Проиллюстрируем это для последнего случая, когда матрица T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@  имеет вид 8) из (3.5) и

T= a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 a 14 a 15 a 16 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaaleaacaaIXaaa beaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacaWGHbWaaS baaSqaaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaI0aaabeaa aOqaaiaadggadaWgaaWcbaGaaGynaaqabaaakeaacaWGHbWaaSbaaS qaaiaaiAdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI3aaabeaaaOqa aiaadggadaWgaaWcbaGaaGioaaqabaaakeaacaWGHbWaaSbaaSqaai aaiMdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGimaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadggada WgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaI0aaabe aaaOqaaiaadggadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyy amaaBaaaleaacaaIXaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaGaaG Olaaaa@5CB3@

Получаем

T 1 TT T 1 = a 5 a 1 a 6 a 2 a 7 a 3 a 8 a 9 a 5 a 10 a 6 a 11 a 7 a 12 a 13 a 9 a 14 a 10 a 15 a 11 a 16 0 a 15 a 14 a 15 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaadsfacqGHsislcaWGubGaamivamaaBaaa leaacaaIXaaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGaey OeI0IaamyyamaaBaaaleaacaaI1aaabeaaaOqaaiaadggadaWgaaWc baGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaaiAdaaeqaaa GcbaGaamyyamaaBaaaleaacaaIYaaabeaakiabgkHiTiaadggadaWg aaWcbaGaaG4naaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaO GaeyOeI0IaamyyamaaBaaaleaacaaI4aaabeaaaOqaaiabgkHiTiaa dggadaWgaaWcbaGaaGyoaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiw daaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaGaaGimaaqabaaa keaacaWGHbWaaSbaaSqaaiaaiAdaaeqaaOGaeyOeI0IaamyyamaaBa aaleaacaaIXaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiEda aeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaake aacqGHsislcaWGHbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaa dggadaWgaaWcbaGaaGyoaaqabaGccqGHsislcaWGHbWaaSbaaSqaai aaigdacaaI0aaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaicda aeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIXaGaaGynaaqabaaake aacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiabgkHiTiaadgga daWgaaWcbaGaaGymaiaaiAdaaeqaaaGcbaGaaGimaaqaaiaadggada WgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaGaaGinaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaI1aaabe aaaaaakiaawIcacaGLPaaacaaI9aGaaGimaiaai6caaaa@81E1@

Видно, что

a 5 = a 9 = a 10 = a 13 = a 14 = a 15 =0, a 1 = a 6 = a 11 = a 16 , a 7 = a 2 = a 12 , a 3 = a b . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI1aaabeaakiaai2dacaWGHbWaaSbaaSqaaiaaiMdaaeqa aOGaaGypaiaadggadaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaGypai aadggadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaGypaiaadggadaWg aaWcbaGaaGymaiaaisdaaeqaaOGaaGypaiaadggadaWgaaWcbaGaaG ymaiaaiwdaaeqaaOGaaGypaiaaicdacaaISaGaaGzbVlaadggadaWg aaWcbaGaaGymaaqabaGccaaI9aGaamyyamaaBaaaleaacaaI2aaabe aakiaai2dacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaai2da caWGHbWaaSbaaSqaaiaaigdacaaI2aaabeaakiaaiYcacaaMf8Uaam yyamaaBaaaleaacaaI3aaabeaakiaai2dacaWGHbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaO GaaGilaiaaywW7caWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaa dggadaWgaaWcbaGaamOyaaqabaGccaaIUaaaaa@688F@

В результате матрица T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36CC@  принимает вид (3.13). Аналогично получаем (3.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.12).

Теоремы 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 5 дают существенные ограничения на матрицы коэффициентов T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@  и T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@  из системы (3.1). Несложно установить, что матрицы T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@ , T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@  и T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@  могут принимать следующие неупорядоченные четвёрки значений:

1. λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 , μ 1 0 0 0 0 μ 2 0 0 0 0 μ 3 0 0 0 0 μ 4 , ν 1 0 0 0 0 ν 2 0 0 0 0 ν 3 0 0 0 0 ν 4 , ρ 1 0 0 0 0 ρ 2 0 0 0 0 ρ 3 0 0 0 0 ρ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaio daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiabeU7aSnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaaca aISaWaaeWaaeaafaqabeabeaaaaaqaaiabeY7aTnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaiodaae qaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiab eY7aTnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaISa WaaeWaaeaafaqabeabeaaaaaqaaiabe27aUnaaBaaaleaacaaIXaaa beaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq aH9oGBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacaaIWaaabaGaeqyVd42aaSbaaSqaaiaaiodaaeqaaa GcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabe27a UnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaISaWaae Waaeaafaqabeabeaaaaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaHbp GCdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaeqyWdi3aaSbaaSqaaiaaiodaaeqaaaGcba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeg8aYnaa BaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaI7aaaaa@900F@

 

2. λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 λ 4 0 0 λ 4 λ 3 , μ 1 0 0 0 0 μ 2 0 0 0 0 μ 3 μ 4 0 0 μ 4 μ 3 , ν 1 0 0 0 0 ν 2 0 0 0 0 ν 3 ν 4 0 0 ν 4 ν 3 , ρ 1 0 0 0 0 ρ 2 0 0 0 0 ρ 3 ρ 4 0 0 ρ 4 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaio daaeqaaaGcbaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaisdaaeqaaaGc baGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaaqaba aakeaacqaH7oaBdaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaayzk aaGaaGilamaabmaabaqbaeqabqabaaaaaeaacqaH8oqBdaWgaaWcba GaaGymaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaI WaaabaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaI ZaaabeaaaOqaaiabgkHiTiabeY7aTnaaBaaaleaacaaI0aaabeaaaO qaaiaaicdaaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaisdaaeqa aaGcbaGaeqiVd02aaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawM caaiaaiYcadaqadaqaauaabeqaeqaaaaaabaGaeqyVd42aaSbaaSqa aiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaG imaaqaaiabe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH9oGBdaWgaaWcbaGaaG 4maaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcbaGaaGinaaqabaaa keaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaI0aaabe aaaOqaaiabe27aUnaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGL PaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8aYnaaBaaale aacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacqaHbpGCdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3aaSbaaSqaaiaa iodaaeqaaaGcbaGaeyOeI0IaeqyWdi3aaSbaaSqaaiaaisdaaeqaaa GcbaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaGinaaqa baaakeaacqaHbpGCdaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaay zkaaGaaGilaaaa@A345@

  λ 4 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHGjsUcaaIWaGaaG4o aaaa@3EFD@

3. λ 1 λ 2 0 0 λ 2 λ 1 0 0 0 0 λ 3 λ 4 0 0 λ 4 λ 3 , μ 1 μ 2 0 0 μ 2 μ 1 0 0 0 0 μ 3 μ 4 0 0 μ 4 μ 3 , ν 1 ν 2 0 0 ν 2 ν 1 0 0 0 0 ν 3 ν 4 0 0 ν 4 ν 3 , ρ 1 ρ 2 0 0 ρ 2 ρ 1 0 0 0 0 ρ 3 ρ 4 0 0 ρ 4 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabe aaaOqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaikda aeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaa qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaa caaIZaaabeaaaOqaaiabgkHiTiabeU7aSnaaBaaaleaacaaI0aaabe aaaOqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaisda aeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaaaaaOGaayjkai aawMcaaiaaiYcadaqadaqaauaabeqaeqaaaaaabaGaeqiVd02aaSba aSqaaiaaigdaaeqaaaGcbaGaeyOeI0IaeqiVd02aaSbaaSqaaiaaik daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGa aGOmaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaaakeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqiVd02aaSba aSqaaiaaiodaaeqaaaGcbaGaeyOeI0IaeqiVd02aaSbaaSqaaiaais daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGa aGinaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaG4maaqabaaaaaGcca GLOaGaayzkaaGaaGilamaabmaabaqbaeqabqabaaaaaeaacqaH9oGB daWgaaWcbaGaaGymaaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcba GaaGOmaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaa leaacaaIYaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaO qaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH9oGB daWgaaWcbaGaaG4maaqabaaakeaacqGHsislcqaH9oGBdaWgaaWcba GaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaa leaacaaI0aaabeaaaOqaaiabe27aUnaaBaaaleaacaaIZaaabeaaaa aakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiab eg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabgkHiTiabeg8aYnaaBa aaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3a aSbaaSqaaiaaikdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaaigdaae qaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiab eg8aYnaaBaaaleaacaaIZaaabeaaaOqaaiabgkHiTiabeg8aYnaaBa aaleaacaaI0aaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3a aSbaaSqaaiaaisdaaeqaaaGcbaGaeqyWdi3aaSbaaSqaaiaaiodaae qaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@B67A@   λ 2 0, λ 4 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcaaIWaGaaGil aiaaysW7cqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHGjsUcaaIWa GaaG4oaaaa@4667@

4. λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 3 0 0 0 0 λ 4 , μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 3 0 0 0 0 μ 4 , ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 3 0 0 0 0 ν 4 , ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 3 0 0 0 0 ρ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH7oaBdaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaisdaae qaaaaaaOGaayjkaiaawMcaaiaaiYcadaqadaqaauaabeqaeqaaaaaa baGaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqiVd02aaSbaaS qaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaIZaaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH8o qBdaWgaaWcbaGaaGinaaqabaaaaaGccaGLOaGaayzkaaGaaGilamaa bmaabaqbaeqabqabaaaaaeaacqaH9oGBdaWgaaWcbaGaaGymaaqaba aakeaacqaH9oGBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacqaH9oGBdaWgaaWcbaGaaGymaaqabaaake aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyVd42a aSbaaSqaaiaaiodaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaI0aaabeaaaaaakiaa wIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8aYn aaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaaBaaaleaacaaIYaaa beaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeg8aYnaaBa aaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaG4maaqabaaakeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyWdi3aaSbaaSqa aiaaisdaaeqaaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@97C1@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaG4oaaaa@4C99@

5. λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 3 λ 4 0 0 λ 4 λ 3 , μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 3 μ 4 0 0 μ 4 μ 3 , ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 3 ν 4 0 0 ν 4 ν 3 , ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 3 ρ 4 0 0 ρ 4 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH7oaBdaWgaaWcbaGaaG4maaqabaaakeaacqGHsislcqaH7oaB daWgaaWcbaGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabeU 7aSnaaBaaaleaacaaI0aaabeaaaOqaaiabeU7aSnaaBaaaleaacaaI ZaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabea aaaaqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiabeY7aTnaa BaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGaaG4maa qabaaakeaacqGHsislcqaH8oqBdaWgaaWcbaGaaGinaaqabaaakeaa caaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaI0aaabeaaaO qaaiabeY7aTnaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPaaa caaISaWaaeWaaeaafaqabeabeaaaaaqaaiabe27aUnaaBaaaleaaca aIXaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaIXa aabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa cqaH9oGBdaWgaaWcbaGaaG4maaqabaaakeaacqGHsislcqaH9oGBda WgaaWcbaGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiabe27a UnaaBaaaleaacaaI0aaabeaaaOqaaiabe27aUnaaBaaaleaacaaIZa aabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaa aaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaaBa aaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaG4maaqa baaakeaacqGHsislcqaHbpGCdaWgaaWcbaGaaGinaaqabaaakeaaca aIWaaabaGaaGimaaqaaiabeg8aYnaaBaaaleaacaaI0aaabeaaaOqa aiabeg8aYnaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPaaaca aISaaaaa@AB06@

λ 4 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHGjsUcaaIWaGaaG4o aaaa@3EFD@

6. λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 3 λ 4 0 0 0 λ 3 , μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 3 μ 4 0 0 0 μ 3 , ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 3 ν 4 0 0 0 ν 3 , ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 3 ρ 4 0 0 0 ρ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOnaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI XaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaae aacqaH7oaBdaWgaaWcbaGaaG4maaqabaaakeaacqaH7oaBdaWgaaWc baGaaGinaaqabaaakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacq aH7oaBdaWgaaWcbaGaaG4maaqabaaaaaGccaGLOaGaayzkaaGaaGil amaabmaabaqbaeqabqabaaaaaeaacqaH8oqBdaWgaaWcbaGaaGymaa qabaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGaaGymaaqaba aakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqiV d02aaSbaaSqaaiaaiodaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaais daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqiVd02a aSbaaSqaaiaaiodaaeqaaaaaaOGaayjkaiaawMcaaiaaiYcadaqada qaauaabeqaeqaaaaaabaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaaGc baGaeqyVd42aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBa aaleaacaaIZaaabeaaaOqaaiabe27aUnaaBaaaleaacaaI0aaabeaa aOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabe27aUnaaBaaale aacaaIZaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqa beabeaaaaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabeg 8aYnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGa aG4maaqabaaakeaacqaHbpGCdaWgaaWcbaGaaGinaaqabaaakeaaca aIWaaabaGaaGimaaqaaiaaicdaaeaacqaHbpGCdaWgaaWcbaGaaG4m aaqabaaaaaGccaGLOaGaayzkaaGaaGilaaaa@9F89@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0, λ 4 2 + μ 4 2 + ν 4 2 + ρ 4 2 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaGilaiaaysW7cq aH7oaBdaqhaaWcbaGaaGinaaqaaiaaikdaaaGccqGHRaWkcqaH8oqB daqhaaWcbaGaaGinaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBdaqhaa WcbaGaaGinaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWcbaGa aGinaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaG4oaaaa@61A9@

7. λ 1 λ 2 λ 3 0 0 λ 1 λ 2 0 0 0 λ 1 0 0 0 0 λ 4 , μ 1 μ 2 μ 3 0 0 μ 1 μ 2 0 0 0 μ 1 0 0 0 0 μ 4 , ν 1 ν 2 ν 3 0 0 ν 1 ν 2 0 0 0 ν 1 0 0 0 0 ν 4 , ρ 1 ρ 2 ρ 3 0 0 ρ 1 ρ 2 0 0 0 ρ 1 0 0 0 0 ρ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai abeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaaGcbaGaeq4UdW2aaSbaaS qaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eq4UdW2aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI0aaabeaa aaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaai abeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiabeY7aTnaaBaaaleaa caaIYaaabeaaaOqaaiabeY7aTnaaBaaaleaacaaIZaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGc baGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaic daaeaacaaIWaaabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaaGcbaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBa aaleaacaaI0aaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaa faqabeabeaaaaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaOqaai abe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiabe27aUnaaBaaaleaa caaIZaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeqyVd42aaSbaaS qaaiaaigdaaeqaaaGcbaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaaGc baGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyVd42aaSbaaSqaai aaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaqaaiabe27aUnaaBaaaleaacaaI0aaabeaaaaaakiaawIcacaGLPa aacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8aYnaaBaaaleaa caaIXaaabeaaaOqaaiabeg8aYnaaBaaaleaacaaIYaaabeaaaOqaai abeg8aYnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaeqyWdi3aaSbaaSqaaiaaigdaaeqaaaGcbaGaeqyWdi3aaSbaaS qaaiaaikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGa eqyWdi3aaSbaaSqaaiaaigdaaeqaaaGcbaGaaGimaaqaaiaaicdaae aacaaIWaaabaGaaGimaaqaaiabeg8aYnaaBaaaleaacaaI0aaabeaa aaaakiaawIcacaGLPaaacaaISaaaaa@A744@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaG4oaaaa@4C99@

8. λ 1 λ 2 λ 3 λ 4 0 λ 1 λ 2 λ 3 0 0 λ 1 λ 2 0 0 0 λ 1 , μ 1 μ 2 μ 3 μ 4 0 μ 1 μ 2 μ 3 0 0 μ 1 μ 2 0 0 0 μ 1 , ν 1 ν 2 ν 3 ν 4 0 ν 1 ν 2 ν 3 0 0 ν 1 ν 2 0 0 0 ν 1 , ρ 1 ρ 2 ρ 3 ρ 4 0 ρ 1 ρ 2 ρ 3 0 0 ρ 1 ρ 2 0 0 0 ρ 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaai6 cacaaMf8+aaeWaaeaafaqabeabeaaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai abeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiabeU7aSnaaBaaaleaa caaI0aaabeaaaOqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGymaa qabaaakeaacqaH7oaBdaWgaaWcbaGaaGOmaaqabaaakeaacqaH7oaB daWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiabeU 7aSnaaBaaaleaacaaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaI YaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeU7aSn aaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWa aeaafaqabeabeaaaaaqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaO qaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaaiabeY7aTnaaBaaa leaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaacaaI0aaabeaaaO qaaiaaicdaaeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaaakeaacqaH 8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaG 4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaa caaIXaaabeaaaOqaaiabeY7aTnaaBaaaleaacaaIYaaabeaaaOqaai aaicdaaeaacaaIWaaabaGaaGimaaqaaiabeY7aTnaaBaaaleaacaaI XaaabeaaaaaakiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabea aaaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaOqaaiabe27aUnaa BaaaleaacaaIYaaabeaaaOqaaiabe27aUnaaBaaaleaacaaIZaaabe aaaOqaaiabe27aUnaaBaaaleaacaaI0aaabeaaaOqaaiaaicdaaeaa cqaH9oGBdaWgaaWcbaGaaGymaaqabaaakeaacqaH9oGBdaWgaaWcba GaaGOmaaqabaaakeaacqaH9oGBdaWgaaWcbaGaaG4maaqabaaakeaa caaIWaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaO qaaiabe27aUnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiabe27aUnaaBaaaleaacaaIXaaabeaaaaaaki aawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabeaaaaaqaaiabeg8a YnaaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaaBaaaleaacaaIYa aabeaaaOqaaiabeg8aYnaaBaaaleaacaaIZaaabeaaaOqaaiabeg8a YnaaBaaaleaacaaI0aaabeaaaOqaaiaaicdaaeaacqaHbpGCdaWgaa WcbaGaaGymaaqabaaakeaacqaHbpGCdaWgaaWcbaGaaGOmaaqabaaa keaacqaHbpGCdaWgaaWcbaGaaG4maaqabaaakeaacaaIWaaabaGaaG imaaqaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaOqaaiabeg8aYnaa BaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeg8aYnaaBaaaleaacaaIXaaabeaaaaaakiaawIcacaGLPaaa caaISaaaaa@BE8B@

λ 2 2 + μ 2 2 + ν 2 2 + ρ 2 2 0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7cqaH7oaBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH 8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaH9oGBda qhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHRaWkcqaHbpGCdaqhaaWc baGaaGOmaaqaaiaaikdaaaGccqGHGjsUcaaIWaGaaGOlaaaa@4C8C@

4. Разложимая алгебра Ли

Решение системы дифференциальных уравнений (3.1) с нулевыми матрицами T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@ , T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@  и T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@  в подходящем базисе принимает следующий вид:

A = U 1 x y z w + C 1 , B = U 2 x y z w + C 2 , C = U 3 x y z w + C 3 , D = U 4 x y z w + C 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WGbbaacaGLxdcacaaI9aGaamyvamaaCaaaleqabaGaaGymaaaakmaa bmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaacaWG6baaba Gaam4DaaaaaiaawIcacaGLPaaacqGHRaWkcaWGdbWaaWbaaSqabeaa caaIXaaaaOGaaGilaiaaywW7daWhbaqaaiaadkeaaiaawEniaiaai2 dacaWGvbWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaafaqabeabbaaa aeaacaWG4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkai aawMcaaiabgUcaRiaadoeadaahaaWcbeqaaiaaikdaaaGccaaISaGa aGzbVpaaFeaabaGaam4qaaGaay51GaGaaGypaiaadwfadaahaaWcbe qaaiaaiodaaaGcdaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG 5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaey4kaSIaam 4qamaaCaaaleqabaGaaG4maaaakiaaiYcacaaMf8+aa8raaeaacaWG ebaacaGLxdcacaaI9aGaamyvamaaCaaaleqabaGaaGinaaaakmaabm aabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaacaWG6baabaGa am4DaaaaaiaawIcacaGLPaaacqGHRaWkcaWGdbWaaWbaaSqabeaaca aI0aaaaOGaaGilaaaa@7267@

где

U i = g 1 i p 1 i q 1 i r 1 i g 2 i p 2 i q 2 i r 2 i g 3 i p 3 i q 3 i r 3 i g 4 i p 4 i q 4 i r 4 i , C i = c 1 i c 2 i c 3 i c 4 i ,i=1,2,3,4, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaCa aaleqabaGaamyAaaaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa am4zamaaDaaaleaacaaIXaaabaGaamyAaaaaaOqaaiaadchadaqhaa WcbaGaaGymaaqaaiaadMgaaaaakeaacaWGXbWaa0baaSqaaiaaigda aeaacaWGPbaaaaGcbaGaamOCamaaDaaaleaacaaIXaaabaGaamyAaa aaaOqaaiaadEgadaqhaaWcbaGaaGOmaaqaaiaadMgaaaaakeaacaWG WbWaa0baaSqaaiaaikdaaeaacaWGPbaaaaGcbaGaamyCamaaDaaale aacaaIYaaabaGaamyAaaaaaOqaaiaadkhadaqhaaWcbaGaaGOmaaqa aiaadMgaaaaakeaacaWGNbWaa0baaSqaaiaaiodaaeaacaWGPbaaaa GcbaGaamiCamaaDaaaleaacaaIZaaabaGaamyAaaaaaOqaaiaadgha daqhaaWcbaGaaG4maaqaaiaadMgaaaaakeaacaWGYbWaa0baaSqaai aaiodaaeaacaWGPbaaaaGcbaGaam4zamaaDaaaleaacaaI0aaabaGa amyAaaaaaOqaaiaadchadaqhaaWcbaGaaGinaaqaaiaadMgaaaaake aacaWGXbWaa0baaSqaaiaaisdaaeaacaWGPbaaaaGcbaGaamOCamaa DaaaleaacaaI0aaabaGaamyAaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVlaadoeadaahaaWcbeqaaiaadMgaaaGccaaI9aWaaeWaaeaa faqabeabbaaaaeaacaWGJbWaa0baaSqaaiaaigdaaeaacaWGPbaaaa GcbaGaam4yamaaDaaaleaacaaIYaaabaGaamyAaaaaaOqaaiaadoga daqhaaWcbaGaaG4maaqaaiaadMgaaaaakeaacaWGJbWaa0baaSqaai aaisdaaeaacaWGPbaaaaaaaOGaayjkaiaawMcaaiaaiYcacaaMf8Ua amyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGaaG4maiaaiYcaca aI0aGaaGilaaaa@832D@

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  постоянные матрицы. По найденным решениям запишем базисные операторы (2.3) восьмимерных линейных пространств, добиваясь при этом исключения свободных членов выбором линейных комбинаций с постоянными коэффициентами операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  с операторами X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@  и X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ :

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = U i x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadM fadaWgaaWcbaGaamyAaaqabaGccaaI9aWaaaWaaeaacaWGvbWaaSba aSqaaiaadMgaaeqaaOWaaeWaaeaafaqabeabbaaaaeaacaWG4baaba GaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaaiaaiYca daqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG4baabe aaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgkGi2oaa BaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG3baabe aaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaaaaa@6D56@  (4.1)

где

\ U i = g i 1 p i 1 q i 1 r i 1 g i 2 p i 2 q i 2 r i 2 g i 3 p i 3 q i 3 r i 3 g i 4 p i 4 q i 4 r i 4 ,i=1,2,3,4, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbaabeaakiaai2dadaqadaqaauaabeqaeqaaaaaabaGa am4zamaaDaaaleaacaWGPbaabaGaaGymaaaaaOqaaiaadchadaqhaa WcbaGaamyAaaqaaiaaigdaaaaakeaacaWGXbWaa0baaSqaaiaadMga aeaacaaIXaaaaaGcbaGaamOCamaaDaaaleaacaWGPbaabaGaaGymaa aaaOqaaiaadEgadaqhaaWcbaGaamyAaaqaaiaaikdaaaaakeaacaWG WbWaa0baaSqaaiaadMgaaeaacaaIYaaaaaGcbaGaamyCamaaDaaale aacaWGPbaabaGaaGOmaaaaaOqaaiaadkhadaqhaaWcbaGaamyAaaqa aiaaikdaaaaakeaacaWGNbWaa0baaSqaaiaadMgaaeaacaaIZaaaaa GcbaGaamiCamaaDaaaleaacaWGPbaabaGaaG4maaaaaOqaaiaadgha daqhaaWcbaGaamyAaaqaaiaaiodaaaaakeaacaWGYbWaa0baaSqaai aadMgaaeaacaaIZaaaaaGcbaGaam4zamaaDaaaleaacaWGPbaabaGa aGinaaaaaOqaaiaadchadaqhaaWcbaGaamyAaaqaaiaaisdaaaaake aacaWGXbWaa0baaSqaaiaadMgaaeaacaaI0aaaaaGcbaGaamOCamaa DaaaleaacaWGPbaabaGaaGinaaaaaaaakiaawIcacaGLPaaacaaISa GaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaioda caaISaGaaGinaiaaiYcaaaa@7174@

и , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaey yXICTaaGilaiabgwSixlabgQYiXdaa@3EC0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скалярное произведение векторов. Несложно вычислить коммутатор:

[ Y i , Y j ]= ( U j U i U i U j ) x y z w , x y z w = [ U i , U j ] x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamywamaaBaaaleaacaWG Qbaabeaakiaai2facaaI9aWaaaWaaeaacaaIOaGaamyvamaaBaaale aacaWGQbaabeaakiaadwfadaWgaaWcbaGaamyAaaqabaGccqGHsisl caWGvbWaaSbaaSqaaiaadMgaaeqaaOGaamyvamaaBaaaleaacaWGQb aabeaakiaaiMcadaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG 5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaaGilamaabm aabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaaGc baGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaaaa aOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaai2dacqGHsisldaaada qaaiaaiUfacaWGvbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaadwfa daWgaaWcbaGaamOAaaqabaGccaaIDbWaaeWaaeaafaqabeabbaaaae aacaWG4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaa wMcaaiaaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaale aacaWG4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqa aiabgkGi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaale aacaWG3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaI Saaaaa@78A2@  (4.2)

где [ U i , U j ]= U i U j U j U i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadw fadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyvamaaBaaaleaacaWG Qbaabeaakiaai2facaaI9aGaamyvamaaBaaaleaacaWGPbaabeaaki aadwfadaWgaaWcbaGaamOAaaqabaGccqGHsislcaWGvbWaaSbaaSqa aiaadQgaaeqaaOGaamyvamaaBaaaleaacaWGPbaabeaaaaa@4616@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коммутатор матриц U i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGPbaabeaaaaa@37E7@  и U j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaWGQbaabeaaaaa@37E8@ , i,j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E61@ .

Тождество Якоби в нашем случае это свойство выполняется автоматически, поскольку X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  векторные поля (см. [12, с. 88]).

Далее выясним, при каких условиях на коэффициенты операторы (0.3.1) становятся базисными операторами восьмимерных алгебр Ли. Очевидно, алгебра Ли L=JI MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2 dacaWGkbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFjlI4caWGjbaaaa@4504@  разложима, так как является полупрямой суммой коммутативного трехмерного идеала J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaaaa@36C2@ , образованного операторами X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , и четырёхмерной подалгебры Ли I MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C1@ , образованной операторами Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . Следуя классификации абстрактных четырехмерных вещественных алгебр Ли (см. [11, с.138]), приведем полный список (с точностью до изоморфизма) подалгебр Ли I MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C1@ :

 

[Y1, Y2]

[Y1, Y3]

[Y2, Y3]

[Y1, Y4]

[Y2, Y4]

[Y3, Y4]

0

0

0

εY1

kY2

lY3

1.

0

0

0

kY1 + Y2

Y1 + kY2

lY3

2.

0

0

0

kY1 + Y2

kY2

εY3

3.

0

0

0

kY1 + Y2

kY2 + Y3

εY3

4.

0

0

Y1

cY1

Y2

(c 1)Y3

5.

0

0

Y1

2Y1

Y2

Y2 + Y3

6.

0

0

Y1

qY1

Y3

Y2 + qY3

7.

0

Y1

0

0

Y

0

8.

0

Y1

Y2

Y2

Y1

0

9.

Y3

Y2

Y1

0

0

0

10.

Y3

Y2

Y1

0

0

0

11.

 (4.3)

где ε=0,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaicdacaaISaGaaGymaaaa@3A8C@ ; k,l,c,q=const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiY cacaWGSbGaaGilaiaadogacaaISaGaamyCaiaai2dacaWGJbGaam4B aiaad6gacaWGZbGaamiDaaaa@415B@  и 2<q<2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmaiaaiYdacaWGXbGaaGipaiaaikdaaaa@3ADA@ .

 

Теорема 6 Для локальной ограниченно точно дважды транзитивной группы Ли преобразований с разложимой алгеброй Ли L=JI MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai2 dacaWGkbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa cqWFjlI4caWGjbaaaa@4504@ , базис которой задается операторами (3.1), матрица коэффициентов K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C3@  операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  невырождена.

Доказательство. Согласно теореме 1 матрица, составленная по коэффициентам операторов, невырождена; значит

E E K(u) K(v) =|K(v)K(u)|0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafa qabeGacaaabaGaamyraaqaaiaadweaaeaacaWGlbGaaGikaiaadwha caaIPaaabaGaam4saiaaiIcacaWG2bGaaGykaaaaaiaawEa7caGLiW oacaaI9aGaaGiFaiaadUeacaaIOaGaamODaiaaiMcacqGHsislcaWG lbGaaGikaiaadwhacaaIPaGaaGiFaiabgcMi5kaaicdacaaIUaaaaa@4E70@

Тогда матрица

K(v)K(u)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG2bGaaGykaiabgkHiTiaadUeacaaIOaGaamyDaiaaiMcacaaI 9aaaaa@3E06@

null

= g 1 1 , vu g 1 2 , vu g 1 3 , vu g 1 4 , v g 2 1 , vu g 2 2 , vu g 2 3 , vu g 2 4 , v g 3 1 , vu g 3 2 , vu g 3 3 , vu g 3 4 , vu g 4 1 , vu g 4 2 , vu g 4 3 , vu g 4 4 , vu MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaabm aabaqbaeqabuabaaaaaeaacqGHPms4daWhbaqaaiaadEgaaiaawEni amaaDaaaleaacaaIXaaabaGaaGymaaaakiaaiYcadaWhbaqaaiaadA hacaWG1baacaGLxdcacqGHQms8aeaacqGHPms4daWhbaqaaiaadEga aiaawEniamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaaiYcadaWhba qaaiaadAhacaWG1baacaGLxdcacqGHQms8aeaacqGHPms4daWhbaqa aiaadEgaaiaawEniamaaDaaaleaacaaIXaaabaGaaG4maaaakiaaiY cadaWhbaqaaiaadAhacaWG1baacaGLxdcacqGHQms8aeaacqGHPms4 daWhbaqaaiaadEgaaiaawEniamaaDaaaleaacaaIXaaabaGaaGinaa aakiaaiYcadaWhbaqaaiaadAhaaiaawEniaiabgQYiXdqaaiabgMYi HpaaFeaabaGaam4zaaGaay51GaWaa0baaSqaaiaaikdaaeaacaaIXa aaaOGaaGilamaaFeaabaGaamODaiaadwhaaiaawEniaiabgQYiXdqa aiabgMYiHpaaFeaabaGaam4zaaGaay51GaWaa0baaSqaaiaaikdaae aacaaIYaaaaOGaaGilamaaFeaabaGaamODaiaadwhaaiaawEniaiab gQYiXdqaaiabgMYiHpaaFeaabaGaam4zaaGaay51GaWaa0baaSqaai aaikdaaeaacaaIZaaaaOGaaGilamaaFeaabaGaamODaiaadwhaaiaa wEniaiabgQYiXdqaaiabgMYiHpaaFeaabaGaam4zaaGaay51GaWaa0 baaSqaaiaaikdaaeaacaaI0aaaaOGaaGilamaaFeaabaGaamODaaGa ay51GaGaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdcada qhaaWcbaGaaG4maaqaaiaaigdaaaGccaaISaWaa8raaeaacaWG2bGa amyDaaGaay51GaGaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaaca GLxdcadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaaISaWaa8raaeaa caWG2bGaamyDaaGaay51GaGaeyOkJepabaGaeyykJe+aa8raaeaaca WGNbaacaGLxdcadaqhaaWcbaGaaG4maaqaaiaaiodaaaGccaaISaWa a8raaeaacaWG2bGaamyDaaGaay51GaGaeyOkJepabaGaeyykJe+aa8 raaeaacaWGNbaacaGLxdcadaqhaaWcbaGaaG4maaqaaiaaisdaaaGc caaISaWaa8raaeaacaWG2bGaamyDaaGaay51GaGaeyOkJepabaGaey ykJe+aa8raaeaacaWGNbaacaGLxdcadaqhaaWcbaGaaGinaaqaaiaa igdaaaGccaaISaWaa8raaeaacaWG2bGaamyDaaGaay51GaGaeyOkJe pabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdcadaqhaaWcbaGaaGin aaqaaiaaikdaaaGccaaISaWaa8raaeaacaWG2bGaamyDaaGaay51Ga GaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdcadaqhaaWc baGaaGinaaqaaiaaiodaaaGccaaISaWaa8raaeaacaWG2bGaamyDaa Gaay51GaGaeyOkJepabaGaeyykJe+aa8raaeaacaWGNbaacaGLxdca daqhaaWcbaGaaGinaaqaaiaaisdaaaGccaaISaWaa8raaeaacaWG2b GaamyDaaGaay51GaGaeyOkJepabaaabaaabaaabaaaaaGaayjkaiaa wMcaaaaa@F974@

невырождена; здесь

u =( x u , y u , z u , w u ), v =( x v , y v , z v , w v ), vu =( x vu , y vu , z vu , w vu ), g i j =( g i j , p i j , q i j , r i j ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8raaeaaca WG1baacaGLxdcacaaI9aGaaGikaiaadIhadaWgaaWcbaGaamyDaaqa baGccaaISaGaamyEamaaBaaaleaacaWG1baabeaakiaaiYcacaWG6b WaaSbaaSqaaiaadwhaaeqaaOGaaGilaiaadEhadaWgaaWcbaGaamyD aaqabaGccaaIPaGaaGilaiaaywW7daWhbaqaaiaadAhaaiaawEniai aai2dacaaIOaGaamiEamaaBaaaleaacaWG2baabeaakiaaiYcacaWG 5bWaaSbaaSqaaiaadAhaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaam ODaaqabaGccaaISaGaam4DamaaBaaaleaacaWG2baabeaakiaaiMca caaISaGaaGzbVpaaFeaabaGaamODaiaadwhaaiaawEniaiaai2daca aIOaGaamiEamaaBaaaleaacaWG2bGaamyDaaqabaGccaaISaGaamyE amaaBaaaleaacaWG2bGaamyDaaqabaGccaaISaGaamOEamaaBaaale aacaWG2bGaamyDaaqabaGccaaISaGaam4DamaaBaaaleaacaWG2bGa amyDaaqabaGccaaIPaGaaGilaiaaywW7daWhbaqaaiaadEgaaiaawE niamaaDaaaleaacaWGPbaabaGaamOAaaaakiaai2dacaaIOaGaam4z amaaDaaaleaacaWGPbaabaGaamOAaaaakiaaiYcacaWGWbWaa0baaS qaaiaadMgaaeaacaWGQbaaaOGaaGilaiaadghadaqhaaWcbaGaamyA aaqaaiaadQgaaaGccaaISaGaamOCamaaDaaaleaacaWGPbaabaGaam OAaaaakiaaiMcacaaISaaaaa@8693@

i,j=1,2,3,4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaaiY cacaWGQbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIZaGaaGil aiaaisdaaaa@3E61@ . Точки u=( x u , y u , z u , w u ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaaIOaGaamiEamaaBaaaleaacaWG1baabeaakiaaiYcacaWG5bWa aSbaaSqaaiaadwhaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamyDaa qabaGccaaISaGaam4DamaaBaaaleaacaWG1baabeaakiaaiMcaaaa@43F1@  и v=( x v , y v , z v , w v ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaaIOaGaamiEamaaBaaaleaacaWG2baabeaakiaaiYcacaWG5bWa aSbaaSqaaiaadAhaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaamODaa qabaGccaaISaGaam4DamaaBaaaleaacaWG2baabeaakiaaiMcaaaa@43F6@  выбираются произвольно, поэтому матрица K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C3@  невырождена.

5. Вычисление алгебр Ли. Здесь и ниже рассматривается случай, когда для матрицы U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@  из (4.1) характеристический многочлен и минимальный многочлен совпадают, а её собственные значения различны и вещественны. В данном разделе из линейных пространств с базисными операторами вида (4.1) необходимо выделить алгебры Ли. Для этого пользуемся возможностью перехода к новому базису, заменой координат, а также замкнутостью коммутаторов базисных операторов. Последнее означает, что сам коммутатор должен принадлежать этой же алгебре Ли (см. [12, §13]). Также учитывается теорема 6.

Теорема 7 Из системы (4.1), для которой матрица U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@  оператора Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет различные вещественные собственные значения, причём её характеристический многочлен совпадает с минимальным, с точностью до линейной замены координат, выделяются операторы X 1 = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baaaaa@3B17@ , X 2 = y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamyEaaqa baaaaa@3B19@ , X 3 = z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamOEaaqa baaaaa@3B1B@ , X 4 = w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaakiaai2dacqGHciITdaWgaaWcbaGaam4Daaqa baaaaa@3B19@ , Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ , образующие базисы восьмимерных линейных пространств; при этом операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  образуют подпространство, являющееся алгеброй Ли, из списка (4.3):

для алгебры Ли 1:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , Y 2 = b 1 x x + b 2 y y + b 3 z z + b 4 w w , Y 3 = c 1 x x + c 2 y y + c 3 z z + c 4 w w , Y 4 = d 1 x x + d 2 y y + d 3 z z + d 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaa caaIYaaabeaakiaai2dacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadMhaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aaisdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacaWGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadogada WgaaWcbaGaaGymaaqabaGccaWG4bGaeyOaIy7aaSbaaSqaaiaadIha aeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGJbWaaSbaaSqa aiaaiodaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaaki abgUcaRiaadogadaWgaaWcbaGaaGinaaqabaGccaWG3bGaeyOaIy7a aSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaai aaisdaaeqaaOGaaGypaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG 4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamizamaaBa aaleaacaaIYaaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgk Gi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGa aGinaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG ilaaqaaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabgcMi5kabeU7a SnaaBaaaleaacaaIYaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaG ymaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaI SaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyiyIKRaeq4UdW2aaS baaSqaaiaaisdaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaIYaaa beaakiabgcMi5kabeU7aSnaaBaaaleaacaaIZaaabeaakiaaiYcacq aH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcqaH7oaBdaWgaaWc baGaaGinaaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaO GaeyiyIKRaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaG4oaaaaaaa@D9FF@  (5.1)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y + b 11 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y + c 11 z z + c 16 w w , Y 4 =( d 1 x+ d 2 y) x + d 1 y y + d 11 z z + d 16 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabuqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSba aSqaaiaaiwdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaI2aaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4naaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGa aGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGikai aadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamOyamaa BaaaleaacaaIYaaabeaakiaadMhacaaIPaGaeyOaIy7aaSbaaSqaai aadIhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaa dMhacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGIbWaaS baaSqaaiaaigdacaaIXaaabeaakiaadQhacqGHciITdaWgaaWcbaGa amOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaigdacaaI2aaabe aakiaadEhacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGa amywamaaBaaaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBa aaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaa ikdaaeqaaOGaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi 2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadogadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaa kiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaiAdaaeqaaOGaam4Dai abgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSba aSqaaiaaisdaaeqaaOGaaGypaiaaiIcacaWGKbWaaSbaaSqaaiaaig daaeqaaOGaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGc caWG5bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRi aadsgadaWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqa aiaadMhaaeqaaOGaey4kaSIaamizamaaBaaaleaacaaIXaGaaGymaa qabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIa amizamaaBaaaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy7aaS baaSqaaiaadEhaaeqaaOGaaGilaaqaaiabeU7aSnaaBaaaleaacaaI 1aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI2aaabeaakiaaiY cacqaH7oaBdaWgaaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWg aaWcbaGaaG4naaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiAdaae qaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaG4oaaaa aaa@D6AC@  (5.2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y +( b 11 z+ b 12 w) z + b 11 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y +( c 11 z+ c 12 w) z + c 11 w w , Y 4 =( d 1 x+ d 2 y) x + d 1 y y +( d 11 z+ d 12 w) z + d 11 w w , λ 5 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSba aSqaaiaaiwdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiaaiIcacqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaWG 6bGaey4kaSIaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqaba GccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcba GaaGOmaaqabaGccaaI9aGaaGikaiaadkgadaWgaaWcbaGaaGymaaqa baGccaWG4bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaakiaadM hacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOy amaaBaaaleaacaaIXaaabeaakiaadMhacqGHciITdaWgaaWcbaGaam yEaaqabaGccqGHRaWkcaaIOaGaamOyamaaBaaaleaacaaIXaGaaGym aaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIXaGaaGOmaa qabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiab gUcaRiaadkgadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaam4Daiabgk Gi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqa aiaaiodaaeqaaOGaaGypaiaaiIcacaWGJbWaaSbaaSqaaiaaigdaae qaaOGaamiEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaWG 5bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaado gadaWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaa dMhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGymaiaaig daaeqaaOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaikda aeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccq GHRaWkcaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadEhacqGH ciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaale aacaaI0aaabeaakiaai2dacaaIOaGaamizamaaBaaaleaacaaIXaaa beaakiaadIhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaam yEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaWG KbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaaca WG5baabeaakiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigdacaaI XaaabeaakiaadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaigdacaaIYa aabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaamizamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG3bGaey OaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWg aaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGioaa qabaGccaaI7aaaaaaa@DD56@  (5.3)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z) x +( b 1 y+ b 2 z) y + b 1 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z) x +( c 1 y+ c 2 z) y + c 1 z z + c 16 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z) x +( d 1 y+ d 2 z) y + d 1 z z + d 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI5aaabeaakiaadQhacqGHciITdaWgaaWcbaGaamOEaaqaba GccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaam4D aiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaS baaSqaaiaaikdaaeqaaOGaaGypaiaaiIcacaWGIbWaaSbaaSqaaiaa igdaaeqaaOGaamiEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqaba GccaWG5bGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQha caaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikai aadkgadaWgaaWcbaGaaGymaaqabaGccaWG5bGaey4kaSIaamOyamaa BaaaleaacaaIYaaabeaakiaadQhacaaIPaGaeyOaIy7aaSbaaSqaai aadMhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaa dQhacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaS baaSqaaiaaigdacaaI2aaabeaakiaadEhacqGHciITdaWgaaWcbaGa am4DaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIZaaabeaaki aai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabeaakiaadIhacqGH RaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaado gadaWgaaWcbaGaaG4maaqabaGccaWG6bGaaGykaiabgkGi2oaaBaaa leaacaWG4baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaaig daaeqaaOGaamyEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGc caWG6bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRi aadogadaWgaaWcbaGaaGymaaqabaGccaWG6bGaeyOaIy7aaSbaaSqa aiaadQhaaeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIXaGaaGOnaa qabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqa aiaadMfadaWgaaWcbaGaaGinaaqabaGccaaI9aGaaGikaiaadsgada WgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamizamaaBaaaleaa caaIYaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaae qaaOGaamOEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGH RaWkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRa WkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiaaiMcacqGHciIT daWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGKbWaaSbaaSqaaiaaig daaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUca RiaadsgadaWgaaWcbaGaaGymaiaaiAdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaigdacaaIWa aabeaakiaaiUdaaaaaaa@E5B6@  (5.4)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 y+ c 2 z+ c 3 w) y +( c 1 z+ c 2 w) z + c 1 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 y+ d 2 z+ d 3 w) y +( d 1 z+ d 2 w) z + d 1 w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG6bGaey4kaSIaam4DaiaaiMcacq GHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaO GaaGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGik aiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamOyam aaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqa aiaaiodaaeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGinaa qabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiab gUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgU caRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG6bGaey4kaSIaamOy amaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGym aaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaaki aadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIa amOyamaaBaaaleaacaaIXaaabeaakiaadEhacqGHciITdaWgaaWcba Gaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIZaaabeaa kiaai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabeaakiaadIhacq GHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaa dogadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaam4yamaaBa aaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGymaaqaba GccaWG5bGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadQha cqGHRaWkcaWGJbWaaSbaaSqaaiaaiodaaeqaaOGaam4DaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaam4yamaa BaaaleaacaaIXaaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaai aaikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqa baGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaam4Daiabgk Gi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqa aiaaisdaaeqaaOGaaGypaiaaiIcacaWGKbWaaSbaaSqaaiaaigdaae qaaOGaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGccaWG 5bGaey4kaSIaamizamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRa WkcaWGKbWaaSbaaSqaaiaaisdaaeqaaOGaam4DaiaaiMcacqGHciIT daWgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaamizamaaBaaale aacaaIXaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikda aeqaaOGaamOEaiabgUcaRiaadsgadaWgaaWcbaGaaG4maaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaa iIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgUcaRiaads gadaWgaaWcbaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaa leaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGymaaqaba GccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4oaaaaaaa@01A0@  (5.5)

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =z x +w y , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y + +( d 1 z2z+ d 2 w) z +( d 1 w3w) w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baa beaakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGaamyEaaqabaGcca aISaaabaGaamywamaaBaaaleaacaaI0aaabeaakiaai2dacaaIOaGa amizamaaBaaaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGKbWaaS baaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadsgadaWgaaWcbaGa aG4maaqabaGccaWG6bGaey4kaSIaamizamaaBaaaleaacaaI0aaabe aakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4k aSIaaGikaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOeI0 IaamyEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGccaWG6bGa ey4kaSIaamizamaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaScabaGaey4kaSIaaGik aiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG6bGaeyOeI0IaaGOmai aadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaam4Daiaa iMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaaIOaGaam izamaaBaaaleaacaaIXaaabeaakiaadEhacqGHsislcaaIZaGaam4D aiaaiMcacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaI7aaaaaaa@A87B@  (5.6)

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =w x , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y + +( d 1 z2z+ d 2 w) z +( d 1 w3w) w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaam4DaiabgkGi2oaaBaaaleaacaWG4baa beaakiaaiYcaaeaacaWGzbWaaSbaaSqaaiaaisdaaeqaaOGaaGypai aaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaa dsgadaWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamizamaaBa aaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaa isdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadMha cqGHsislcaWG5bGaey4kaSIaamizamaaBaaaleaacaaIYaaabeaaki aadQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaam4Daiaa iMcacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkaeaacqGHRa WkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadQhacqGHsisl caaIYaGaamOEaiabgUcaRiaadsgadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaa iIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaam4DaiabgkHiTiaaio dacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiUda aaaaaa@A400@  (5.7)

Y 1 =y x +z y +w z , Y 2 =z x +w y , Y 3 =w x , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y + +( d 1 z2z+ d 2 w) z +( d 1 w3w) w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7ca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadEhacqGHciITdaWg aaWcbaGaamiEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaI0a aabeaakiaai2dacaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaa dIhacqGHRaWkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgU caRiaadsgadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamiz amaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadsgadaWgaaWcbaGaaGym aaqabaGccaWG5bGaeyOeI0IaamyEaiabgUcaRiaadsgadaWgaaWcba GaaGOmaaqabaGccaWG6bGaey4kaSIaamizamaaBaaaleaacaaIZaaa beaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey 4kaScabaGaey4kaSIaaGikaiaadsgadaWgaaWcbaGaaGymaaqabaGc caWG6bGaeyOeI0IaaGOmaiaadQhacqGHRaWkcaWGKbWaaSbaaSqaai aaikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqa baGccqGHRaWkcaaIOaGaamizamaaBaaaleaacaaIXaaabeaakiaadE hacqGHsislcaaIZaGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaam4D aaqabaGccaaI7aaaaaaa@9B0E@  (5.8)

для алгебры Ли 3:

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( d 2 d 7 )z x , Y 3 =( c 1 x+ c 3 z) x + c 1 y y + c 1 z z + c 16 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z) x +( d 1 y+ d 7 z) y + d 1 z z + d 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaakiaadEha cqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadMfada WgaaWcbaGaaGOmaaqabaGccaaI9aGaaGikaiaadsgadaWgaaWcbaGa aGOmaaqabaGccqGHsislcaWGKbWaaSbaaSqaaiaaiEdaaeqaaOGaaG ykaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccaaISaaabaGa amywamaaBaaaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBa aaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaa iodaaeqaaOGaamOEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi 2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadogadaWgaaWcbaGaaG ymaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4k aSIaam4yamaaBaaaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy 7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGa aGinaaqabaGccaaI9aGaaGikaiaadsgadaWgaaWcbaGaaGymaaqaba GccaWG4bGaey4kaSIaamizamaaBaaaleaacaaIYaaabeaakiaadMha cqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaamizamaa BaaaleaacaaIXaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaai aaiEdaaeqaaOGaamOEaiaaiMcacqGHciITdaWgaaWcbaGaamyEaaqa baGccqGHRaWkcaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgk Gi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGa aGymaiaaiAdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabe aakiaaiYcacqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccqGHGjsUcqaH 7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaG4oaaaaaaa@BF6A@  (5.9)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 = b 4 w x , Y 3 =( c 1 x+ c 3 z+ c 4 w) x +( c 1 y+ c 3 w) y + c 1 z z + c 1 w w , Y 4 =( d 1 x+ d 7 y+ d 3 z+ d 4 w) x +( d 1 y+ d 7 z+( d 3 b 4 )w) y +( d 1 z+ d 7 w) z + d 1 w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaamOEaiabgUcaRiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaaki aaiYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaadkga daWgaaWcbaGaaGinaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadI haaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaiodaaeqaaOGa aGypaiaaiIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgU caRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaam4y amaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGym aaqabaGccaWG5bGaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaaki aadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIa am4yamaaBaaaleaacaaIXaaabeaakiaadQhacqGHciITdaWgaaWcba GaamOEaaqabaGccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGa am4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzb WaaSbaaSqaaiaaisdaaeqaaOGaaGypaiaaiIcacaWGKbWaaSbaaSqa aiaaigdaaeqaaOGaamiEaiabgUcaRiaadsgadaWgaaWcbaGaaG4naa qabaGccaWG5bGaey4kaSIaamizamaaBaaaleaacaaIZaaabeaakiaa dQhacqGHRaWkcaWGKbWaaSbaaSqaaiaaisdaaeqaaOGaam4DaiaaiM cacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaamiz amaaBaaaleaacaaIXaaabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaS qaaiaaiEdaaeqaaOGaamOEaiabgUcaRiaaiIcacaWGKbWaaSbaaSqa aiaaiodaaeqaaOGaeyOeI0IaamOyamaaBaaaleaacaaI0aaabeaaki aaiMcacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiab gUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgU caRiaadsgadaWgaaWcbaGaaG4naaqabaGccaWG3bGaaGykaiabgkGi 2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGaaG ymaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4o aaaaaaa@CD5F@  (5.10)

для алгебры Ли 4:

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 3 z+ b 4 w) x + b 3 w y , Y 3 =2 b 3 2 w x , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 y+( d 2 b 3 )z+( d 3 b 4 )w) y + +( d 1 z+( d 2 2 b 3 )w) z + d 1 w w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG6bGaey4kaSIaam4DaiaaiMcacq GHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaO GaaGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGik aiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamOyam aaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqa aiaadIhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaaki aadEhacqGHciITdaWgaaWcbaGaamyEaaqabaGccaaISaGaaGzbVlaa dMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaaGOmaiaadkgadaqhaa WcbaGaaG4maaqaaiaaikdaaaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaGinaaqabaGcca aI9aGaaGikaiaadsgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4k aSIaamizamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGKb WaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadsgadaWgaaWc baGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG4b aabeaakiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigdaaeqaaOGa amyEaiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaey OeI0IaamOyamaaBaaaleaacaaIZaaabeaakiaaiMcacaWG6bGaey4k aSIaaGikaiaadsgadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWGIb WaaSbaaSqaaiaaisdaaeqaaOGaaGykaiaadEhacaaIPaGaeyOaIy7a aSbaaSqaaiaadMhaaeqaaOGaey4kaScabaGaey4kaSIaaGikaiaads gadaWgaaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaaGikaiaadsga daWgaaWcbaGaaGOmaaqabaGccqGHsislcaaIYaGaamOyamaaBaaale aacaaIZaaabeaakiaaiMcacaWG3bGaaGykaiabgkGi2oaaBaaaleaa caWG6baabeaakiabgUcaRiaadsgadaWgaaWcbaGaaGymaaqabaGcca WG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaaaaaa@C334@  (5.11)

причем все коэффициенты перед переменными MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  постоянные.

Остальные алгебры не реализуются.

Операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ , приведенные в формулировке теоремы 7, линейнонезависимы и ненулевые. При доказательстве этой теоремы допускается линейная замена координат, линейная комбинация операторов и применение условия замкнутости коммутаторов базисных операторов.

Доказательство. В операторах (0.4.1) произведем линейную замену координат

( x y z w ) T =A (xyzw) T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiqadI hagaqbaiaaysW7ceWG5bGbauaacaaMe8UabmOEayaafaGaaGjbVlqa dEhagaqbaiaaiMcadaahaaWcbeqaaiaadsfaaaGccaaI9aGaamyqai aaiIcacaWG4bGaaGjbVlaadMhacaaMe8UaamOEaiaaysW7caWG3bGa aGykamaaCaaaleqabaGaamivaaaakiaaiYcaaaa@4E8A@

где A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36B9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольная невырожденная матрица четвёртого порядка с постоянными элементами, T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWbaaSqabe aacaWGubaaaaaa@36F9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  знак транспонирования. Тогда для операторов дифференцирования относительно старых и новых координат получим связь

( x y z w ) T = A T ( x y z w ) T . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgk Gi2oaaBaaaleaacaWG4baabeaakiaaysW7cqGHciITdaWgaaWcbaGa amyEaaqabaGccaaMe8UaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaaG jbVlabgkGi2oaaBaaaleaacaWG3baabeaakiaaiMcadaahaaWcbeqa aiaadsfaaaGccaaI9aGaamyqamaaCaaaleqabaGaamivaaaakiaaiI cacqGHciITdaWgaaWcbaGabmiEayaafaaabeaakiaaysW7cqGHciIT daWgaaWcbaGabmyEayaafaaabeaakiaaysW7cqGHciITdaWgaaWcba GabmOEayaafaaabeaakiaaysW7cqGHciITdaWgaaWcbaGabm4Dayaa faaabeaakiaaiMcadaahaaWcbeqaaiaadsfaaaGccaaIUaaaaa@5C7C@

В новых координатах операторы X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@ , Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  принимают следующий вид:

X 1 X 2 X 3 X 4 = A T X 1 X 2 X 3 X 4 , Y i = A U i A 1 x y z w , x y z w ,i=1,2,3,4. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabbaaaaeaacaWGybWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiw amaaBaaaleaacaaIYaaabeaaaOqaaiaadIfadaWgaaWcbaGaaG4maa qabaaakeaacaWGybWaaSbaaSqaaiaaisdaaeqaaaaaaOGaayjkaiaa wMcaaiaai2dacaWGbbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaafa qabeabbaaaaeaaceWGybGbauaadaWgaaWcbaGaaGymaaqabaaakeaa ceWGybGbauaadaWgaaWcbaGaaGOmaaqabaaakeaaceWGybGbauaada WgaaWcbaGaaG4maaqabaaakeaaceWGybGbauaadaWgaaWcbaGaaGin aaqabaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caWGzbWaaSbaaS qaaiaadMgaaeqaaOGaaGypamaaamaabaGaamyqaiaadwfadaWgaaWc baGaamyAaaqabaGccaWGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaO WaaeWaaeaafaqabeabbaaaaeaaceWG4bGbauaaaeaaceWG5bGbauaa aeaaceWG6bGbauaaaeaaceWG3bGbauaaaaaacaGLOaGaayzkaaGaaG ilamaabmaabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiqadIha gaqbaaqabaaakeaacqGHciITdaWgaaWcbaGabmyEayaafaaabeaaaO qaaiabgkGi2oaaBaaaleaaceWG6bGbauaaaeqaaaGcbaGaeyOaIy7a aSbaaSqaaiqadEhagaqbaaqabaaaaaGccaGLOaGaayzkaaaacaGLPm IaayPkJaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOm aiaaiYcacaaIZaGaaGilaiaaisdacaaIUaaaaa@7321@

Линейной комбинацией переходим от операторов X 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaaaaa@37B7@ , X 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaaaaa@37B8@ , X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaaaaa@37B9@ , X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaaaaa@37BA@  к операторам X 1 = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 4bGbauaaaeqaaaaa@3B2F@ , X 2 = y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaikdaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 5bGbauaaaeqaaaaa@3B31@ , X 3 = z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 6bGbauaaaeqaaaaa@3B33@ , X 4 = w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaafa WaaSbaaSqaaiaaisdaaeqaaOGaaGypaiabgkGi2oaaBaaaleaaceWG 3bGbauaaaeqaaaaa@3B31@ . Возвращаясь к прежним обозначениям координат и базисных операторов, получим:

X 1 = x , X 2 = y , X 3 = z , X 4 = w , Y i = U i x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baGccaaISaGaaGzbVlaadIfadaWgaaWcbaGaaGOmaaqabaGccaaI9a GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7caWGybWa aSbaaSqaaiaaiodaaeqaaOGaaGypaiabgkGi2oaaBaaaleaacaWG6b aabeaakiaaiYcacaaMf8UaamiwamaaBaaaleaacaaI0aaabeaakiaa i2dacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlaadM fadaWgaaWcbaGaamyAaaqabaGccaaI9aWaaaWaaeaaceWGvbGbauaa daWgaaWcbaGaamyAaaqabaGcdaqadaqaauaabeqaeeaaaaqaaiaadI haaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGa aGilamaabmaabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadI haaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOa Iy7aaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadE haaeqaaaaaaOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaaiYcaaaa@6D62@

где введены обозначения

U i =A U i A 1 ,i=1,2,3,4. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaafa WaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaadgeacaWGvbWaaSbaaSqa aiaadMgaaeqaaOGaamyqamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aaiYcacaaMf8UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaGa aG4maiaaiYcacaaI0aGaaGOlaaaa@47F2@

Известно, что матрица U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaaceaIXaGbauaaaeqaaaaa@37C0@  приводится к канонической вещественной форме (см. [12]). Возможны следующие варианты:

I. λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 ,II. , λ 5 1 0 0 0 λ 5 0 0 0 0 λ 6 0 0 0 0 λ 7 ,III. , λ 5 1 0 0 0 λ 5 0 0 0 0 λ 8 1 0 0 0 λ 8 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaai6 cadaqadaqaauaabeqafqaaaaaabaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaai abeU7aSnaaBaaaleaacaaIYaaabeaaaOqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaG4maaqaba aakeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4U dW2aaSbaaSqaaiaaisdaaeqaaaGcbaaabaaabaaabaaaaaGaayjkai aawMcaaiaaiYcacaaMf8UaaeysaiaabMeacaaIUaWaaeWaaeaafaqa beqbeaaaaaqaaiaaiYcacqaH7oaBdaWgaaWcbaGaaGynaaqabaaake aacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2a aSbaaSqaaiaaiwdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI2aaabeaaaOqaaiaa icdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaa WcbaGaaG4naaqabaaakeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGa aGilaiaaywW7caqGjbGaaeysaiaabMeacaaIUaWaaeWaaeaafaqabe qbeaaaaaqaaiaaiYcacqaH7oaBdaWgaaWcbaGaaGynaaqabaaakeaa caaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI4aaabeaaaOqaaiaaig daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWc baGaaGioaaqabaaakeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGaaG ilaaaa@82AD@

IV. λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 0 0 0 0 λ 10 ,V. λ 4 1 0 0 0 λ 4 1 0 0 0 λ 4 1 0 0 0 λ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaabA facaaIUaWaaeWaaeaafaqabeqbeaaaaaqaaiabeU7aSnaaBaaaleaa caaI5aaabeaaaOqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaic daaeaacqaH7oaBdaWgaaWcbaGaaGyoaaqabaaakeaacaaIXaaabaGa aGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaaiM daaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqa aiabeU7aSnaaBaaaleaacaaIXaGaaGimaaqabaaakeaaaeaaaeaaae aaaaaacaGLOaGaayzkaaGaaGilaiaaywW7caqGwbGaaGOlamaabmaa baqbaeqabuabaaaaaeaacqaH7oaBdaWgaaWcbaGaaGinaaqabaaake aacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2a aSbaaSqaaiaaisdaaeqaaaGcbaGaaGymaaqaaiaaicdaaeaacaaIWa aabaGaaGimaaqaaiabeU7aSnaaBaaaleaacaaI0aaabeaaaOqaaiaa igdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaa WcbaGaaGinaaqabaaakeaaaeaaaeaaaeaaaaaacaGLOaGaayzkaaGa aGilaaaa@67B2@

причем все элементы в данных матрицах вещественны,

λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaigdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaikda aeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaGymaaqabaGccq GHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaISaGaaGzbVlab eU7aSnaaBaaaleaacaaIXaaabeaakiabgcMi5kabeU7aSnaaBaaale aacaaI0aaabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaaikda aeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaGilai aaywW7cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcqaH7oaB daWgaaWcbaGaaGinaaqabaGccaaISaGaaGzbVlabeU7aSnaaBaaale aacaaIZaaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaa kiaaiYcaaaa@6C75@

λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 , λ 7 λ 8 , λ 9 λ 10 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiAda aeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaGynaaqabaGccq GHGjsUcqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaISaGaaGzbVlab eU7aSnaaBaaaleaacaaI2aaabeaakiabgcMi5kabeU7aSnaaBaaale aacaaI3aaabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaaiEda aeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaGilai aaywW7cqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccqGHGjsUcqaH7oaB daWgaaWcbaGaaGymaiaaicdaaeqaaOGaaGOlaaaa@63FD@

В таком случае ненулевой оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  приводится к одному из четырех видов:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcaaeaacqaH7oaBdaWgaaWcbaGa aGymaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGOmaaqabaGcca aISaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyiyIKRaeq4UdW2a aSbaaSqaaiaaiodaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaIXa aabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiYca cqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHGjsUcqaH7oaBdaWgaa WcbaGaaG4maaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaikdaaeqa aOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGilaiabeU 7aSnaaBaaaleaacaaIZaaabeaakiabgcMi5kabeU7aSnaaBaaaleaa caaI0aaabeaakiaaiUdaaaaaaa@83B3@ (5.12)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaaiwdaaeqa aOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiabeU 7aSnaaBaaaleaacaaI2aaabeaakiaadQhacqGHciITdaWgaaWcbaGa amOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaaG4naaqabaGcca WG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7cqaH 7oaBdaWgaaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcba GaaGOnaaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaOGa eyiyIKRaeq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaGilaiabeU7aSn aaBaaaleaacaaI2aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI 3aaabeaakiaaiUdaaaa@713D@  (5.13)

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , λ 7 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaaiwdaaeqa aOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiI cacqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaWG6bGaey4kaSIaam4D aiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7o aBdaWgaaWcbaGaaGioaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaG4naaqaba GccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGioaaqabaGccaaI7aaaaa@64E4@  (5.14)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaacaaI 5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiabeU7aSnaaBaaaleaacaaI5aaabeaa kiaadQhacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7o aBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaam4DaiabgkGi2oaaBaaa leaacaWG3baabeaakiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaaiM daaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaa kiaaiUdaaaa@6658@  (5.15)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaacaaI 5aaabeaakiaadMhacqGHRaWkcaWG6bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacqaH7oaBdaWgaaWcbaGaaGyo aaqabaGccaWG6bGaey4kaSIaam4DaiaaiMcacqGHciITdaWgaaWcba GaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGyoaaqabaGc caWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGOlaaaa@5EC5@  (5.16)

Докажем вспомогательные утверждения.

Лемма 1 Пусть ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16), и

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

удовлетворяют коммутационному соотношению [ Y 1 , Y 2 ]=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaaaa@3D95@ . Тогда, с точностью до линейной замены координат, возможны следующие варианты для этих операторов:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , Y 2 = b 1 x x + b 2 y y + b 3 z z + b 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaa caaIYaaabeaakiaai2dacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadMhaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aaisdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHGjsUcqaH7o aBdaWgaaWcbaGaaGOmaaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaa igdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaG ilaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabgcMi5kabeU7aSnaa BaaaleaacaaI0aaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGOmaa qabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaISaGa eq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaS qaaiaaisdaaeqaaOGaaGilaiabeU7aSnaaBaaaleaacaaIZaaabeaa kiabgcMi5kabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiUdaaaaaaa@A0F6@  (5.17)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y + b 11 z z + b 16 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI1aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI1aaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqaba GccqGHRaWkcqaH7oaBdaWgaaWcbaGaaGOnaaqabaGccaWG6bGaeyOa Iy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaai aaiEdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaaiIcaca WGIbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaaGykaiabgkGi2oaaBaaaleaaca WG4baabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOyamaaBa aaleaacaaIXaGaaGymaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaGaaGOnaaqaba GccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiab eU7aSnaaBaaaleaacaaI1aaabeaakiabgcMi5kabeU7aSnaaBaaale aacaaI2aaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGynaaqabaGc cqGHGjsUcqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaISaGaeq4UdW 2aaSbaaSqaaiaaiAdaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaa iEdaaeqaaOGaaG4oaaaaaaa@9206@  (5.18)

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y +( b 11 z+ b 12 w) z + b 11 w w , λ 5 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI1aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI1aaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqaba GccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaamOE aiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaam4DaiabgkGi 2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqaai aaikdaaeqaaOGaaGypaiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqa aOGaamiEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG5b GaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkga daWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadM haaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaikdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGH RaWkcaWGIbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadEhacqGHci ITdaWgaaWcbaGaam4DaaqabaGccaaISaGaaGzbVlabeU7aSnaaBaaa leaacaaI1aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI4aaabe aakiaaiUdaaaaaaa@8D09@  (5.19) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z) x +( b 1 y+ b 2 z) y + b 1 z z + b 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaakiaadEha cqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa aGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcaca WGIbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG6bGaaGykaiabgkGi2oaaBaaaleaaca WG5baabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaamOyamaaBa aaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaaWcbaGaaGyoaaqaba GccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaG4o aaaaaaa@90CC@  (5.20)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaamOEaiabgUcaRiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaaki aaiYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaaiIca caWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadkgada WgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamOyamaaBaaaleaa caaIZaaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaisdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGH RaWkcaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRa WkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiabgUcaRiaadkga daWgaaWcbaGaaG4maaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaa dkgadaWgaaWcbaGaaGymaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaai aadEhaaeqaaOGaaGOlaaaaaaa@9506@  (5.21)

Доказательство. Вычислим коммутатор [ Y 1 , Y 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2faaaa@3C14@  при помощи формулы (4.2) и приравняем его к нулю. Подробно рассмотрим случай, когда оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  принимает вид (5.12). Используем матричные обозначения:

Y 1 = λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 x y z w , x y z w , Y 2 = b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 b 15 b 16 x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa ikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaGaaG zbVlaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aWaaaWaaeaadaqa daqaauaabeqaeqaaaaaabaGaamOyamaaBaaaleaacaaIXaaabeaaaO qaaiaadkgadaWgaaWcbaGaaGOmaaqabaaakeaacaWGIbWaaSbaaSqa aiaaiodaaeqaaaGcbaGaamOyamaaBaaaleaacaaI0aaabeaaaOqaai aadkgadaWgaaWcbaGaaGynaaqabaaakeaacaWGIbWaaSbaaSqaaiaa iAdaaeqaaaGcbaGaamOyamaaBaaaleaacaaI3aaabeaaaOqaaiaadk gadaWgaaWcbaGaaGioaaqabaaakeaacaWGIbWaaSbaaSqaaiaaiMda aeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaGimaaqabaaakeaaca WGIbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadkgadaWgaaWc baGaaGymaiaaikdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaG 4maaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqa aiaadkgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaamOyamaaBa aaleaacaaIXaGaaGOnaaqabaaaaaGccaGLOaGaayzkaaWaaeWaaeaa faqabeabbaaaaeaacaWG4baabaGaamyEaaqaaiaadQhaaeaacaWG3b aaaaGaayjkaiaawMcaaiaaiYcadaqadaqaauaabeqaeeaaaaqaaiab gkGi2oaaBaaaleaacaWG4baabeaaaOqaaiabgkGi2oaaBaaaleaaca WG5baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG6baabeaaaOqaaiab gkGi2oaaBaaaleaacaWG3baabeaaaaaakiaawIcacaGLPaaaaiaawM YicaGLQmcacaaISaaaaa@9FB9@

[ Y 1 , Y 2 ]= 0 ( λ 1 λ 2 ) b 2 ( λ 1 λ 3 ) b 3 ( λ 1 λ 4 ) b 4 ( λ 2 λ 1 ) b 5 0 ( λ 2 λ 3 ) b 7 ( λ 2 λ 4 ) b 8 ( λ 3 λ 1 ) b 9 ( λ 3 λ 2 ) b 10 0 ( λ 3 λ 4 ) b 12 ( λ 2 λ 1 ) b 13 ( λ 4 λ 2 ) b 14 ( λ 4 λ 3 ) b 15 0 x y z w , x y z w =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaeyOeI0YaaaWaaeaadaqadaqaauaabe qaeqaaaaaabaGaaGimaaqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGym aaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccaaIPa GaamOyamaaBaaaleaacaaIYaaabeaaaOqaaiaaiIcacqaH7oaBdaWg aaWcbaGaaGymaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaG4maa qabaGccaaIPaGaamOyamaaBaaaleaacaaIZaaabeaaaOqaaiaaiIca cqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH7oaBdaWgaa WcbaGaaGinaaqabaGccaaIPaGaamOyamaaBaaaleaacaaI0aaabeaa aOqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGOmaaqabaGccqGHsislcq aH7oaBdaWgaaWcbaGaaGymaaqabaGccaaIPaGaamOyamaaBaaaleaa caaI1aaabeaaaOqaaiaaicdaaeaacaaIOaGaeq4UdW2aaSbaaSqaai aaikdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGa aGykaiaadkgadaWgaaWcbaGaaG4naaqabaaakeaacaaIOaGaeq4UdW 2aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaa isdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGioaaqabaaakeaaca aIOaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaeq4UdW2a aSbaaSqaaiaaigdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGyoaa qabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaeyOe I0Iaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaadkgadaWgaa WcbaGaaGymaiaaicdaaeqaaaGcbaGaaGimaaqaaiaaiIcacqaH7oaB daWgaaWcbaGaaG4maaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaG inaaqabaGccaaIPaGaamOyamaaBaaaleaacaaIXaGaaGOmaaqabaaa keaacaaIOaGaeq4UdW2aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaeq 4UdW2aaSbaaSqaaiaaigdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGa aGymaiaaiodaaeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaI0a aabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIYaaabeaakiaaiMca caWGIbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaaiIcacqaH7o aBdaWgaaWcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGa aG4maaqabaGccaaIPaGaamOyamaaBaaaleaacaaIXaGaaGynaaqaba aakeaacaaIWaaaaaGaayjkaiaawMcaamaabmaabaqbaeqabqqaaaaa baGaamiEaaqaaiaadMhaaeaacaWG6baabaGaam4DaaaaaiaawIcaca GLPaaacaaISaWaaeWaaeaafaqabeabbaaaaeaacqGHciITdaWgaaWc baGaamiEaaqabaaakeaacqGHciITdaWgaaWcbaGaamyEaaqabaaake aacqGHciITdaWgaaWcbaGaamOEaaqabaaakeaacqGHciITdaWgaaWc baGaam4DaaqabaaaaaGccaGLOaGaayzkaaaacaGLPmIaayPkJaGaaG ypaiaaicdacaaIUaaaaa@CE09@

Поскольку элементы λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37A7@  попарно различны, имеем систему (5.17). Доказательство для (5.18) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (5.21) аналогично.

Лемма 2 Пусть ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16), и

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

удовлетворяют коммутационному соотношению [ Y 1 , Y 2 ]= Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaaa a@3EA0@ . Тогда, с точностью до линейной замены координат, возможен единственный варианты для этих операторов:

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 yy+ b 2 z+ b 3 w) y + +( b 1 z2z+ b 2 w) z +( b 1 w3w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaaqaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiab gkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITda WgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqa aiaadQhaaeqaaOGaaGilaaqaaaqaaiaadMfadaWgaaWcbaGaaGOmaa qabaGccaaI9aGaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 4bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRa WkcaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadkga daWgaaWcbaGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG4baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigda aeqaaOGaamyEaiabgkHiTiaadMhacqGHRaWkcaWGIbWaaSbaaSqaai aaikdaaeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqa baGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgU caRaqaaaqaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlab gUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgk HiTiaaikdacaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaa kiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaS IaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG3bGaeyOeI0Ia aG4maiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG Olaaaaaaa@8EE6@  (5.22)

Доказательство. Вычислим коммутатор [ Y 1 , Y 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2faaaa@3C14@  и приравняем его к нулю. При вычислении этого коммутатора используем формулу (0.4.2),

Y 2 = b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 b 15 b 16 x y z w , x y z w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacaWGIbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOyamaaBa aaleaacaaIYaaabeaaaOqaaiaadkgadaWgaaWcbaGaaG4maaqabaaa keaacaWGIbWaaSbaaSqaaiaaisdaaeqaaaGcbaGaamOyamaaBaaale aacaaI1aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGOnaaqabaaakeaa caWGIbWaaSbaaSqaaiaaiEdaaeqaaaGcbaGaamOyamaaBaaaleaaca aI4aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGyoaaqabaaakeaacaWG IbWaaSbaaSqaaiaaigdacaaIWaaabeaaaOqaaiaadkgadaWgaaWcba GaaGymaiaaigdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaGOm aaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaai aadkgadaWgaaWcbaGaaGymaiaaisdaaeqaaaGcbaGaamOyamaaBaaa leaacaaIXaGaaGynaaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaaaaaakiaawIcacaGLPaaadaqadaqaauaabeqaeeaaaaqa aiaadIhaaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaay zkaaGaaGilamaabmaabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqa aiaadIhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcba GaeyOaIy7aaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqa aiaadEhaaeqaaaaaaOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaai6 caaaa@71D0@

Подробно рассмотрим случай, когда оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  принимает вид (5.12). Используем матричные обозначения:

Y 1 = λ 1 0 0 0 0 λ 2 0 0 0 0 λ 3 0 0 0 0 λ 4 x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaaIWaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa ikdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaaaaa@6250@

= 0 ( λ 1 λ 2 ) b 2 ( λ 1 λ 3 ) b 3 ( λ 1 λ 4 ) b 4 ( λ 2 λ 1 ) b 5 0 ( λ 2 λ 3 ) b 7 ( λ 2 λ 4 ) b 8 ( λ 3 λ 1 ) b 9 ( λ 3 λ 2 ) b 10 0 ( λ 3 λ 4 ) b 12 ( λ 2 λ 1 ) b 13 ( λ 4 λ 2 ) b 14 ( λ 4 λ 3 ) b 15 0 x y z w , x y z w = Y 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaaamaabaWaaeWaaeaafaqabeabeaaaaaqaaiaaicdaaeaacaaI OaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4UdW2aaS baaSqaaiaaikdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGOmaaqa baaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0 Iaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaGykaiaadkgadaWgaaWc baGaaG4maaqabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaigdaae qaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGykaiaa dkgadaWgaaWcbaGaaGinaaqabaaakeaacaaIOaGaeq4UdW2aaSbaaS qaaiaaikdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaigdaaeqa aOGaaGykaiaadkgadaWgaaWcbaGaaGynaaqabaaakeaacaaIWaaaba GaaGikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiabgkHiTiabeU7a SnaaBaaaleaacaaIZaaabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaiE daaeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiab gkHiTiabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiMcacaWGIbWaaS baaSqaaiaaiIdaaeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaI ZaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaakiaaiM cacaWGIbWaaSbaaSqaaiaaiMdaaeqaaaGcbaGaaGikaiabeU7aSnaa BaaaleaacaaIZaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIYa aabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaigdacaaIWaaabeaaaOqa aiaaicdaaeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaey OeI0Iaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGykaiaadkgadaWg aaWcbaGaaGymaiaaikdaaeqaaaGcbaGaaGikaiabeU7aSnaaBaaale aacaaIYaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIXaaabeaa kiaaiMcacaWGIbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaaiI cacqaH7oaBdaWgaaWcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWg aaWcbaGaaGOmaaqabaGccaaIPaGaamOyamaaBaaaleaacaaIXaGaaG inaaqabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGa eyOeI0Iaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaaGykaiaadkgada WgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGaaGimaaaaaiaawIcacaGL PaaadaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG5baabaGaam OEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaaGilamaabmaabaqbaeqa bqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIy 7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadQha aeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaaaaaOGaayjkai aawMcaaaGaayzkJiaawQYiaiaai2dacaWGzbWaaSbaaSqaaiaaigda aeqaaOGaaGOlaaaa@C8FD@

Тогда Y 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIWaaaaa@3943@ , что недопустимо.

Пусть оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  принимает вид (5.13); тогда

Y 1 = λ 1 1 0 0 0 λ 1 0 0 0 0 λ 3 0 0 0 0 λ 4 x y z w , x y z w ,[ Y 1 , Y 2 ]= V x y z w , x y z w = Y 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGymaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa igdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGinaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaGaaG zbVlaaiUfacaWGzbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMfa daWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGypamaaamaabaGaamOvam aabmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaacaWG6baa baGaam4DaaaaaiaawIcacaGLPaaacaaISaWaaeWaaeaafaqabeabba aaaeaacqGHciITdaWgaaWcbaGaamiEaaqabaaakeaacqGHciITdaWg aaWcbaGaamyEaaqabaaakeaacqGHciITdaWgaaWcbaGaamOEaaqaba aakeaacqGHciITdaWgaaWcbaGaam4DaaqabaaaaaGccaGLOaGaayzk aaaacaGLPmIaayPkJaGaaGypaiaadMfadaWgaaWcbaGaaGymaaqaba GccaaIUaaaaa@8305@

где

V= b 5 b 1 b 6 ( λ 3 λ 1 ) b 3 b 7 ( λ 4 λ 1 ) b 4 b 8 0 b 5 ( λ 3 λ 1 ) b 7 ( λ 4 λ 1 ) b 8 ( λ 1 λ 3 ) b 9 ( λ 1 λ 3 ) b 10 + b 9 0 ( λ 4 λ 3 ) b 12 ( λ 1 λ 4 ) b 13 ( λ 1 λ 4 ) b 14 + b 13 ( λ 3 λ 4 ) b 15 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaeyOeI0IaamOyamaaBaaaleaa caaI1aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHsi slcaWGIbWaaSbaaSqaaiaaiAdaaeqaaaGcbaGaaGikaiabeU7aSnaa BaaaleaacaaIZaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaIXa aabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Ia amOyamaaBaaaleaacaaI3aaabeaaaOqaaiaaiIcacqaH7oaBdaWgaa WcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqa baGccaaIPaGaamOyamaaBaaaleaacaaI0aaabeaakiabgkHiTiaadk gadaWgaaWcbaGaaGioaaqabaaakeaacaaIWaaabaGaamOyamaaBaaa leaacaaI1aaabeaaaOqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaG4maa qabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqabaGccaaIPaGa amOyamaaBaaaleaacaaI3aaabeaaaOqaaiaaiIcacqaH7oaBdaWgaa WcbaGaaGinaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaaGymaaqa baGccaaIPaGaamOyamaaBaaaleaacaaI4aaabeaaaOqaaiaaiIcacq aH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH7oaBdaWgaaWc baGaaG4maaqabaGccaaIPaGaamOyamaaBaaaleaacaaI5aaabeaaaO qaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH 7oaBdaWgaaWcbaGaaG4maaqabaGccaaIPaGaamOyamaaBaaaleaaca aIXaGaaGimaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaiMdaaeqa aaGcbaGaaGimaaqaaiaaiIcacqaH7oaBdaWgaaWcbaGaaGinaaqaba GccqGHsislcqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaaIPaGaamOy amaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaaIOaGaeq4UdW2aaS baaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaisda aeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcba GaaGikaiabeU7aSnaaBaaaleaacaaIXaaabeaakiabgkHiTiabeU7a SnaaBaaaleaacaaI0aaabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaioda aeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaIZaaabeaakiabgk HiTiabeU7aSnaaBaaaleaacaaI0aaabeaakiaaiMcacaWGIbWaaSba aSqaaiaaigdacaaI1aaabeaaaOqaaiaaicdaaaaacaGLOaGaayzkaa GaaGOlaaaa@B3AB@

Тогда λ 6 = λ 7 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiAdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI3aaa beaakiaai2dacaaIWaaaaa@3D90@ , что недопустимо.

Если оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет вид (5.14), то

Y 1 = λ 5 1 0 0 0 λ 5 0 0 0 0 λ 8 1 0 0 0 λ 8 x y z w , x y z w ,[ Y 1 , Y 2 ]= V x y z w , x y z w = Y 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGynaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaI4aaabeaaaOqaaiaaigdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGioaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaGaaG zbVlaaiUfacaWGzbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadMfa daWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGypaiabgkHiTmaaamaaba GaamOvamaabmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaa caWG6baabaGaam4DaaaaaiaawIcacaGLPaaacaaISaWaaeWaaeaafa qabeabbaaaaeaacqGHciITdaWgaaWcbaGaamiEaaqabaaakeaacqGH ciITdaWgaaWcbaGaamyEaaqabaaakeaacqGHciITdaWgaaWcbaGaam OEaaqabaaakeaacqGHciITdaWgaaWcbaGaam4DaaqabaaaaaGccaGL OaGaayzkaaaacaGLPmIaayPkJaGaaGypaiaadMfadaWgaaWcbaGaaG ymaaqabaGccaaISaaaaa@8402@

где

V= b 5 b 1 + b 6 ( λ 5 λ 8 ) b 3 + b 7 b 3 +( λ 5 λ 8 ) b 4 + b 8 0 b 5 ( λ 5 λ 8 ) b 7 b 7 +( λ 5 λ 8 ) b 8 b 13 +( λ 8 λ 5 ) b 9 ( λ 8 λ 5 ) b 10 + b 14 b 9 b 15 b 11 + b 16 ( λ 8 λ 5 ) b 13 b 13 +( λ 8 λ 5 ) b 14 0 b 15 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaamOyamaaBaaaleaacaaI1aaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWGIbWaaSbaaSqaaiaaiAdaaeqaaaGcbaGaaGikaiabeU7aSnaa BaaaleaacaaI1aaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI4a aabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIa amOyamaaBaaaleaacaaI3aaabeaaaOqaaiabgkHiTiaadkgadaWgaa WcbaGaaG4maaqabaGccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqaaiaa iwdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaG ykaiaadkgadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGIbWaaSba aSqaaiaaiIdaaeqaaaGcbaGaaGimaaqaaiabgkHiTiaadkgadaWgaa WcbaGaaGynaaqabaaakeaacaaIOaGaeq4UdW2aaSbaaSqaaiaaiwda aeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaaGykai aadkgadaWgaaWcbaGaaG4naaqabaaakeaacqGHsislcaWGIbWaaSba aSqaaiaaiEdaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaaca aI1aaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI4aaabeaakiaa iMcacaWGIbWaaSbaaSqaaiaaiIdaaeqaaaGcbaGaamOyamaaBaaale aacaaIXaGaaG4maaqabaGccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqa aiaaiIdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaO GaaGykaiaadkgadaWgaaWcbaGaaGyoaaqabaaakeaacaaIOaGaeq4U dW2aaSbaaSqaaiaaiIdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaai aaiwdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGymaiaaicdaaeqa aOGaey4kaSIaamOyamaaBaaaleaacaaIXaGaaGinaaqabaGccqGHsi slcaWGIbWaaSbaaSqaaiaaiMdaaeqaaaGcbaGaamOyamaaBaaaleaa caaIXaGaaGynaaqabaaakeaacqGHsislcaWGIbWaaSbaaSqaaiaaig dacaaIXaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaiAda aeqaaaGcbaGaaGikaiabeU7aSnaaBaaaleaacaaI4aaabeaakiabgk HiTiabeU7aSnaaBaaaleaacaaI1aaabeaakiaaiMcacaWGIbWaaSba aSqaaiaaigdacaaIZaaabeaaaOqaaiabgkHiTiaadkgadaWgaaWcba GaaGymaiaaiodaaeqaaOGaey4kaSIaaGikaiabeU7aSnaaBaaaleaa caaI4aaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI1aaabeaaki aaiMcacaWGIbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaaicda aeaacqGHsislcaWGIbWaaSbaaSqaaiaaigdacaaI1aaabeaaaaaaki aawIcacaGLPaaacaaIUaaaaa@BBE6@

Тогда λ 5 = λ 8 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI4aaa beaakiaai2dacaaIWaaaaa@3D90@ , что также недопустимо.

Если оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет вид (5.15), то

Y 1 = λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 0 0 0 0 λ 10 x y z w , x y z w ,[ Y 1 , Y 2 ]= V x y z w , x y z w = Y 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGyoaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaaGcbaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaI5aaabeaaaOqaaiaaicdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGymai aaicdaaeqaaaaaaOGaayjkaiaawMcaamaabmaabaqbaeqabqqaaaaa baGaamiEaaqaaiaadMhaaeaacaWG6baabaGaam4DaaaaaiaawIcaca GLPaaacaaISaWaaeWaaeaafaqabeabbaaaaeaacqGHciITdaWgaaWc baGaamiEaaqabaaakeaacqGHciITdaWgaaWcbaGaamyEaaqabaaake aacqGHciITdaWgaaWcbaGaamOEaaqabaaakeaacqGHciITdaWgaaWc baGaam4DaaqabaaaaaGccaGLOaGaayzkaaaacaGLPmIaayPkJaGaaG ilaiaaywW7caaIBbGaamywamaaBaaaleaacaaIXaaabeaakiaaiYca caWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiaai2dacqGHsislda aadaqaaiaadAfadaqadaqaauaabeqaeeaaaaqaaiaadIhaaeaacaWG 5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGaaGilamaabm aabaqbaeqabqqaaaaabaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaaGc baGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaaGcbaGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaaaa aOGaayjkaiaawMcaaaGaayzkJiaawQYiaiaai2dacaWGzbWaaSbaaS qaaiaaigdaaeqaaOGaaGilaaaa@84BE@

где

V= b 5 b 1 + b 6 b 2 + b 7 ( λ 10 λ 9 ) b 4 + b 8 b 9 b 10 b 5 b 11 b 6 b 12 ( λ 10 λ 9 ) b 8 0 b 9 b 10 ( λ 10 λ 9 ) b 12 ( λ 10 λ 9 ) b 13 b 13 +( λ 10 λ 9 ) b 14 b 14 +( λ 10 λ 9 ) b 15 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dadaqadaqaauaabeqaeqaaaaaabaGaamOyamaaBaaaleaacaaI1aaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcaWGIbWaaSbaaSqaaiaaiAdaaeqaaaGcbaGaeyOeI0IaamOyamaa BaaaleaacaaIYaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaG4naa qabaaakeaacqGHsislcaaIOaGaeq4UdW2aaSbaaSqaaiaaigdacaaI WaaabeaakiabgkHiTiabeU7aSnaaBaaaleaacaaI5aaabeaakiaaiM cacaWGIbWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaamOyamaaBaaa leaacaaI4aaabeaaaOqaaiaadkgadaWgaaWcbaGaaGyoaaqabaaake aacaWGIbWaaSbaaSqaaiaaigdacaaIWaaabeaakiabgkHiTiaadkga daWgaaWcbaGaaGynaaqabaaakeaacaWGIbWaaSbaaSqaaiaaigdaca aIXaaabeaakiabgkHiTiaadkgadaWgaaWcbaGaaGOnaaqabaaakeaa caWGIbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabgkHiTiaaiIcacq aH7oaBdaWgaaWcbaGaaGymaiaaicdaaeqaaOGaeyOeI0Iaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGioaa qabaaakeaacaaIWaaabaGaeyOeI0IaamOyamaaBaaaleaacaaI5aaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaiaaicdaaeqaaa GcbaGaeyOeI0IaaGikaiabeU7aSnaaBaaaleaacaaIXaGaaGimaaqa baGccqGHsislcqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccaaIPaGaam OyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaaIOaGaeq4UdW2a aSbaaSqaaiaaigdacaaIWaaabeaakiabgkHiTiabeU7aSnaaBaaale aacaaI5aaabeaakiaaiMcacaWGIbWaaSbaaSqaaiaaigdacaaIZaaa beaaaOqaaiabgkHiTiaadkgadaWgaaWcbaGaaGymaiaaiodaaeqaaO Gaey4kaSIaaGikaiabeU7aSnaaBaaaleaacaaIXaGaaGimaaqabaGc cqGHsislcqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccaaIPaGaamOyam aaBaaaleaacaaIXaGaaGinaaqabaaakeaacqGHsislcaWGIbWaaSba aSqaaiaaigdacaaI0aaabeaakiabgUcaRiaaiIcacqaH7oaBdaWgaa WcbaGaaGymaiaaicdaaeqaaOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaOGaaGykaiaadkgadaWgaaWcbaGaaGymaiaaiwdaaeqaaa GcbaGaaGimaaaaaiaawIcacaGLPaaacaaIUaaaaa@AC5D@

Тогда λ 9 = λ 10 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiMdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaIXaGa aGimaaqabaGccaaI9aGaaGimaaaa@3E47@ , что недопустимо.

Если оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  имеет вид (5.16), то

Y 1 = λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 1 0 0 0 λ 9 x y z w , x y z w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dadaaadaqaamaabmaabaqbaeqabqab aaaaaeaacqaH7oaBdaWgaaWcbaGaaGyoaaqabaaakeaacaaIXaaaba GaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeq4UdW2aaSbaaSqaaiaa iMdaaeqaaaGcbaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaa qaaiabeU7aSnaaBaaaleaacaaI5aaabeaaaOqaaiaaigdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacqaH7oaBdaWgaaWcbaGaaGyoaa qabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeabbaaaaeaacaWG 4baabaGaamyEaaqaaiaadQhaaeaacaWG3baaaaGaayjkaiaawMcaai aaiYcadaqadaqaauaabeqaeeaaaaqaaiabgkGi2oaaBaaaleaacaWG 4baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG5baabeaaaOqaaiabgk Gi2oaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG 3baabeaaaaaakiaawIcacaGLPaaaaiaawMYicaGLQmcacaaISaaaaa@626D@

= b 5 b 1 + b 6 b 2 + b 7 b 3 + b 8 b 9 b 10 b 5 b 11 b 6 b 12 b 7 b 13 b 14 b 9 b 10 + b 15 b 11 + b 16 0 b 13 b 14 b 15 x y z w , x y z w = Y 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabgk HiTmaaamaabaWaaeWaaeaafaqabeabeaaaaaqaaiaadkgadaWgaaWc baGaaGynaaqabaaakeaacqGHsislcaWGIbWaaSbaaSqaaiaaigdaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaI2aaabeaaaOqaaiabgkHi TiaadkgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGIbWaaSbaaS qaaiaaiEdaaeqaaaGcbaGaeyOeI0IaamOyamaaBaaaleaacaaIZaaa beaakiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaaakeaacaWGIb WaaSbaaSqaaiaaiMdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGa aGimaaqabaGccqGHsislcaWGIbWaaSbaaSqaaiaaiwdaaeqaaaGcba GaamOyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHsislcaWGIbWa aSbaaSqaaiaaiAdaaeqaaaGcbaGaamOyamaaBaaaleaacaaIXaGaaG OmaaqabaGccqGHsislcaWGIbWaaSbaaSqaaiaaiEdaaeqaaaGcbaGa amOyamaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGIbWaaSbaaS qaaiaaigdacaaI0aaabeaakiabgkHiTiaadkgadaWgaaWcbaGaaGyo aaqabaaakeaacqGHsislcaWGIbWaaSbaaSqaaiaaigdacaaIWaaabe aakiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaGcbaGa eyOeI0IaamOyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkca WGIbWaaSbaaSqaaiaaigdacaaI2aaabeaaaOqaaiaaicdaaeaacqGH sislcaWGIbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiabgkHiTi aadkgadaWgaaWcbaGaaGymaiaaisdaaeqaaaGcbaGaeyOeI0IaamOy amaaBaaaleaacaaIXaGaaGynaaqabaaaaaGccaGLOaGaayzkaaWaae WaaeaafaqabeabbaaaaeaacaWG4baabaGaamyEaaqaaiaadQhaaeaa caWG3baaaaGaayjkaiaawMcaaiaaiYcadaqadaqaauaabeqaeeaaaa qaaiabgkGi2oaaBaaaleaacaWG4baabeaaaOqaaiabgkGi2oaaBaaa leaacaWG5baabeaaaOqaaiabgkGi2oaaBaaaleaacaWG6baabeaaaO qaaiabgkGi2oaaBaaaleaacaWG3baabeaaaaaakiaawIcacaGLPaaa aiaawMYicaGLQmcacaaI9aGaamywamaaBaaaleaacaaIXaaabeaaki aai6caaaa@9646@

Тогда допустимое решение получаем при λ 9 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiMdaaeqaaOGaaGypaiaaicdaaaa@3A21@ . В итоге имеем операторы (5.22).

Лемма 3 Пусть ненулевые операторы: Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@619D@

удовлетворяют коммутационным соотношениям

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]=0,[ Y 2 , Y 3 ]=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaaGimaiaai6caaaa@521C@

Тогда, с точностью до линейной замены координат в этих операторов, возможны следующие варианты:

Y 1 = λ 1 x x + λ 2 y y + λ 3 z z + λ 4 w w , Y 2 = b 1 x x + b 2 y y + b 3 z z + b 4 w w , Y 3 = c 1 x x + c 2 y y + c 3 z z + c 4 w w , λ 1 λ 2 , λ 1 λ 3 , λ 1 λ 4 , λ 2 λ 3 , λ 2 λ 4 , λ 3 λ 4 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaeq4UdW2aaSba aSqaaiaaigdaaeqaaOGaamiEaiabgkGi2oaaBaaaleaacaWG4baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadMhacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4maaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGa ey4kaSIaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaiabgkGi2o aaBaaaleaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaa caaIYaaabeaakiaai2dacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam iEaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadMhaae qaaOGaey4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaai aaisdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaa iYcaaeaacaWGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadogada WgaaWcbaGaaGymaaqabaGccaWG4bGaeyOaIy7aaSbaaSqaaiaadIha aeqaaOGaey4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGJbWaaSbaaSqa aiaaiodaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaaki abgUcaRiaadogadaWgaaWcbaGaaGinaaqabaGccaWG3bGaeyOaIy7a aSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiabeU7aSnaaBaaaleaaca aIXaaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaIYaaabeaakiaa iYcacqaH7oaBdaWgaaWcbaGaaGymaaqabaGccqGHGjsUcqaH7oaBda WgaaWcbaGaaG4maaqabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaaGilai abeU7aSnaaBaaaleaacaaIYaaabeaakiabgcMi5kabeU7aSnaaBaaa leaacaaIZaaabeaakiaaiYcacqaH7oaBdaWgaaWcbaGaaGOmaaqaba GccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGinaaqabaGccaaISaGaeq4U dW2aaSbaaSqaaiaaiodaaeqaaOGaeyiyIKRaeq4UdW2aaSbaaSqaai aaisdaaeqaaOGaaG4oaaaaaaa@BCB2@  (5.23)

Y 1 =( λ 5 x+y) x + λ 5 y y + λ 6 z z + λ 7 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y + b 11 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y + c 11 z z + c 16 w w , λ 5 λ 6 , λ 5 λ 7 , λ 6 λ 7 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaaIOaGaeq4U dW2aaSbaaSqaaiaaiwdaaeqaaOGaamiEaiabgUcaRiaadMhacaaIPa GaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeq4UdW2aaSba aSqaaiaaiwdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiabeU7aSnaaBaaaleaacaaI2aaabeaakiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWcba GaaG4naaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGa aGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaaGikai aadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIaamOyamaa BaaaleaacaaIYaaabeaakiaadMhacaaIPaGaeyOaIy7aaSbaaSqaai aadIhaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaa dMhacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWGIbWaaS baaSqaaiaaigdacaaIXaaabeaakiaadQhacqGHciITdaWgaaWcbaGa amOEaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaigdacaaI2aaabe aakiaadEhacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGa amywamaaBaaaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBa aaleaacaaIXaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaa ikdaaeqaaOGaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi 2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadogadaWgaaWcbaGaaG ymaiaaigdaaeqaaOGaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaa kiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaiAdaaeqaaOGaam4Dai abgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacqaH7oaBdaWg aaWcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGOnaa qabaGccaaISaGaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaOGaeyiyIKRa eq4UdW2aaSbaaSqaaiaaiEdaaeqaaOGaaGilaiabeU7aSnaaBaaale aacaaI2aaabeaakiabgcMi5kabeU7aSnaaBaaaleaacaaI3aaabeaa kiaaiUdaaaaaaa@B456@  (5.24)

Y 1 =( λ 5 x+y) x + λ 5 y y +( λ 8 z+w) z + λ 8 w w , Y 2 =( b 1 x+ b 2 y) x + b 1 y y +( b 11 z+ b 12 w) z + b 11 w w , Y 3 =( c 1 x+ c 2 y) x + c 1 y y +( c 11 z+ c 12 w) z + c 11 w w , λ 5 λ 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI1aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiabeU7aSnaaBaaa leaacaaI1aaabeaakiaadMhacqGHciITdaWgaaWcbaGaamyEaaqaba GccqGHRaWkcaaIOaGaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaamOE aiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaiIdaaeqaaOGaam4DaiabgkGi 2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqaai aaikdaaeqaaOGaaGypaiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqa aOGaamiEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG5b GaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadkga daWgaaWcbaGaaGymaaqabaGccaWG5bGaeyOaIy7aaSbaaSqaaiaadM haaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGymaiaaikdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGH RaWkcaWGIbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadEhacqGHci ITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaa caaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabe aakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyE aiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcaWGJb WaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkGi2oaaBaaaleaacaWG 5baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaaigdacaaIXa aabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdacaaIYaaa beaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey 4kaSIaam4yamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7cqaH7oaBdaWgaa WcbaGaaGynaaqabaGccqGHGjsUcqaH7oaBdaWgaaWcbaGaaGioaaqa baGccaaI7aaaaaaa@B52C@  (5.25)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y + λ 9 z z + λ 10 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z) x +( b 1 y+ b 2 z) y + b 1 z z + b 16 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z) x +( c 1 y+ c 2 z) y + c 1 z z + c 16 w w , λ 9 λ 10 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcqaH7oaBdaWgaaWc baGaaGyoaaqabaGccaWG6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaeq4UdW2aaSbaaSqaaiaaigdacaaIWaaabeaakiaadEha cqGHciITdaWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa aGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcaca WGIbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadkgadaWg aaWcbaGaaGOmaaqabaGccaWG6bGaaGykaiabgkGi2oaaBaaaleaaca WG5baabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG 6bGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaamOyamaaBa aaleaacaaIXaGaaGOnaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaaiaa dEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaG4maaqabaGcca aI9aGaaGikaiaadogadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4k aSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGJb WaaSbaaSqaaiaaiodaaeqaaOGaamOEaiaaiMcacqGHciITdaWgaaWc baGaamiEaaqabaGccqGHRaWkcaaIOaGaam4yamaaBaaaleaacaaIXa aabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGa amOEaiaaiMcacqGHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkca WGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgkGi2oaaBaaaleaa caWG6baabeaakiabgUcaRiaadogadaWgaaWcbaGaaGymaiaaiAdaae qaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiYcacaaM f8Uaeq4UdW2aaSbaaSqaaiaaiMdaaeqaaOGaeyiyIKRaeq4UdW2aaS baaSqaaiaaigdacaaIWaaabeaakiaaiUdaaaaaaa@BB3D@  (5.26)

Y 1 =( λ 9 x+y) x +( λ 9 y+z) y +( λ 9 z+w) z + λ 9 w w , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 y+ c 2 z+ c 3 w) y +( c 1 z+ c 2 w) z + c 1 w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiabeU7a SnaaBaaaleaacaaI5aaabeaakiaadIhacqGHRaWkcaWG5bGaaGykai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacqaH7oaB daWgaaWcbaGaaGyoaaqabaGccaWG5bGaey4kaSIaamOEaiaaiMcacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaeq4UdW2a aSbaaSqaaiaaiMdaaeqaaOGaamOEaiabgUcaRiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqa aiaaiMdaaeqaaOGaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaaki aaiYcaaeaacaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaaiIca caWGIbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiabgUcaRiaadkgada WgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamOyamaaBaaaleaa caaIZaaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaisdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGH RaWkcaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRa WkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiabgUcaRiaadkga daWgaaWcbaGaaG4maaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigda aeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaa dkgadaWgaaWcbaGaaGymaaqabaGccaWG3bGaeyOaIy7aaSbaaSqaai aadEhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaG4maaqabaGc caaI9aGaaGikaiaadogadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey 4kaSIaam4yamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWG JbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadogadaWgaa WcbaGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG 4baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaaigdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaaBaaaleaaca aIYaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqa aOGaey4kaSIaam4yamaaBaaaleaacaaIXaaabeaakiaadEhacqGHci ITdaWgaaWcbaGaam4DaaqabaGccaaIUaaaaaaa@CB47@  (5.27)

Доказательство. леммы 3 состоит в вычислении коммутаторов [ Y 1 , Y 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2faaaa@3C14@ , [ Y 1 , Y 3 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2faaaa@3C15@ , [ Y 2 , Y 3 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2faaaa@3C16@ , приравнивания их к нулю и сравнения коэффициенты; при этом используются результаты леммы 1. Оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  берётся из системы (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.16), а операторы Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@  и Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольного вида. В результате получаем соотношения (5.23) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.27).

Лемма 4 Рассмотрим ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGOlaaaa@619F@

Тогда для них коммутационные соотношения

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]=0,[ Y 2 , Y 3 ]= Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaaa a@526F@

не выполняются.

Доказательство. следует из леммы 1 и того факта, что операторы вида Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@  в каждой системе коммутативны.

Лемма 5 Пусть ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@619D@

удовлетворяют коммутационным соотношениям

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]= Y 1 ,[ Y 2 , Y 3 ]=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaki aaiYcacaaMf8UaaG4waiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI SaGaamywamaaBaaaleaacaaIZaaabeaakiaai2facaaI9aGaaGimai aai6caaaa@5331@

Тогда, с точностью до линейной замены координат возможен единственный вариант для этих операторов:

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 yy+ b 2 z+ b 3 w) y + +( b 1 z2z+ b 2 w) z +( b 1 w3w) w , Y 3 =x x +y y +z z +w w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaGaamywamaaBaaaleaacaaIXaaabeaaaOqaaiaai2dacaWG5bGa eyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOEaiabgkGi2o aaBaaaleaacaWG5baabeaakiabgUcaRiaadEhacqGHciITdaWgaaWc baGaamOEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIYaaabe aaaOqaaiaai2dacaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaa dIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgU caRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamOy amaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGym aaqabaGccaWG5bGaeyOeI0IaamyEaiabgUcaRiaadkgadaWgaaWcba GaaGOmaaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaIZaaa beaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey 4kaScabaaabaGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaaqa baGccaWG6bGaeyOeI0IaaGOmaiaadQhacqGHRaWkcaWGIbWaaSbaaS qaaiaaikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOE aaqabaGccqGHRaWkcaaIOaGaamOyamaaBaaaleaacaaIXaaabeaaki aadEhacqGHsislcaaIZaGaam4DaiaaiMcacqGHciITdaWgaaWcbaGa am4DaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIZaaabeaaaO qaaiaai2dacaWG4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4k aSIaamyEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadQ hacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWkcaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGOlaaaaaaa@99E5@

Доказательство аналогично доказательству лемм 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 3.

Лемма 6 Рассмотрим ненулевые операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , принимающий один из пяти видов (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.16),

Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 5 x+ b 6 y+ b 7 z+ b 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaaIOaGaamOyamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadkgadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadkgadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaamOyamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E5F@

+( b 9 x+ b 10 y+ b 11 z+ b 12 w) z +( b 13 x+ b 14 y+ b 15 z+ b 16 w) w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadkgadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaamOy amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaamOyam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGIbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGilaaaa@6195@

Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 5 x+ c 6 y+ c 7 z+ c 8 w) y + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaI XaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaamyEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGa ey4kaSIaam4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaey OaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWg aaWcbaGaaGynaaqabaGccaWG4bGaey4kaSIaam4yamaaBaaaleaaca aI2aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaiEdaaeqa aOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaGioaaqabaGccaWG3b GaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRaaa@5E68@

+( c 9 x+ c 10 y+ c 11 z+ c 12 w) z +( c 13 x+ c 14 y+ c 15 z+ c 16 w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadogadaWgaaWcbaGaaGyoaaqabaGccaWG4bGaey4kaSIaam4y amaaBaaaleaacaaIXaGaaGimaaqabaGccaWG5bGaey4kaSIaam4yam aaBaaaleaacaaIXaGaaGymaaqabaGccaWG6bGaey4kaSIaam4yamaa BaaaleaacaaIXaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBa aaleaacaWG6baabeaakiabgUcaRiaaiIcacaWGJbWaaSbaaSqaaiaa igdacaaIZaaabeaakiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaig dacaaI0aaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigda caaI1aaabeaakiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaca aI2aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadEhaaeqa aOGaaGOlaaaa@619F@

Тогда для них коммутационные соотношения

[ Y 1 , Y 2 ]=0,[ Y 1 , Y 3 ]= Y 1 ,[ Y 2 , Y 3 ]= Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaiaaiYcacaaMf8UaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaki aaiYcacaaMf8UaaG4waiaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI SaGaamywamaaBaaaleaacaaIZaaabeaakiaai2facaaI9aGaamywam aaBaaaleaacaaIYaaabeaaaaa@5385@

не выполняются.

Доказательство. Оператор Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  берётся из системы (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.16), а операторы Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  согласно лемме 1, поскольку [ Y 1 , Y 2 ]=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Yaaabeaakiaai2facaaI9aGaaGimaaaa@3D95@ . Далее, вычисляя коммутатор [ Y 1 , Y 3 ]= Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIXaaabeaaaa a@3EA1@  (лемма 2), приходим в единственному варианту для этих трёх операторов:

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 yy+ c 2 z+ c 3 w) y +( c 1 z2z+ c 2 w) z +( c 1 w3w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcbaGaaGOmaaqabaGcca aI9aGaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4k aSIaamOyamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGIb WaaSbaaSqaaiaaiodaaeqaaOGaamOEaiabgUcaRiaadkgadaWgaaWc baGaaGinaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG4b aabeaakiabgUcaRiaaiIcacaWGIbWaaSbaaSqaaiaaigdaaeqaaOGa amyEaiabgUcaRiaadkgadaWgaaWcbaGaaGOmaaqabaGccaWG6bGaey 4kaSIaamOyamaaBaaaleaacaaIZaaabeaakiaadEhacaaIPaGaeyOa Iy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadkgadaWgaa WcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamOyamaaBaaaleaacaaI YaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQhaaeqaaO Gaey4kaSIaamOyamaaBaaaleaacaaIXaaabeaakiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaaca aIZaaabeaakiaai2dacaaIOaGaam4yamaaBaaaleaacaaIXaaabeaa kiaadIhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamyEai abgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIa am4yamaaBaaaleaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaS baaSqaaiaadIhaaeqaaOGaey4kaSIaaGikaiaadogadaWgaaWcbaGa aGymaaqabaGccaWG5bGaeyOeI0IaamyEaiabgUcaRiaadogadaWgaa WcbaGaaGOmaaqabaGccaWG6bGaey4kaSIaam4yamaaBaaaleaacaaI ZaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaO Gaey4kaSIaaGikaiaadogadaWgaaWcbaGaaGymaaqabaGccaWG6bGa eyOeI0IaaGOmaiaadQhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaae qaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGH RaWkcaaIOaGaam4yamaaBaaaleaacaaIXaaabeaakiaadEhacqGHsi slcaaIZaGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaam4DaaqabaGc caaIUaaaaaaa@BAEC@

Наконец, вычисляя коммутатор [ Y 2 , Y 3 ]= Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI Zaaabeaakiaai2facaaI9aGaamywamaaBaaaleaacaaIYaaabeaaaa a@3EA3@ , получаем Y 2 = c 2 Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaai2dacaWGJbWaaSbaaSqaaiaaikdaaeqa aOGaamywamaaBaaaleaacaaIXaaabeaaaaa@3C29@ , что недопустимо для базисных операторов.

Теперь возвращаемся к доказательству теоремы 7.

Сначала рассмотрим алгебру 1 из (4.3). Операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  берутся из леммы 1. Если ε=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaicdaaaa@391B@ , то по лемме 1 вычисляется оператор Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . В таком случае

[ Y 1 , Y 4 ]=[ Y 2 , Y 4 ]=[ Y 3 , Y 4 ]=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaaG4waiaadMfadaWgaaWcbaGaaGOmaa qabaGccaaISaGaamywamaaBaaaleaacaaI0aaabeaakiaai2facaaI 9aGaaG4waiaadMfadaWgaaWcbaGaaG4maaqabaGccaaISaGaamywam aaBaaaleaacaaI0aaabeaakiaai2facaaI9aGaaGimaiaaiYcaaaa@4C24@

значит алгебра 1 коммутативна; тогда получаем системы (5.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.5). Если же ε=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdaaaa@391C@ , то согласно леммам 1 и 2 будем иметь

Y 1 =y x +z y +w z , Y 2 =( b 1 x+ b 2 y+ b 3 z+ b 4 w) x +( b 1 y+ b 2 z+ b 3 w) y +( b 1 z+ b 2 w) z + b 1 w w , Y 3 =( c 1 x+ c 2 y+ c 3 z+ c 4 w) x +( c 1 y+ c 2 z+ c 3 w) y +( c 1 z+ c 2 w) z + c 1 w w , Y 4 =( d 1 x+ d 2 y+ d 3 z+ d 4 w) x +( d 1 yy+ d 2 z+ d 3 w) y +( d 1 z2z+ d 2 w) z +( d 1 w3w) w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamywamaaBaaaleaacaaIXaaabeaakiaai2dacaWG5bGaeyOa Iy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOEaiabgkGi2oaaBa aaleaacaWG5baabeaakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGa amOEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaIYaaabeaaki aai2dacaaIOaGaamOyamaaBaaaleaacaaIXaaabeaakiaadIhacqGH RaWkcaWGIbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadk gadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamOyamaaBaaa leaacaaI0aaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadI haaeqaaOGaey4kaSIaaGikaiaadkgadaWgaaWcbaGaaGymaaqabaGc caWG5bGaey4kaSIaamOyamaaBaaaleaacaaIYaaabeaakiaadQhacq GHRaWkcaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaam4DaiaaiMcacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIOaGaamOyamaaBa aaleaacaaIXaaabeaakiaadQhacqGHRaWkcaWGIbWaaSbaaSqaaiaa ikdaaeqaaOGaam4DaiaaiMcacqGHciITdaWgaaWcbaGaamOEaaqaba GccqGHRaWkcaWGIbWaaSbaaSqaaiaaigdaaeqaaOGaam4DaiabgkGi 2oaaBaaaleaacaWG3baabeaakiaaiYcaaeaacaWGzbWaaSbaaSqaai aaiodaaeqaaOGaaGypaiaaiIcacaWGJbWaaSbaaSqaaiaaigdaaeqa aOGaamiEaiabgUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccaWG5b Gaey4kaSIaam4yamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRaWk caWGJbWaaSbaaSqaaiaaisdaaeqaaOGaam4DaiaaiMcacqGHciITda WgaaWcbaGaamiEaaqabaGccqGHRaWkcaaIOaGaam4yamaaBaaaleaa caaIXaaabeaakiaadMhacqGHRaWkcaWGJbWaaSbaaSqaaiaaikdaae qaaOGaamOEaiabgUcaRiaadogadaWgaaWcbaGaaG4maaqabaGccaWG 3bGaaGykaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiI cacaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgUcaRiaadoga daWgaaWcbaGaaGOmaaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG6baabeaakiabgUcaRiaadogadaWgaaWcbaGaaGymaaqabaGc caWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaaqaaiaadM fadaWgaaWcbaGaaGinaaqabaGccaaI9aGaaGikaiaadsgadaWgaaWc baGaaGymaaqabaGccaWG4bGaey4kaSIaamizamaaBaaaleaacaaIYa aabeaakiaadMhacqGHRaWkcaWGKbWaaSbaaSqaaiaaiodaaeqaaOGa amOEaiabgUcaRiaadsgadaWgaaWcbaGaaGinaaqabaGccaWG3bGaaG ykaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacaWG KbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgkHiTiaadMhacqGHRa WkcaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaamOEaiabgUcaRiaadsga daWgaaWcbaGaaG4maaqabaGccaWG3bGaaGykaiabgkGi2oaaBaaale aacaWG5baabeaakiabgUcaRiaaiIcacaWGKbWaaSbaaSqaaiaaigda aeqaaOGaamOEaiabgkHiTiaaikdacaWG6bGaey4kaSIaamizamaaBa aaleaacaaIYaaabeaakiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaey4kaSIaaGikaiaadsgadaWgaaWcbaGaaGymaaqaba GccaWG3bGaeyOeI0IaaG4maiaadEhacaaIPaGaeyOaIy7aaSbaaSqa aiaadEhaaeqaaOGaaGOlaaaaaaa@F138@

Вычисляя остальные коммутаторы

[ Y 2 , Y 4 ]=k Y 2 ,[ Y 3 , Y 4 ]=l Y 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaam4AaiaadMfadaWgaaWcbaGaaGOmaa qabaGccaaISaGaaGzbVlaaiUfacaWGzbWaaSbaaSqaaiaaiodaaeqa aOGaaGilaiaadMfadaWgaaWcbaGaaGinaaqabaGccaaIDbGaaGypai aadYgacaWGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGilaaaa@4C46@

получаем (5.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.8).

Исследуем теперь алгебру 2 из (4.3). Операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  берутся из леммы 1, а Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольного линейного вида. Если Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (0.5.12), то из соотношения

[ Y 1 , Y 4 ]=k Y 1 + Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaam4AaiaadMfadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGzbWaaSbaaSqaaiaaikdaaeqaaaaa@4244@

получаем k Y 1 + Y 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaadM fadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGzbWaaSbaaSqaaiaa ikdaaeqaaOGaaGypaiaaicdaaaa@3CE5@ , что недопустимо. Пусть теперь Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.13); тогда из

[ Y 1 , Y 4 ]=k Y 1 + Y 2 ,[ Y 2 , Y 4 ]= Y 1 +k Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadM fadaWgaaWcbaGaaGymaaqabaGccaaISaGaamywamaaBaaaleaacaaI 0aaabeaakiaai2facaaI9aGaam4AaiaadMfadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGzbWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaa ywW7caaIBbGaamywamaaBaaaleaacaaIYaaabeaakiaaiYcacaWGzb WaaSbaaSqaaiaaisdaaeqaaOGaaGyxaiaai2dacqGHsislcaWGzbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam4AaiaadMfadaWgaaWcba GaaGOmaaqabaaaaa@51D1@  (5.28)

 следует λ 5 = λ 6 = λ 7 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI2aaa beaakiaai2dacqaH7oaBdaWgaaWcbaGaaG4naaqabaGccaaI9aGaaG imaaaa@4100@ , что недопустимо. Если же Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.14), то из (5.28) следует λ 5 = λ 8 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiwdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaI4aaa beaakiaai2dacaaIWaaaaa@3D90@ , что недопустимо. Если Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.15), то из (5.28) следует λ 9 = λ 10 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaiMdaaeqaaOGaaGypaiabeU7aSnaaBaaaleaacaaIXaGa aGimaaqabaGccaaI9aGaaGimaaaa@3E47@ , что также недопустимо. Если Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@  совпадает с (5.16), то получаем противоречие b 2 2 +1=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaDa aaleaacaaIYaaabaGaaGOmaaaakiabgUcaRiaaigdacaaI9aGaaGim aaaa@3BA7@ .

Аналогично, из алгебры 3 получаем два положительных результата (5.9) и (5.10), а из 4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (5.11).

Из леммы 4 вытекает, что алгебры 5 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 7 дают отрицательный результат, а из лемм 5 и 6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  отрицательный результат для алгебр 8 и 9

Алгебры 10 и 11 также не реализуются. В этом легко убедиться, взяв Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@  из системы (5.12) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.16); тогда по лемме 1 находим операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , которые между собой коммутативны.

Таким образом, теорема 7 доказана.

Далее из восьмимерных линейных пространств, найденных в теореме 7, выделим алгебры Ли локально ограниченно точно дважды транзитивных групп Ли преобразований пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ . Для этого применим теорему 6 и используем возможность перехода к новому базису (линейной комбинации базисных операторов).

Теорема 8 Из восьмимерных линейных пространств (5.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5.11) выделяются восьмимерные алгебры Ли локально ограниченно точно дважды транзитивных групп Ли преобразований пространстваЁ R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , полученных расширением группы параллельных переносов. Базис этих алгебр Ли, с точностью до линейных комбинаций операторов и линейных замен координат, состоит из операторов дифференцирования X 1 = x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamiEaaqa baaaaa@3B17@ , X 2 = y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIYaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamyEaaqa baaaaa@3B19@ , X 3 = z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIZaaabeaakiaai2dacqGHciITdaWgaaWcbaGaamOEaaqa baaaaa@3B1B@ , X 4 = w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaI0aaabeaakiaai2dacqGHciITdaWgaaWcbaGaam4Daaqa baaaaa@3B19@ , а также из операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@ , Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ :

Y 1 =x x , Y 2 =y y , Y 3 =z z , Y 4 =w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG4bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadMhacqGHciITdaWgaaWcbaGaamyEaaqabaGccaaISaGa aGzbVlaadMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamOEaiabgk Gi2oaaBaaaleaacaWG6baabeaakiaaiYcacaaMf8UaamywamaaBaaa leaacaaI0aaabeaakiaai2dacaWG3bGaeyOaIy7aaSbaaSqaaiaadE haaeqaaOGaaG4oaaaa@563E@  (5.29) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =(ax+y) x , Y 2 =bx x +y y , Y 3 =cx x +z z , Y 4 =dx x +w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaamyyaiaadIhacqGHRaWk caWG5bGaaGykaiabgkGi2oaaBaaaleaacaWG4baabeaakiaaiYcaca aMf8UaamywamaaBaaaleaacaaIYaaabeaakiaai2dacaWGIbGaamiE aiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacqGHci ITdaWgaaWcbaGaamyEaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWc baGaaG4maaqabaGccaaI9aGaam4yaiaadIhacqGHciITdaWgaaWcba GaamiEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaSbaaSqaaiaadQha aeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaisdaaeqaaOGaaG ypaiaadsgacaWG4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4k aSIaam4DaiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiUdaaaa@6A89@  (5.30) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =w z , Y 2 =z z +w w , Y 3 =x x +y y , Y 4 =y x ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadQhacqGHciITdaWgaaWcbaGaamOEaaqabaGccqGHRaWk caWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7ca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadIhacqGHciITdaWg aaWcbaGaamiEaaqabaGccqGHRaWkcaWG5bGaeyOaIy7aaSbaaSqaai aadMhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaisdaaeqa aOGaaGypaiaadMhacqGHciITdaWgaaWcbaGaamiEaaqabaGccaaI7a aaaa@5F30@  (5.31)

Y 1 =y x +z y , Y 2 =x x +y y +z z , Y 3 =z x , Y 4 =w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG5bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaey4kaSIaamOEaiabgkGi2oaaBaaaleaacaWG5baabe aakiaaiYcacaaMf8UaamywamaaBaaaleaacaaIYaaabeaakiaai2da caWG4bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamyEai abgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadQhacqGHciIT daWgaaWcbaGaamOEaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baa beaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaI0aaabeaakiaai2 dacaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4oaaaa@63AC@  (5.32)

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =z x +w y , Y 4 =w x ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWG5bGaeyOaIy7aaSbaaSqaaiaa dIhaaeqaaOGaey4kaSIaamOEaiabgkGi2oaaBaaaleaacaWG5baabe aakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGaamOEaaqabaGccaaI SaGaaGzbVlaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaamiEai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacqGHciIT daWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaOGaey4kaSIaam4DaiabgkGi2oaaBaaaleaacaWG 3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaIZaaabeaaki aai2dacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIa am4DaiabgkGi2oaaBaaaleaacaWG5baabeaakiaaiYcacaaMf8Uaam ywamaaBaaaleaacaaI0aaabeaakiaai2dacaWG3bGaeyOaIy7aaSba aSqaaiaadIhaaeqaaOGaaG4oaaaa@7114@  (5.33) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =z x +w y , Y 4 =aw x +y y +2z z +3w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaaca aIZaaabeaakiaai2dacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqa aOGaey4kaSIaam4DaiabgkGi2oaaBaaaleaacaWG5baabeaakiaaiY cacaaMf8UaamywamaaBaaaleaacaaI0aaabeaakiaai2dacaWGHbGa am4DaiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacq GHciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaaIYaGaamOEaiab gkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaaiodacaWG3bGaey OaIy7aaSbaaSqaaiaadEhaaeqaaOGaaG4oaaaaaaa@7F5E@  (5.34) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +z y +w z , Y 2 =x x +y y +z z +w w , Y 3 =w x , Y 4 =az x +(y+aw) y +2z z +3w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadIhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG5bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaamOEai abgkGi2oaaBaaaleaacaWG6baabeaakiabgUcaRiaadEhacqGHciIT daWgaaWcbaGaam4DaaqabaGccaaISaaabaGaamywamaaBaaaleaaca aIZaaabeaakiaai2dacaWG3bGaeyOaIy7aaSbaaSqaaiaadIhaaeqa aOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaisdaaeqaaOGaaGypai aadggacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIa aGikaiaadMhacqGHRaWkcaWGHbGaam4DaiaaiMcacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaaIYaGaamOEaiabgkGi2oaaBaaa leaacaWG6baabeaakiabgUcaRiaaiodacaWG3bGaeyOaIy7aaSbaaS qaaiaadEhaaeqaaOGaaG4oaaaaaaa@7F0F@  (5.35) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +z y +w z , Y 2 =z x +w y , Y 3 =w x , Y 4 =ax x +(a1)y y +(a2)z z +(a3)w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWG3bGaeyOaIy7aaSbaaSqaaiaa dQhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRaWk caWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaiaaywW7ca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaadEhacqGHciITdaWg aaWcbaGaamiEaaqabaGccaaISaaabaGaamywamaaBaaaleaacaaI0a aabeaakiaai2dacaWGHbGaamiEaiabgkGi2oaaBaaaleaacaWG4baa beaakiabgUcaRiaaiIcacaWGHbGaeyOeI0IaaGymaiaaiMcacaWG5b GaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaaGikaiaadgga cqGHsislcaaIYaGaaGykaiaadQhacqGHciITdaWgaaWcbaGaamOEaa qabaGccqGHRaWkcaaIOaGaamyyaiabgkHiTiaaiodacaaIPaGaam4D aiabgkGi2oaaBaaaleaacaWG3baabeaakiaaiUdaaaaaaa@7C55@  (5.36)

Y 1 =ay x +z y , Y 2 =z x , Y 3 =w w , Y 4 =(x+by) x +y y +z z ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaakiaai2dacaWGHbGaamyEaiabgkGi2oaaBaaa leaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaaWcbaGaam yEaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcbaGaaGOmaaqabaGc caaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baabeaakiaaiYcaca aMf8UaamywamaaBaaaleaacaaIZaaabeaakiaai2dacaWG3bGaeyOa Iy7aaSbaaSqaaiaadEhaaeqaaOGaaGilaiaaywW7caWGzbWaaSbaaS qaaiaaisdaaeqaaOGaaGypaiaaiIcacaWG4bGaey4kaSIaamOyaiaa dMhacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaam yEaiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaadQhacqGH ciITdaWgaaWcbaGaamOEaaqabaGccaaI7aaaaa@68BE@  (5.37)

Y 1 =y x +z y +aw w , Y 2 =z x , Y 3 =x x +y y +z z +bw w , Y 4 =cy x +dw w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadQhacqGHciITdaWgaa WcbaGaamyEaaqabaGccqGHRaWkcaWGHbGaam4DaiabgkGi2oaaBaaa leaacaWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaIYa aabeaakiaai2dacaWG6bGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGa aGilaaqaaiaadMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamiEai abgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaadMhacqGHciIT daWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaSbaaS qaaiaadQhaaeqaaOGaey4kaSIaamOyaiaadEhacqGHciITdaWgaaWc baGaam4DaaqabaGccaaISaGaaGzbVlaadMfadaWgaaWcbaGaaGinaa qabaGccaaI9aGaam4yaiaadMhacqGHciITdaWgaaWcbaGaamiEaaqa baGccqGHRaWkcaWGKbGaam4DaiabgkGi2oaaBaaaleaacaWG3baabe aakiaaiUdaaaaaaa@732E@ (5.38) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjbVdaa@3780@

Y 1 =y x +(z+aw) y +w z , Y 2 =w x , Y 3 =z x +w y , Y 4 =x x +(y+aw) y +z z +w w ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaamyEaiabgkGi 2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacaWG6bGaey4kaS IaamyyaiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGa ey4kaSIaam4DaiabgkGi2oaaBaaaleaacaWG6baabeaakiaaiYcaca aMf8UaamywamaaBaaaleaacaaIYaaabeaakiaai2dacaWG3bGaeyOa Iy7aaSbaaSqaaiaadIhaaeqaaOGaaGilaaqaaiaadMfadaWgaaWcba GaaG4maaqabaGccaaI9aGaamOEaiabgkGi2oaaBaaaleaacaWG4baa beaakiabgUcaRiaadEhacqGHciITdaWgaaWcbaGaamyEaaqabaGcca aISaGaaGzbVlaadMfadaWgaaWcbaGaaGinaaqabaGccaaI9aGaamiE aiabgkGi2oaaBaaaleaacaWG4baabeaakiabgUcaRiaaiIcacaWG5b Gaey4kaSIaamyyaiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadMha aeqaaOGaey4kaSIaamOEaiabgkGi2oaaBaaaleaacaWG6baabeaaki abgUcaRiaadEhacqGHciITdaWgaaWcbaGaam4DaaqabaGccaaI7aaa aaaa@77E5@  (5.39)

Y 1 =(ax+y) x +(ay+z) y +(az+w) z +aw w , Y 2 =w x , Y 3 =(x+cz) x +(y+cw) y +z z +w w , Y 4 =dz x +bw y ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiaadgga caWG4bGaey4kaSIaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaa qabaGccqGHRaWkcaaIOaGaamyyaiaadMhacqGHRaWkcaWG6bGaaGyk aiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacaWGHb GaamOEaiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQha aeqaaOGaey4kaSIaamyyaiaadEhacqGHciITdaWgaaWcbaGaam4Daa qabaGccaaISaGaaGzbVlaadMfadaWgaaWcbaGaaGOmaaqabaGccaaI 9aGaam4DaiabgkGi2oaaBaaaleaacaWG4baabeaakiaaiYcaaeaaca WGzbWaaSbaaSqaaiaaiodaaeqaaOGaaGypaiaaiIcacaWG4bGaey4k aSIaam4yaiaadQhacaaIPaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaO Gaey4kaSIaaGikaiaadMhacqGHRaWkcaWGJbGaam4DaiaaiMcacqGH ciITdaWgaaWcbaGaamyEaaqabaGccqGHRaWkcaWG6bGaeyOaIy7aaS baaSqaaiaadQhaaeqaaOGaey4kaSIaam4DaiabgkGi2oaaBaaaleaa caWG3baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaI0aaabe aakiaai2dacaWGKbGaamOEaiabgkGi2oaaBaaaleaacaWG4baabeaa kiabgUcaRiaadkgacaWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaO GaaG4oaaaaaaa@8B99@  (5.40)

Y 1 =(ax+y) x +(ay+z) y +(az+w) z +aw w ,q Y 2 =z x +w y , Y 3 =w x , Y 4 =bx x +(byczdw) y +(bz2cw) z +bw w , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaadMfadaWgaaWcbaGaaGymaaqabaGccaaI9aGaaGikaiaadgga caWG4bGaey4kaSIaamyEaiaaiMcacqGHciITdaWgaaWcbaGaamiEaa qabaGccqGHRaWkcaaIOaGaamyyaiaadMhacqGHRaWkcaWG6bGaaGyk aiabgkGi2oaaBaaaleaacaWG5baabeaakiabgUcaRiaaiIcacaWGHb GaamOEaiabgUcaRiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadQha aeqaaOGaey4kaSIaamyyaiaadEhacqGHciITdaWgaaWcbaGaam4Daa qabaGccaaISaGaamyCaiaaywW7caWGzbWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadQhacqGHciITdaWgaaWcbaGaamiEaaqabaGccqGHRa WkcaWG3bGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaaGilaaqaaiaa dMfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaam4DaiabgkGi2oaaBa aaleaacaWG4baabeaakiaaiYcacaaMf8UaamywamaaBaaaleaacaaI 0aaabeaakiaai2dacaWGIbGaamiEaiabgkGi2oaaBaaaleaacaWG4b aabeaakiabgUcaRiaaiIcacaWGIbGaamyEaiabgkHiTiaadogacaWG 6bGaeyOeI0IaamizaiaadEhacaaIPaGaeyOaIy7aaSbaaSqaaiaadM haaeqaaOGaey4kaSIaaGikaiaadkgacaWG6bGaeyOeI0IaaGOmaiaa dogacaWG3bGaaGykaiabgkGi2oaaBaaaleaacaWG6baabeaakiabgU caRiaadkgacaWG3bGaeyOaIy7aaSbaaSqaaiaadEhaaeqaaOGaaGil aaaaaaa@91F0@  (5.41)

причем коэффициенты a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@36D9@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DA@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@ , d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DC@  постоянны.

Доказательство. этой теоремы проводится в два этапа. На первом этапе применяем теорему 6. Для этого исследуем на невырожденность матрицу K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36C3@ , составленную из коэффициентов операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . Например, для линейного пространства (5.1) эта матрица имеет вид

K= λ 1 x λ 2 y λ 3 z λ 4 w b 1 x b 2 y b 3 z b 4 w c 1 x c 2 y c 3 z c 4 w d 1 x d 2 y d 3 z d 4 w . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dadaqadaqaauaabeqafqaaaaaabaGaeq4UdW2aaSbaaSqaaiaaigda aeqaaOGaamiEaaqaaiabeU7aSnaaBaaaleaacaaIYaaabeaakiaadM haaeaacqaH7oaBdaWgaaWcbaGaaG4maaqabaGccaWG6baabaGaeq4U dW2aaSbaaSqaaiaaisdaaeqaaOGaam4DaaqaaiaadkgadaWgaaWcba GaaGymaaqabaGccaWG4baabaGaamOyamaaBaaaleaacaaIYaaabeaa kiaadMhaaeaacaWGIbWaaSbaaSqaaiaaiodaaeqaaOGaamOEaaqaai aadkgadaWgaaWcbaGaaGinaaqabaGccaWG3baabaGaam4yamaaBaaa leaacaaIXaaabeaakiaadIhaaeaacaWGJbWaaSbaaSqaaiaaikdaae qaaOGaamyEaaqaaiaadogadaWgaaWcbaGaaG4maaqabaGccaWG6baa baGaam4yamaaBaaaleaacaaI0aaabeaakiaadEhaaeaacaWGKbWaaS baaSqaaiaaigdaaeqaaOGaamiEaaqaaiaadsgadaWgaaWcbaGaaGOm aaqabaGccaWG5baabaGaamizamaaBaaaleaacaaIZaaabeaakiaadQ haaeaacaWGKbWaaSbaaSqaaiaaisdaaeqaaOGaam4Daaqaaaqaaaqa aaqaaaaaaiaawIcacaGLPaaacaaIUaaaaa@6AA0@

Требование невырожденности равносильно линейной независимости операторов Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ . На втором этапе линейно комбинируем операторы Y 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37B8@ , Y 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37B9@ , Y 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37BA@  и Y 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaI0aaabeaaaaa@37BB@ , что приводит к упрощению базиса соответствующих алгебр Ли. Так, например, система (5.1) линейной комбинацией приводится к (5.29). Таким образом производится выделение алгебр Ли (5.29) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.41).

6. Вычисления локально ограниченно точно дважды транзитивных действий. Экспоненциальное отображение оператора Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywaaaa@36D1@  определяем формулой

x y z w =Exp(tY) x y z w = x y z w +tY x y z w + (tY) 2 2! x y z w +. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeabbaaaaeaaceWG4bGbauaaaeaaceWG5bGbauaaaeaaceWG6bGb auaaaeaaceWG3bGbauaaaaaacaGLOaGaayzkaaGaaGypaiaadweaca WG4bGaamiCaiaaiIcacaWG0bGaamywaiaaiMcadaqadaqaauaabeqa eeaaaaqaaiaadIhaaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaaca GLOaGaayzkaaGaaGypamaabmaabaqbaeqabqqaaaaabaGaamiEaaqa aiaadMhaaeaacaWG6baabaGaam4DaaaaaiaawIcacaGLPaaacqGHRa WkcaWG0bGaamywamaabmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaa dMhaaeaacaWG6baabaGaam4DaaaaaiaawIcacaGLPaaacqGHRaWkda WcaaqaaiaaiIcacaWG0bGaamywaiaaiMcadaahaaWcbeqaaiaaikda aaaakeaacaaIYaGaaGyiaaaadaqadaqaauaabeqaeeaaaaqaaiaadI haaeaacaWG5baabaGaamOEaaqaaiaadEhaaaaacaGLOaGaayzkaaGa ey4kaSIaeSOjGSKaaGOlaaaa@6576@  (6.1)

Теорема 9 Локальные группы Ли преобразований трехмерного пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , задающие локально ограниченно точно дважды транзитивные действия в R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@ , в подходящих обозначениях параметров и координат принимают следующий вид:

x = a 1 x+ a 5 , y = a 2 y+ a 6 , z = a 3 z+ a 7 , w = a 4 z+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIa amyyamaaBaaaleaacaaI1aaabeaakiaaiYcacaaMf8UabmyEayaafa GaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIa amyyamaaBaaaleaacaaI2aaabeaakiaaiYcacaaMf8UabmOEayaafa GaaGypaiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIa amyyamaaBaaaleaacaaI3aaabeaakiaaiYcacaaMf8Uabm4Dayaafa GaaGypaiaadggadaWgaaWcbaGaaGinaaqabaGccaWG6bGaey4kaSIa amyyamaaBaaaleaacaaI4aaabeaakiaaiUdaaaa@5B1B@  (6.2)

x = a 1 a a 2 b a 3 c a 4 d x+ a 2 a 1 a 1 a + a 5 , y = a 2 y+ a 6 , z = a 3 z+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWa a0baaSqaaiaaikdaaeaacaWGIbaaaOGaamyyamaaDaaaleaacaaIZa aabaGaam4yaaaakiaadggadaqhaaWcbaGaaGinaaqaaiaadsgaaaGc caWG4bGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakmaabmaaba WaaSaaaeaacaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaeyOe I0IaaGymaaqaaiaadggaaaaacaGLOaGaayzkaaGaey4kaSIaamyyam aaBaaaleaacaaI1aaabeaakiaaiYcacaaMf8UabmyEayaafaGaaGyp aiaadggadaWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamyyam aaBaaaleaacaaI2aaabeaakiaaiYcacaaMf8UabmOEayaafaGaaGyp aiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiaaiYcacaaMf8Uabm4DayaafaGaaGyp aiaadggadaWgaaWcbaGaaGinaaqabaGccaWG3bGaey4kaSIaamyyam aaBaaaleaacaaI4aaabeaakiaaiUdaaaa@6DE4@  (6.3)

x = a 1 x+ a 2 y+ a 5 , y = a 1 y+ a 6 , z = a 3 z+ a 4 w+ a 7 , w = a 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaWgaaWcbaGaaGymaaqabaGccaWG4bGaey4kaSIa amyyamaaBaaaleaacaaIYaaabeaakiaadMhacqGHRaWkcaWGHbWaaS baaSqaaiaaiwdaaeqaaOGaaGilaiaaywW7ceWG5bGbauaacaaI9aGa amyyamaaBaaaleaacaaIXaaabeaakiaadMhacqGHRaWkcaWGHbWaaS baaSqaaiaaiAdaaeqaaOGaaGilaiaaywW7ceWG6bGbauaacaaI9aGa amyyamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGHbWaaS baaSqaaiaaisdaaeqaaOGaam4DaiabgUcaRiaadggadaWgaaWcbaGa aG4naaqabaGccaaISaGaaGzbVlqadEhagaqbaiaai2dacaWGHbWaaS baaSqaaiaaiodaaeqaaOGaam4DaiabgUcaRiaadggadaWgaaWcbaGa aGioaaqabaGccaaI7aaaaa@6286@  (6.4)

x = a 2 x+ a 3 z+ a 1 y+ a 5 , y = a 2 y+ a 1 z+ a 6 , z = a 2 z+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaafa GaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGccaWG4bGaey4kaSIa amyyamaaBaaaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGHbWaaS baaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaaWcbaGa aGynaaqabaGccaaISaGaaGzbVlqadMhagaqbaiaai2dacaWGHbWaaS baaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaaWcbaGa aGymaaqabaGccaWG6bGaey4kaSIaamyyamaaBaaaleaacaaI2aaabe aakiaaiYcacaaMf8UabmOEayaafaGaaGypaiaadggadaWgaaWcbaGa aGOmaaqabaGccaWG6bGaey4kaSIaamyyamaaBaaaleaacaaI3aaabe aakiaaiYcacaaMf8Uabm4DayaafaGaaGypaiaadggadaWgaaWcbaGa aGinaaqabaGccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI4aaabe aakiaaiUdaaaa@6641@  (6.5)

x = a 2 x+ a 3 z+ a 4 w+ a 1 y+ a 5 , y = a 2 y+ a 1 z+ a 3 w+ a 6 , z = a 2 z+ a 1 w+ a 7 , w = a 2 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amiEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey 4kaSIaamyyamaaBaaaleaacaaI0aaabeaakiaadEhacqGHRaWkcaWG HbWaaSbaaSqaaiaaigdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaa WcbaGaaGynaaqabaGccaaISaGaaGzbVlqadMhagaqbaiaai2dacaWG HbWaaSbaaSqaaiaaikdaaeqaaOGaamyEaiabgUcaRiaadggadaWgaa WcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamyyamaaBaaaleaacaaI ZaaabeaakiaadEhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiAdaaeqaaO GaaGilaaqaaiqadQhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikda aeqaaOGaamOEaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcca WG3bGaey4kaSIaamyyamaaBaaaleaacaaI3aaabeaakiaaiYcacaaM f8Uabm4DayaafaGaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGcca WG3bGaey4kaSIaamyyamaaBaaaleaacaaI4aaabeaakiaaiUdaaaaa aa@6FE2@  (6.6)

x = a 2 x+ a 3 + 1 2 a 1 2 a 2 z+ a 1 a 3 + 1 6 a 1 3 + a 3 (1+ a 4 3 ) a 2 w+ a 1 a 2 y+ a 5 , y = a 2 a 4 y+ a 1 a 2 a 4 2 z+ a 3 + 1 2 a 1 2 a 2 a 4 w+ a 6 , z = a 2 a 4 2 z+ a 7 , w = a 2 a 4 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amiEaiabgUcaRmaabmaabaGaamyyamaaBaaaleaacaaIZaaabeaaki abgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamyyamaaDaaaleaa caaIXaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadggadaWgaaWcba GaaGOmaaqabaGccaWG6bGaey4kaSYaaeWaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIZaaabeaakiabgUcaRm aalaaabaGaaGymaaqaaiaaiAdaaaGaamyyamaaDaaaleaacaaIXaaa baGaaG4maaaakiabgUcaRmaalaaabaGaamyyaaqaaiaaiodaaaGaaG ikaiaaigdacqGHRaWkcaWGHbWaa0baaSqaaiaaisdaaeaacaaIZaaa aOGaaGykaaGaayjkaiaawMcaaiaadggadaWgaaWcbaGaaGOmaaqaba GccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadgga daWgaaWcbaGaaGOmaaqabaGccaWG5bGaey4kaSIaamyyamaaBaaale aacaaI1aaabeaakiaaiYcaaeaaceWG5bGbauaacaaI9aGaamyyamaa BaaaleaacaaIYaaabeaakiaadggadaWgaaWcbaGaaGinaaqabaGcca WG5bGaey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiaadggadaWg aaWcbaGaaGOmaaqabaGccaWGHbWaa0baaSqaaiaaisdaaeaacaaIYa aaaOGaamOEaiabgUcaRmaabmaabaGaamyyamaaBaaaleaacaaIZaaa beaakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaamyyamaaDa aaleaacaaIXaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadggadaWg aaWcbaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaaisdaaeqaaOGaam 4DaiabgUcaRiaadggadaWgaaWcbaGaaGOnaaqabaGccaaISaGaaGzb VlqadQhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaam yyamaaDaaaleaacaaI0aaabaGaaGOmaaaakiaadQhacqGHRaWkcaWG HbWaaSbaaSqaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGbauaaca aI9aGaamyyamaaBaaaleaacaaIYaaabeaakiaadggadaqhaaWcbaGa aGinaaqaaiaaiodaaaGccaWG3bGaey4kaSIaamyyamaaBaaaleaaca aI4aaabeaakiaaiUdaaaaaaa@9E7B@  (6.7)

x = a 2 x+ a 2 ( a 4 2 1)+ 1 2 a 1 2 a 4 2 a 2 z+ a 3 w+ a 1 a 2 a 4 y+ a 5 , y = a 2 a 4 y+ a 1 a 2 a 4 2 z+ A( a 4 )+ 1 2 a 1 2 a 4 3 a 2 w+ a 6 , z = a 2 a 4 2 z+ a 1 a 2 a 4 3 w+ a 7 , w = a 2 a 4 3 w+ a 8 , A(a)=lna+4 ln 2 a 2 +13 ln 3 a 6 +40 ln 4 a 24 +; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGabmiEayaafaGaaGypaiaadggadaWgaaWcbaGaaGOmaaqabaGc caWG4bGaey4kaSYaaeWaaeaadaWcaaqaaiaadggaaeaacaaIYaaaai aaiIcacaWGHbWaa0baaSqaaiaaisdaaeaacaaIYaaaaOGaeyOeI0Ia aGymaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaadg gadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGHbWaa0baaSqaaiaa isdaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaamyyamaaBaaaleaaca aIYaaabeaakiaadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqa aOGaam4DaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGccaWGHb WaaSbaaSqaaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaI0aaabeaa kiaadMhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiwdaaeqaaOGaaGilaa qaaiqadMhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGa amyyamaaBaaaleaacaaI0aaabeaakiaadMhacqGHRaWkcaWGHbWaaS baaSqaaiaaigdaaeqaaOGaamyyamaaBaaaleaacaaIYaaabeaakiaa dggadaqhaaWcbaGaaGinaaqaaiaaikdaaaGccaWG6bGaey4kaSYaae WaaeaacaWGbbGaaGikaiaadggadaWgaaWcbaGaaGinaaqabaGccaaI PaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGHbWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaamyyamaaDaaaleaacaaI0aaabaGa aG4maaaaaOGaayjkaiaawMcaaiaadggadaWgaaWcbaGaaGOmaaqaba GccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiaaiYca aeaaceWG6bGbauaacaaI9aGaamyyamaaBaaaleaacaaIYaaabeaaki aadggadaqhaaWcbaGaaGinaaqaaiaaikdaaaGccaWG6bGaey4kaSIa amyyamaaBaaaleaacaaIXaaabeaakiaadggadaWgaaWcbaGaaGOmaa qabaGccaWGHbWaa0baaSqaaiaaisdaaeaacaaIZaaaaOGaam4Daiab gUcaRiaadggadaWgaaWcbaGaaG4naaqabaGccaaISaGaaGzbVlqadE hagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaamyyamaa DaaaleaacaaI0aaabaGaaG4maaaakiaadEhacqGHRaWkcaWGHbWaaS baaSqaaiaaiIdaaeqaaOGaaGilaaqaaiaadgeacaaIOaGaamyyaiaa iMcacaaI9aGaciiBaiaac6gacaWGHbGaey4kaSIaaGinamaavacabe WcbeqaaiaaikdaaOqaaiGacYgacaGGUbaaamaalaaabaGaamyyaaqa aiaaikdaaaGaey4kaSIaaGymaiaaiodadaqfGaqabSqabeaacaaIZa aakeaaciGGSbGaaiOBaaaadaWcaaqaaiaadggaaeaacaaI2aaaaiab gUcaRiaaisdacaaIWaWaaubiaeqaleqabaGaaGinaaGcbaGaciiBai aac6gaaaWaaSaaaeaacaWGHbaabaGaaGOmaiaaisdaaaGaey4kaSIa eSOjGSKaaG4oaaaaaaa@BDE9@  (6.8)

x = a 4 4 x+ a 1 a 4 4 y+ a 2 a 4 4 z+ a 3 a 4 4 w+ a 1 y+ a 5 , y = a 4 3 y+ a 1 a 4 3 z+ a 2 a 4 3 w+ a 6 , z = a 4 2 z+ a 1 a 4 2 w+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaa0baaSqaaiaaisdaaeaacaaI 0aaaaOGaamiEaiabgUcaRiaadggadaWgaaWcbaGaaGymaaqabaGcca WGHbWaa0baaSqaaiaaisdaaeaacaaI0aaaaOGaamyEaiabgUcaRiaa dggadaWgaaWcbaGaaGOmaaqabaGccaWGHbWaa0baaSqaaiaaisdaae aacaaI0aaaaOGaamOEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqa baGccaWGHbWaa0baaSqaaiaaisdaaeaacaaI0aaaaOGaam4DaiabgU caRiaadggadaWgaaWcbaGaaGymaaqabaGccaWG5bGaey4kaSIaamyy amaaBaaaleaacaaI1aaabeaakiaaiYcaaeaaceWG5bGbauaacaaI9a GaamyyamaaDaaaleaacaaI0aaabaGaaG4maaaakiaadMhacqGHRaWk caWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaaDaaaleaacaaI0a aabaGaaG4maaaakiaadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaikda aeqaaOGaamyyamaaDaaaleaacaaI0aaabaGaaG4maaaakiaadEhacq GHRaWkcaWGHbWaaSbaaSqaaiaaiAdaaeqaaOGaaGilaiaaywW7ceWG 6bGbauaacaaI9aGaamyyamaaDaaaleaacaaI0aaabaGaaGOmaaaaki aadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaa DaaaleaacaaI0aaabaGaaGOmaaaakiaadEhacqGHRaWkcaWGHbWaaS baaSqaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGbauaacaaI9aGa amyyamaaBaaaleaacaaI0aaabeaakiaadEhacqGHRaWkcaWGHbWaaS baaSqaaiaaiIdaaeqaaOGaaG4oaaaaaaa@856A@  (6.9)

x = a 4 x+ a 3 z+(a a 1 +b a 4 ln a 4 )y+ a 5 , y = a 4 y+ a 1 z+ a 6 , z = a 4 z+ a 7 , w = a 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGa amiEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey 4kaSIaaGikaiaadggacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamOyaiaadggadaWgaaWcbaGaaGinaaqabaGcciGGSbGaaiOBai aadggadaWgaaWcbaGaaGinaaqabaGccaaIPaGaamyEaiabgUcaRiaa dggadaWgaaWcbaGaaGynaaqabaGccaaISaGaaGzbVlqadMhagaqbai aai2dacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGaamyEaiabgUcaRiaa dggadaWgaaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamyyamaaBa aaleaacaaI2aaabeaakiaaiYcaaeaaceWG6bGbauaacaaI9aGaamyy amaaBaaaleaacaaI0aaabeaakiaadQhacqGHRaWkcaWGHbWaaSbaaS qaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGbauaacaaI9aGaamyy amaaBaaaleaacaaIZaaabeaakiaadEhacqGHRaWkcaWGHbWaaSbaaS qaaiaaiIdaaeqaaOGaaG4oaaaaaaa@6E71@  (6.10)

x = a 3 x+(ln a 1 +cln a 4 ) a 3 y+ a 2 z+ a 5 , y = a 3 y+ a 1 z+ a 6 , z = a 3 z+ a 7 , w = a 1 a a 3 b a 4 d w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGa amiEaiabgUcaRiaaiIcaciGGSbGaaiOBaiaadggadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWGJbGaciiBaiaac6gacaWGHbWaaSbaaSqa aiaaisdaaeqaaOGaaGykaiaadggadaWgaaWcbaGaaG4maaqabaGcca WG5bGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaadQhacqGH RaWkcaWGHbWaaSbaaSqaaiaaiwdaaeqaaOGaaGilaaqaaiqadMhaga qbaiaai2dacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamyEaiabgUca RiaadggadaWgaaWcbaGaaGymaaqabaGccaWG6bGaey4kaSIaamyyam aaBaaaleaacaaI2aaabeaakiaaiYcacaaMf8UabmOEayaafaGaaGyp aiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiaaiYcacaaMf8Uabm4DayaafaGaaGyp aiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWaa0baaS qaaiaaiodaaeaacaWGIbaaaOGaamyyamaaDaaaleaacaaI0aaabaGa amizaaaakiaadEhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiIdaaeqaaO GaaG4oaaaaaaa@75D5@  (6.11)

x = a 4 x+ a 3 z+ a 2 w+ a 5 , y = a 4 y+ a 1 z+( a 3 +a a 1 +a a 4 ln a 4 )w+ a 6 , z = a 4 z+ a 7 , w = a 4 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGa amiEaiabgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccaWG6bGaey 4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaadEhacqGHRaWkcaWG HbWaaSbaaSqaaiaaiwdaaeqaaOGaaGilaiaaywW7ceWG5bGbauaaca aI9aGaamyyamaaBaaaleaacaaI0aaabeaakiaadMhacqGHRaWkcaWG HbWaaSbaaSqaaiaaigdaaeqaaOGaamOEaiabgUcaRiaaiIcacaWGHb WaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamyyaiaadggadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGHbGaamyyamaaBaaaleaacaaI0a aabeaakiGacYgacaGGUbGaamyyamaaBaaaleaacaaI0aaabeaakiaa iMcacaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiaaiY caaeaaceWG6bGbauaacaaI9aGaamyyamaaBaaaleaacaaI0aaabeaa kiaadQhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiEdaaeqaaOGaaGilai aaywW7ceWG3bGbauaacaaI9aGaamyyamaaBaaaleaacaaI0aaabeaa kiaadEhacqGHRaWkcaWGHbWaaSbaaSqaaiaaiIdaaeqaaOGaaG4oaa aaaaa@74E0@  (6.12)

x = a 1 a a 3 x+ a 1 a a 3 ln a 1 y+ a 1 a a 3 cln a 3 +d a 4 + ln 2 a 1 2 z+ a 1 a a 3 a 2 w+ a 5 , y = a 1 a a 3 y+ a 1 a ln a 1 a 3 z+ a 1 a a 3 b a 4 +cln a 3 + ln 2 a 1 2 w+ a 6 , z = a 1 a a 3 z+ a 1 a ln a 1 a 3 w+ a 7 , w = a a a 3 w+ a 8 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaa0baaSqaaiaaigdaaeaacaWG HbaaaOGaamyyamaaBaaaleaacaaIZaaabeaakiaadIhacqGHRaWkca WGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaamyyamaaBaaaleaa caaIZaaabeaakiGacYgacaGGUbGaamyyamaaBaaaleaacaaIXaaabe aakiaadMhacqGHRaWkcaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaa aOGaamyyamaaBaaaleaacaaIZaaabeaakmaabmaabaGaam4yaiGacY gacaGGUbGaamyyamaaBaaaleaacaaIZaaabeaakiabgUcaRiaadsga caWGHbWaaSbaaSqaaiaaisdaaeqaaOGaey4kaSYaaubiaeqaleqaba GaaGOmaaGcbaGaciiBaiaac6gaaaWaaSaaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacaWG6bGaey 4kaSIaamyyamaaDaaaleaacaaIXaaabaGaamyyaaaakiaadggadaWg aaWcbaGaaG4maaqabaGccaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaam 4DaiabgUcaRiaadggadaWgaaWcbaGaaGynaaqabaGccaaISaaabaGa bmyEayaafaGaaGypaiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaa GccaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamyEaiabgUcaRiaadgga daqhaaWcbaGaaGymaaqaaiaadggaaaGcciGGSbGaaiOBaiaadggada WgaaWcbaGaaGymaaqabaGccaWGHbWaaSbaaSqaaiaaiodaaeqaaOGa amOEaiabgUcaRiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGcca WGHbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacaWGIbGaamyyamaa BaaaleaacaaI0aaabeaakiabgUcaRiaadogaciGGSbGaaiOBaiaadg gadaWgaaWcbaGaaG4maaqabaGccqGHRaWkdaqfGaqabSqabeaacaaI YaaakeaaciGGSbGaaiOBaaaadaWcaaqaaiaadggadaWgaaWcbaGaaG ymaaqabaaakeaacaaIYaaaaaGaayjkaiaawMcaaiaadEhacqGHRaWk caWGHbWaaSbaaSqaaiaaiAdaaeqaaOGaaGilaaqaaiqadQhagaqbai aai2dacaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaamyyamaa BaaaleaacaaIZaaabeaakiaadQhacqGHRaWkcaWGHbWaa0baaSqaai aaigdaaeaacaWGHbaaaOGaciiBaiaac6gacaWGHbWaaSbaaSqaaiaa igdaaeqaaOGaamyyamaaBaaaleaacaaIZaaabeaakiaadEhacqGHRa WkcaWGHbWaaSbaaSqaaiaaiEdaaeqaaOGaaGilaiaaywW7ceWG3bGb auaacaaI9aGaamyyamaaBaaaleaacaWGHbaabeaakiaadggadaWgaa WcbaGaaG4maaqabaGccaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiaaiUdaaaaaaa@B6AC@  (6.13)

x = a 1 a a 4 b x+ a 1 a ln a 1 a 4 b ln a 1 y+ a 1 a a 4 b a 2 z+ a 1 a a 4 b a 3 w+ a 5 , y = a 1 a a 4 b y+ a 1 a a 4 b (ln a 1 cln a 1 ln a 4 )z+ a 1 a a 4 b a 2 w+ a 6 , z = a 1 a a 4 b z+ a 1 a a 4 b (ln a 1 2cln a 4 )w+ a 7 , w = a a a 4 b w+ a 8 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaiqadIhagaqbaiaai2dacaWGHbWaa0baaSqaaiaaigdaaeaacaWG HbaaaOGaamyyamaaDaaaleaacaaI0aaabaGaamOyaaaakiaadIhacq GHRaWkcaWGHbWaa0baaSqaaiaaigdaaeaacaWGHbaaaOGaciiBaiaa c6gacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamyyamaaDaaaleaaca aI0aaabaGaamOyaaaakiGacYgacaGGUbGaamyyamaaBaaaleaacaaI XaaabeaakiaadMhacqGHRaWkcaWGHbWaa0baaSqaaiaaigdaaeaaca WGHbaaaOGaamyyamaaDaaaleaacaaI0aaabaGaamOyaaaakiaadgga daWgaaWcbaGaaGOmaaqabaGccaWG6bGaey4kaSIaamyyamaaDaaale aacaaIXaaabaGaamyyaaaakiaadggadaqhaaWcbaGaaGinaaqaaiaa dkgaaaGccaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaam4DaiabgUcaRi aadggadaWgaaWcbaGaaGynaaqabaGccaaISaaabaGabmyEayaafaGa aGypaiaadggadaqhaaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWaa0 baaSqaaiaaisdaaeaacaWGIbaaaOGaamyEaiabgUcaRiaadggadaqh aaWcbaGaaGymaaqaaiaadggaaaGccaWGHbWaa0baaSqaaiaaisdaae aacaWGIbaaaOGaaGikaiGacYgacaGGUbGaamyyamaaBaaaleaacaaI XaaabeaakiabgkHiTiaadogaciGGSbGaaiOBaiaadggadaWgaaWcba GaaGymaaqabaGcciGGSbGaaiOBaiaadggadaWgaaWcbaGaaGinaaqa baGccaaIPaGaamOEaiabgUcaRiaadggadaqhaaWcbaGaaGymaaqaai aadggaaaGccaWGHbWaa0baaSqaaiaaisdaaeaacaWGIbaaaOGaamyy amaaBaaaleaacaaIYaaabeaakiaadEhacqGHRaWkcaWGHbWaaSbaaS qaaiaaiAdaaeqaaOGaaGilaaqaaiqadQhagaqbaiaai2dacaWGHbWa a0baaSqaaiaaigdaaeaacaWGHbaaaOGaamyyamaaDaaaleaacaaI0a aabaGaamOyaaaakiaadQhacqGHRaWkcaWGHbWaa0baaSqaaiaaigda aeaacaWGHbaaaOGaamyyamaaDaaaleaacaaI0aaabaGaamOyaaaaki aaiIcaciGGSbGaaiOBaiaadggadaWgaaWcbaGaaGymaaqabaGccqGH sislcaaIYaGaam4yaiGacYgacaGGUbGaamyyamaaBaaaleaacaaI0a aabeaakiaaiMcacaWG3bGaey4kaSIaamyyamaaBaaaleaacaaI3aaa beaakiaaiYcacaaMf8Uabm4DayaafaGaaGypaiaadggadaWgaaWcba GaamyyaaqabaGccaWGHbWaa0baaSqaaiaaisdaaeaacaWGIbaaaOGa am4DaiabgUcaRiaadggadaWgaaWcbaGaaGioaaqabaGccaaIUaaaaa aa@B8F8@  (6.14)

Доказательство. сводится к применению экспоненциального отображения (6.1) к базисным операторам алгебр Ли (5.29) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5.41) и дальнейшему вычислению композиций получаемых действий.

7. Заключение. В работе решена задача локального расширения группы параллельных переносов пространства R 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCa aaleqabaGaaGinaaaaaaa@37B5@  до локально ограниченно точно дважды транзитивной группы Ли преобразований этого же пространства при двух условиях: T 1 = T 2 = T 3 = T 4 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaakiaai2dacaWGubWaaSbaaSqaaiaaikdaaeqa aOGaaGypaiaadsfadaWgaaWcbaGaaG4maaqabaGccaaI9aGaamivam aaBaaaleaacaaI0aaabeaakiaai2dacaaIWaaaaa@40F7@ ; матрица U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@  имеет совпадающие характеристический и минимальный многочлены и вещественные собственные числа. Эта задача может быть распространена на случай произвольной матрицы U 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@37B4@ , а также на случай ненулевых матриц T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B3@ , T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIYaaabeaaaaa@37B4@ , T 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIZaaabeaaaaa@37B5@ , T 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaI0aaabeaaaaa@37B6@ . Согласно одной из теорем Г. Г. Михайличенко (см. [10]) полученные локально ограниченно точно дважды транзитивные группы Ли преобразований задают двуметрическую феноменологически симметричную геометрию двух множеств (физическую структуру) ранга (3,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaio dacaaISaGaaGOmaiaaiMcaaaa@3987@ .

×

About the authors

V. A. Kyrov

Горно-Алтайский государственный университет

Author for correspondence.
Email: kyrovVA@yandex.ru
Russian Federation, Горно-Алтайск

References

  1. Бредон Г. Введение в теорию компактных групп преобразований. — М.: Наука, 1980.
  2. Гантмахер Ф. Р. Теория матриц. — М.: Физматлит, 2010.
  3. Горбацевич В. В. О расширении транзитивных действий групп Ли// Изв. РАН. Сер. мат. — 2017. —81, № 6. — С. 86–99.
  4. Кострикин А. И. Введение в алгебру. — М.: Наука, 1977.
  5. Кыров В. А. К вопросу о локальном расширении группы параллельных переносов трехмерного пространства// Владикавказ. мат. ж. — 2021. — 23, № 1. — С. 32–42.
  6. Кыров В. А. Кратно транзитивная группа Ли преобразований как физическая структура// Мат. тр.— 2021. — 24, № 2. — С. 81–84.
  7. Кыров В. А. Локальное расширение группы параллельных переносов плоскости до локально дважды транзитивной группы Ли преобразований этой же плоскости// Итоги науки техн. Сер. Совр. мат. прилож. Темат. обз. — 2022. — 204. — С. 85–96.
  8. Кыров В. А. О локальном расширении группы параллельных переносов в трехмерном пространстве//Вестн. Удмурт. ун-та. Мат. Мех. Компьют. науки. — 2022. — 32, № 1. — С. 62–80.
  9. Кыров В. А., Михайличенко Г. Г. Вложение аддитивной двуметрической феноменологически симметричной геометрии двух множеств ранга (2, 2) в двуметрические феноменологически симметричные геометрии двух множеств ранга (3, 2)// 2018. — 28, № 3. — С. 305–327.
  10. Михайличенко Г. Г. Групповая симметрия физических cтруктур. — Барнаул, 2003.
  11. Михайличенко Г. Г., Мурадов Р. М. Физические структуры как геометрии двух множеств. — Горно-Алтайск, 2008.
  12. Овсянников Л. В. Групповой анализ дифференциальных уравнений. — М.: Наука, 1978.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Kyrov V.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».