О скорости убывания решений стационарного уравнения Шрёдингера с потенциалом, зависящим от одной переменной

Обложка

Цитировать

Полный текст

Аннотация

В 1982 г. Е. М. Ландисом была поставлена задача о точных оценках экспоненциальной скорости убывания решений стационарного уравнения Шрёдингера. Эта задача в первоначальной постановке через несколько лет была решена Воронежским математиком В. З. Мешковым. Он построил пример решения, которое на бесконечности убывает сверхлинейно, что даёт отрицательный ответ на первоначальный вопрос в задаче Е. М. Ландиса. В данной работе доказано, что для некоторых потенциалов специального вида тем не менее ответ на вопрос в задаче Е. М. Ландиса оказывается положительным. Рассмотрены также некоторые обобщения и современные результаты в этом направлении. 

Полный текст

1. Введение. В заметке Е. М. Ландиса [10] поставлена следующая задача: доказать, что решение стационарного уравнения Шрёдингера с ограниченным потенциалом

Δu(x)q(x)u(x)=0,x n ,|x| R 0 >0, |q(x)| λ 2 ,λ>0,u(x) C 2 (|x| R 0 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaaqaaiabfs5aejaadwhacaaIOaGaamiEaiaaiMcacqGHsislcaWG XbGaaGikaiaadIhacaaIPaGaamyDaiaaiIcacaWG4bGaaGykaiaai2 dacaaIWaGaaGilaiaaywW7caWG4bGaeyicI48efv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaaiaad6 gaaaGccaaISaGaaGzbVlaaiYhacaWG4bGaaGiFaiabgwMiZkaadkfa daWgaaWcbaGaaGimaaqabaGccaaI+aGaaGimaiaaiYcaaeaaaeaaca aI8bGaamyCaiaaiIcacaWG4bGaaGykaiaaiYhacqGHKjYOcqaH7oaB daahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVlabeU7aSjaai6daca aIWaGaaGilaiaaywW7caWG1bGaaGikaiaadIhacaaIPaGaeyicI4Sa am4qamaaCaaaleqabaGaaGOmaaaakiaaiIcacaaI8bGaamiEaiaaiY hacqGHLjYScaWGsbWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaaiYca aaaaaa@8069@  (1)

удовлетворяющее оценке вида

|u(x)|const e (λ+ε)|x| ,ε>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hacaaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaam4yaiaad+gacaWG UbGaam4CaiaadshacqGHflY1caWGLbWaaWbaaSqabeaacqGHsislca aIOaGaeq4UdWMaey4kaSIaeqyTduMaaGykaiaaiYhacaWG4bGaaGiF aaaakiaaiYcacaaMf8UaeqyTduMaaGOpaiaaicdacaaISaaaaa@54F6@

тождественно равно нулю.

В. З. Мешков в известных работах [6, 7] дал отрицательный ответ на данный вопрос. При этом было доказано существование контрпримеров с решениями, которые являются комплексными функциями. Более того, было показано, что если усилить оценку в гипотезе Е. М. Ландиса до следующей:

|u(x)|const e (λ+ε)|x | 4/3 ,ε>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hacaaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaam4yaiaad+gacaWG UbGaam4CaiaadshacqGHflY1caWGLbWaaWbaaSqabeaacqGHsislca aIOaGaeq4UdWMaey4kaSIaeqyTduMaaGykaiaaiYhacaWG4bGaaGiF amaaCaaabeqaaiaaisdacaaIVaGaaG4maaaaaaGccaaISaGaaGzbVl abew7aLjaai6dacaaIWaGaaGilaaaa@574C@

то ответ будет положительным: таких ненулевых решений не существует. В последнее время интерес к этим результатам не пропал, тематика, связанная с гипотезой Е. М. Ландиса и результатами В. З. Мешкова, активно развивается, причём в том числе и ведущими математиками в области дифференциальных уравнений: Ж. Бургейном, К. Кёнигом и рядом других (см. [13, 15, 17, 18, 21]). Основным вопросом остаётся исследование гипотезы Е. М. Ландиса для действительных решений, причём ответ на этот вопрос до сих пор не удалось получить. В связи с вышеизложенным представляется обоснованным название задача Ландиса" MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Мешкова в следующей формулировке.

Задача Ландиса MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa8hfGaaa@3AD2@ Мешкова. Верно ли, что для заданных области D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BC@  и положительных функций r(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaaiI cacaWG4bGaaGykaaaa@394C@ , s(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacaWG4bGaaGykaaaa@394D@  только нулевое классическое решение стационарного уравнения Шрёдингера

Δu(x)q(x)u(x)=0,x n ,|q(x)|r(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yDaiaaiIcacaWG4bGaaGykaiabgkHiTiaadghacaaIOaGaamiEaiaa iMcacaWG1bGaaGikaiaadIhacaaIPaGaaGypaiaaicdacaaISaGaaG zbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab=1risnaaCaaaleqabaGaamOBaaaakiaaiYcacaaMf8 UaaGiFaiaadghacaaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaamOC aiaaiIcacaWG4bGaaGykaiaaiYcaaaa@61EA@  (2)

удовлетворяет оценке

|u(x)|s(x)? MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hacaaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaam4CaiaaiIcacaWG 4bGaaGykaiaai+daaaa@4133@  (3)

Из результатов В. З. Мешкова следует отрицательный ответ в случае комплексных решений, когда D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BC@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ внешность некоторого круга, q(x)= λ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dacqaH7oaBdaahaaWcbeqaaiaaikdaaaaa aa@3CAF@ , s(x)= e (λ+ε)|x| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacaWG4bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacqGHsislcaaI OaGaeq4UdWMaey4kaSIaeqyTduMaaGykaiaaiYhacaWG4bGaaGiFaa aaaaa@44C3@ , ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@391C@ , и положительный ответ в случае комплексных решений, если D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BC@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ внешность некоторого круга, q(x)= λ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dacqaH7oaBdaahaaWcbeqaaiaaikdaaaaa aa@3CAF@ , s(x)= e (λ+ε)|x | 4/3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacaWG4bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacqGHsislcaaI OaGaeq4UdWMaey4kaSIaeqyTduMaaGykaiaaiYhacaWG4bGaaGiFam aaCaaabeqaaiaaisdacaaIVaGaaG4maaaaaaaaaa@4719@ , ε>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@391C@ . Для действительных решений даже в этих частных случаях ответы неизвестны.

Далее будет показано, что несмотря на общее отрицательной решение В. З. Мешкова для первоначальной формулировки задачи Е. М. Ландиса, тем не менее для некоторых классов потенциалов проблема решается положительно, причём для действительных решений. При этом используется метод операторов преобразования специального вида (см. [3, 11, 12, 22]).

Далее эта задача решена для случая потенциала, зависящего только от одной переменной: q(x)=q( x i ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiaai2dacaWGXbGaaGikaiaadIhadaWgaaWcbaGa amyAaaqabaGccaaIPaaaaa@3E8E@ , где 1in MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgs MiJkaadMgacqGHKjYOcaWGUbaaaa@3BF9@ ; далее для определённости считаем, что i=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIXaaaaa@3863@ . Для этого случая в работе доказано обобщение утверждения (1) для уравнения

Δuq( x 1 )u=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yDaiabgkHiTiaadghacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaa kiaaiMcacaWG1bGaaGypaiaaicdacaaISaaaaa@40BA@  (4)

в котором потенциал q( x 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaaa@3A3C@  ограничен произвольной неубывающей функцией. Решение основано на использовании операторов преобразования, сводящих уравнение (4) к уравнению Лапласа.

2. Применение операторов преобразования.

2.1. Условия задачи (1) выполнены в полупространстве x 1 R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaadkfadaWgaaWcbaGaaGimaaqa baaaaa@3B64@  и инвариантны относительно замены переменных z= x 1 R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaai2 dacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOuamaaBaaa leaacaaIWaaabeaaaaa@3C51@ . Поэтому будем рассматривать задачу (1) в полупространстве z0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiabgw MiZkaaicdaaaa@3972@  или, сохраняя для переменной x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37D7@  прежнее обозначение, x 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaaicdaaaa@3A61@ . Будет доказано, что решение задачи (1) равно нулю в полупространстве x 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaaicdaaaa@3A61@ , а тогда в силу теоремы Кальдерона о единственности продолжения (см. [9, гл. 6, с. 14]) такое решение тождественно равно нулю во всём пространстве n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaad6gaaaaaaa@41CB@ .

Обозначим через T(δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacqaH0oazcaaIPaaaaa@39D6@  множество функций, удовлетворяющих следующим условиям (5) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (7) в полупространстве + n ={x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGa ey4kaScabaGaamOBaaaakiaai2dacaaI7bGaamiEaiabgIGiolab=1 risnaaCaaaleqabaGaamOBaaaaaaa@4939@ , x 1 0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaaicdacaaI9baaaa@3B68@ :

u(x) C 2 ( + n ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGc caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFDeIudaqhaaWcbaGaey4kaScabaGaamOBaaaakiaaiMcacaaISaaa aa@4B6D@  (5)

|u(x)| c 1 e δ|x| ,δ>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hacaaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaam4yamaaBaaaleaa caaIXaaabeaakiaayIW7caWGLbWaaWbaaSqabeaacqGHsislcqaH0o azcaaI8bGaamiEaiaaiYhaaaGccaaISaGaaGzbVlabes7aKjaai6da caaIWaGaaGilaaaa@4D57@  (6)

u x 1 c 2 e δ|x| . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaa igdaaeqaaaaaaOGaay5bSlaawIa7aiabgsMiJkaadogadaWgaaWcba GaaGOmaaqabaGccaaMi8UaamyzamaaCaaaleqabaGaeyOeI0IaeqiT dqMaaGiFaiaadIhacaaI8baaaOGaaGOlaaaa@4B6D@  (7)

Построим для функций из T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacqaH7oaBcqGHRaWkcqaH1oqzcaaIPaaaaa@3C6E@  такой оператор преобразования

Su(x)=u(x)+ x 1 K( x 1 ,t)u(t, x )dt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadw hacaaIOaGaamiEaiaaiMcacaaI9aGaamyDaiaaiIcacaWG4bGaaGyk aiabgUcaRmaapehabeWcbaGaamiEamaaBaaabaGaaGymaaqabaaaba GaeyOhIukaniabgUIiYdGccaWGlbGaaGikaiaadIhadaWgaaWcbaGa aGymaaqabaGccaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadshaca aISaGabmiEayaafaGaaGykaiaayIW7caWGKbGaamiDaaaa@5346@  (8)

(см. [3, 11, 12, 22]), чтобы выполнялось равенство

S 2 u x 1 2 q( x 1 )u = 2 x 1 2 Su,|q( x 1 )| λ 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaabm aabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1baa baGaeyOaIyRaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGccq GHsislcaWGXbGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaI PaGaamyDaaGaayjkaiaawMcaaiaai2dadaWcaaqaaiabgkGi2oaaCa aaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaqhaaWcbaGaaGym aaqaaiaaikdaaaaaaOGaam4uaiaadwhacaaISaGaaGzbVlaaiYhaca WGXbGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiF aiabgsMiJkabeU7aSnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@5CB6@  (9)

где, как обычно, через ( x 1 , x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaWgaaWcbaGaaGymaaqabaGccaaISaGabmiEayaafaGaaGykaaaa @3B05@  обозначено ( x 1 , x 2 ,, x n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaaI YaaabeaakiaaiYcacqWIMaYscaaISaGaamiEamaaBaaaleaacaWGUb aabeaakiaaiMcaaaa@409F@ . Подстановка выражения (8) в формулу (9) приводит к равенствам

2 K t 2 2 K x 1 2 =q(t)K, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGlbaabaGaeyOaIyRaamiD amaaCaaaleqabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiabgkGi2o aaCaaaleqabaGaaGOmaaaakiaadUeaaeaacqGHciITcaWG4bWaa0ba aSqaaiaaigdaaeaacaaIYaaaaaaakiaai2dacaWGXbGaaGikaiaads hacaaIPaGaam4saiaaiYcaaaa@4A56@  (10)

3 K( x 1 , x 1 ) x 1 =q( x 1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaala aabaGaeyOaIyRaam4saiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqa aOGaaGilaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGaey OaIyRaamiEamaaBaaaleaacaaIXaaabeaaaaGccaaI9aGaamyCaiaa iIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYcaaaa@4807@  (11)

lim t K( x 1 ,t) u(t, x 1 ) t lim t K( x 1 ,t) t u(t, x 1 )=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiaadUeacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYcaca WG0bGaaGykamaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG0bGaaGil aiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGaeyOaIyRaam iDaaaacqGHsisldaGfqbqabSqaaiaadshacqGHsgIRcqGHEisPaeqa keaaciGGSbGaaiyAaiaac2gaaaWaaSaaaeaacqGHciITcaWGlbGaaG ikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiDaiaaiMca aeaacqGHciITcaWG0baaaiaadwhacaaIOaGaamiDaiaaiYcacaWG4b WaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaai2dacaaIWaGaaGOlaaaa @67B5@  (12)

Выполняя стандартную замену переменных

w= t+ x 1 2 ,v= t x 1 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiaai2 dadaWcaaqaaiaadshacqGHRaWkcaWG4bWaaSbaaSqaaiaaigdaaeqa aaGcbaGaaGOmaaaacaaISaGaaGzbVlaadAhacaaI9aWaaSaaaeaaca WG0bGaeyOeI0IaamiEamaaBaaaleaacaaIXaaabeaaaOqaaiaaikda aaGaaGilaaaa@45A7@

сведем систему (10)-(11) к более простой (выполнение условия (12) на решениях задачи (1) будет показано позже):

2 K wv =q(w+v)K, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGlbaabaGaeyOaIyRaam4D aiabgkGi2kaadAhaaaGaaGypaiaadghacaaIOaGaam4DaiabgUcaRi aadAhacaaIPaGaam4saiaaiYcaaaa@4570@  (13)

K(w,0)= 1 3 0 w q(s)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG3bGaaGilaiaaicdacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaiodaaaWaa8qCaeqaleaacaaIWaaabaGaam4DaaqdcqGHRiI8aO GaamyCaiaaiIcacaWGZbGaaGykaiaayIW7caWGKbGaam4CaiaaiYca aaa@4888@  (14)

которая, в свою очередь, является следствием интегрального уравнения

K(w,v)= 1 3 0 w q(s)ds+ 0 w dα 0 v q(α+β)K(α,β)dβ,|q| λ 2 ,wv0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG3bGaaGilaiaadAhacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaiodaaaWaa8qCaeqaleaacaaIWaaabaGaam4DaaqdcqGHRiI8aO GaamyCaiaaiIcacaWGZbGaaGykaiaayIW7caWGKbGaam4CaiabgUca RmaapehabeWcbaGaaGimaaqaaiaadEhaa0Gaey4kIipakiaadsgacq aHXoqydaWdXbqabSqaaiaaicdaaeaacaWG2baaniabgUIiYdGccaWG XbGaaGikaiabeg7aHjabgUcaRiabek7aIjaaiMcacaWGlbGaaGikai abeg7aHjaaiYcacqaHYoGycaaIPaGaaGjcVlaadsgacqaHYoGycaaI SaGaaGzbVlaaiYhacaWGXbGaaGiFaiabgsMiJkabeU7aSnaaCaaale qabaGaaGOmaaaakiaaiYcacaaMf8Uaam4DaiabgwMiZkaadAhacqGH LjYScaaIWaGaaGOlaaaa@776E@  (15)

Уравнение (15) отличается от обычно используемого при рассмотрении операторов преобразования на бесконечном интервале интегрального уравнения изменением области интегрирования с полуоси (w,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadE hacaaISaGaeyOhIuQaaGykaaaa@3A7B@  на отрезок (0,w) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaic dacaaISaGaam4DaiaaiMcaaaa@39C4@ , что влечёт экспоненциальный рост ядра K( x 1 ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadshacaaIPaaa aa@3BC5@ . Далее доказывается, что такое ядро существует и оператор преобразования с таким ядром (8) определён на множестве T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacqaH7oaBcqGHRaWkcqaH1oqzcaaIPaaaaa@3C6E@ . Возможность сведения задачи (10) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (12) к неэквивалентным интегральным уравнениям вытекает из недоопределённости задачи Коши (13)-(14).

Следует отметить, что интегральное уравнение (15) должно быть решено в более широкой области без ограничений wv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabgw MiZkaadAhaaaa@39B0@ , иначе не будет определено ядро под знаками интегралов. Доказательство существования решения в этой более широкой области проводится так же, как приведённое ниже доказательство. На этот нюанс при доказательстве существования решения интегрального уравнения (15) обычно не обращают внимания (замечание А. В. Боровских).

Лемма 1. Существует единственное непрерывное решение уравнения (15), удовлетворяющее неравенству

|K(w,v)| λ 3 w v I 1 (2λ wv ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadU eacaaIOaGaam4DaiaaiYcacaWG2bGaaGykaiaaiYhacqGHKjYOdaWc aaqaaiabeU7aSbqaaiaaiodaaaWaaOaaaeaadaWcaaqaaiaadEhaae aacaWG2baaaaWcbeaakiaayIW7caWGjbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaaikdacqaH7oaBcaaMi8+aaOaaaeaacaWG3bGaamODaa WcbeaakiaaiMcacaaISaaaaa@4ECB@  (16)

где I 1 (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaaaa@3A14@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@ модифицированная функция Бесселя. При этом на допустимом потенциале q( x 1 ) λ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabggMi6kabeU7a SnaaCaaaleqabaGaaGOmaaaaaaa@3EA2@  в (16) достигается знак равенства.

Замечание 1. В дальнейшем символом c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  обозначаются абсолютные положительные постоянные, величина которых не играет роли.

Доказательство. Введём обозначения

K 0 (w,v)= 1 3 0 w q(s)ds,PK(w,v)= 0 w dα 0 v q(α+β)K(α+β)dβ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaIWaaabeaakiaaiIcacaWG3bGaaGilaiaadAhacaaIPaGa aGypamaalaaabaGaaGymaaqaaiaaiodaaaWaa8qCaeqaleaacaaIWa aabaGaam4DaaqdcqGHRiI8aOGaamyCaiaaiIcacaWGZbGaaGykaiaa yIW7caWGKbGaam4CaiaaiYcacaaMf8UaamiuaiaadUeacaaIOaGaam 4DaiaaiYcacaWG2bGaaGykaiaai2dadaWdXbqabSqaaiaaicdaaeaa caWG3baaniabgUIiYdGccaWGKbGaeqySde2aa8qCaeqaleaacaaIWa aabaGaamODaaqdcqGHRiI8aOGaamyCaiaaiIcacqaHXoqycqGHRaWk cqaHYoGycaaIPaGaam4saiaaiIcacqaHXoqycqGHRaWkcqaHYoGyca aIPaGaaGjcVlaadsgacqaHYoGycaaIUaaaaa@6E47@

Тогда уравнение (15) запишется в виде K= K 0 +PK MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dacaWGlbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiuaiaadUea aaa@3BD1@ . Будем искать его решение в виде ряда Неймана

K= K 0 +P K 0 + P 2 K 0 +. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dacaWGlbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamiuaiaadUea daWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGqbWaaWbaaSqabeaaca aIYaaaaOGaam4samaaBaaaleaacaaIWaaabeaakiabgUcaRiablAci ljaai6caaaa@43E7@  (17)

Для слагаемых ряда (17) с учётом условия |q( x 1 )| λ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadg hacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGa eyizImQaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaa@409A@  получаем

| P n K 0 ( w 0 v)| 1 3 ( λ 2 ) n+1 w n+1 (n+1)! v n n! ,n=0,1,2,. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadc fadaahaaWcbeqaaiaad6gaaaGccaWGlbWaaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadEhadaWgaaWcbaGaaGimaaqabaGccaWG2bGaaGykai aaiYhacqGHKjYOdaWcaaqaaiaaigdaaeaacaaIZaaaaiaaiIcacqaH 7oaBdaahaaWcbeqaaiaaikdaaaGccaaIPaWaaWbaaSqabeaacaWGUb Gaey4kaSIaaGymaaaakmaalaaabaGaam4DamaaCaaaleqabaGaamOB aiabgUcaRiaaigdaaaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaGaaGyiaaaadaWcaaqaaiaadAhadaahaaWcbeqaaiaad6gaaaaa keaacaWGUbGaaGyiaaaacaaISaGaaGzbVlaad6gacaaI9aGaaGimai aaiYcacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGOlaaaa@608B@  (18)

Отсюда вытекает неравенство (16), если использовать представление функции I 1 (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaaaa@3A14@  в виде ряда

I 1 (x)= k=0 (x/2) 2k+1 k!(k+1)! . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiaai2dadaaeWbqa bSqaaiaadUgacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOWaaS aaaeaacaaIOaGaamiEaiaai+cacaaIYaGaaGykamaaCaaaleqabaGa aGOmaiaadUgacqGHRaWkcaaIXaaaaaGcbaGaam4AaiaaigcacaaIOa Gaam4AaiabgUcaRiaaigdacaaIPaGaaGyiaaaacaaIUaaaaa@4F61@

Оценка (16) является точной, так как при q( x 1 ) λ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabggMi6kabeU7a SnaaCaaaleqabaGaaGOmaaaaaaa@3EA2@ , неравенства (18) превращаются в равенства для всех целых n0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw MiZkaaicdaaaa@3966@ . Лемма доказана.

Лемма 2. В терминах переменных x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37D7@ , t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  справедлива оценка

|K( x 1 ,t)|ct e λt . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadU eacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG0bGa aGykaiaaiYhacqGHKjYOcaWGJbGaaGjcVlaadshacaaMi8Uaamyzam aaCaaaleqabaGaeq4UdWMaamiDaaaakiaai6caaaa@490F@

Доказательство. Рассмотрим неравенство

1 x I 1 (x) c e x ,x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiaaigdaaeaacaWG4baaaiaadMeadaWgaaWcbaGaaGymaaqa baGccaaIOaGaamiEaiaaiMcaaiaawEa7caGLiWoacqGHKjYOcaWGJb GaaGjcVlaadwgadaahaaWcbeqaaiaadIhaaaGccaaISaGaaGzbVlaa dIhacqGHLjYScaaIWaGaaGilaaaa@4BC1@

для проверки истинности которого надо разобрать случаи (i) x1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgw MiZkaaigdaaaa@3971@ , (ii) 0x1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadIhacqGHKjYOcaaIXaaaaa@3BCF@  и использовать известную асимптотику функции I 1 (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaaaa@3A14@  при x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk ziUkabg6HiLcaa@3A4E@  и x+0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgk ziUkabgUcaRiaaicdaaaa@3A79@  (см. [?]). Отсюда с помощью очевидных неравенств

x 1 +t 2 t,2 wv = t 2 x 1 2 t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WG4bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiDaaqaaiaaikda aaGaeyizImQaamiDaiaaiYcacaaMf8UaaGOmamaakaaabaGaam4Dai aadAhaaSqabaGccaaI9aWaaOaaaeaacaWG0bWaaWbaaSqabeaacaaI YaaaaOGaeyOeI0IaamiEamaaDaaaleaacaaIXaaabaGaaGOmaaaaae qaaOGaeyizImQaamiDaaaa@4B5B@

из оценки (16) следует утверждение леммы.

Из леммы 2 следует, что выражение (8) определено на функциях из T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacqaH7oaBcqGHRaWkcqaH1oqzcaaIPaaaaa@3C6E@ . Покажем, что выражение (8) в действительности задаёт оператор преобразования на T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacqaH7oaBcqGHRaWkcqaH1oqzcaaIPaaaaa@3C6E@ . Для этого осталось проверить соотношение (12). Из того, что u(x)T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgIGiolaadsfacaaIOaGaeq4UdWMaey4kaSIa eqyTduMaaGykaaaa@414E@  и из леммы вытекает равенство

lim t K( x 1 ,t) u(t, x 1 ) t =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa aiaadUeacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYcaca WG0bGaaGykamaalaaabaGaeyOaIyRaamyDaiaaiIcacaWG0bGaaGil aiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGaeyOaIyRaam iDaaaacaaI9aGaaGimaiaai6caaaa@4F7A@

Поэтому осталось доказать, что если u(x)T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgIGiolaadsfacaaIOaGaeq4UdWMaey4kaSIa eqyTduMaaGykaaaa@414E@ , то

lim t K( x 1 ,t) t u( x 1 ,t)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWG0bGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaa amaalaaabaGaeyOaIyRaam4saiaaiIcacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaWG 1bGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiDai aaiMcacaaI9aGaaGimaiaai6caaaa@4F7A@

Последнее соотношение следует из оценки

K( x 1 ,t) t ct e λt . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiabgkGi2kaadUeacaaIOaGaamiEamaaBaaaleaacaaIXaaa beaakiaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaadshaaaaacaGLhW UaayjcSdGaeyizImQaam4yaiaayIW7caWG0bGaaGjcVlaadwgadaah aaWcbeqaaiabeU7aSjaadshaaaGccaaIUaaaaa@4DFA@  (19)

 Для доказательства неравенства (19) нужно перейти к переменным w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daaaa@36EF@ , v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@36EE@  и с использованием уже установленных оценок для ядра K( x 1 ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadshacaaIPaaa aa@3BC5@  оценить производные K/w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIyRaam 4saiaai+cacqGHciITcaWG3baaaa@3B44@ , K/v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIyRaam 4saiaai+cacqGHciITcaWG2baaaa@3B43@ , дифференцируя уравнение (15). Так как

K t = 1 2 K w + K v , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGlbaabaGaeyOaIyRaamiDaaaacaaI9aWaaSaaaeaacaaI XaaabaGaaGOmaaaadaqadaqaamaalaaabaGaeyOaIyRaam4saaqaai abgkGi2kaadEhaaaGaey4kaSYaaSaaaeaacqGHciITcaWGlbaabaGa eyOaIyRaamODaaaaaiaawIcacaGLPaaacaaISaaaaa@4956@

то мы придём к (19).

2.2. Покажем, что любое решение задачи (1) принадлежит T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacqaH7oaBcqGHRaWkcqaH1oqzcaaIPaaaaa@3C6E@  и, следовательно, на таких решениях определён оператор (8). Для этого необходимо проверить выполнение условия (7).

Лемма 3. Пусть функция u(x) C 2 (|x| R 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGc caaIOaGaaGiFaiaadIhacaaI8bGaeyyzImRaamOuamaaBaaaleaaca aIWaaabeaakiaaiMcaaaa@4489@  является решением задачи (1). Тогда найдётся такая постоянная c>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai6 dacaaIWaaaaa@385D@ , что

u x 1 c e (λ+ε)|x| . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaa igdaaeqaaaaaaOGaay5bSlaawIa7aiabgsMiJkaadogacaaMi8Uaam yzamaaCaaaleqabaGaeyOeI0IaaGikaiabeU7aSjabgUcaRiabew7a LjaaiMcacaaI8bGaamiEaiaaiYhaaaGccaaIUaaaaa@4E78@

Доказательство. В силу априорных оценок Шаудера в замкнутом шаре B(x,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG4bGaaGilaiaaigdacaaIPaaaaa@3A8D@  единичного радиуса с центром в точке x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ , |x| R 0 +1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hacaaI8bGaeyyzImRaamOuamaaBaaaleaacaaIWaaabeaakiabgUca Riaaigdaaaa@3E26@ , имеем (см. [?, теорема~33, II])

u 1 c( u 1,λ 1/(1+λ) u 0 λ/(λ+1) + u 0 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaaabeaakiabgsMiJkaadogacaaIOaGaamyDamaaBaaa leaacaaIXaGaaGilaiabeU7aSbqabaGcdaahaaWcbeqaaiaaigdaca aIVaGaaGikaiaaigdacqGHRaWkcqaH7oaBcaaIPaaaaOGaeyyXICTa amyDamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaeq4UdWMaaG 4laiaaiIcacqaH7oaBcqGHRaWkcaaIXaGaaGykaaaakiabgUcaRiaa dwhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGilaaaa@55A6@

где введены обозначения

u 0 =u(x) C 0 (B(x,1)) , u 1 =u(x) C 1 (B(x,1)) ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIWaaabeaakiaai2darqqr1ngBPrgifHhDYfgaiuaacqWF LicucaWG1bGaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaado eadaahaaqabeaacaaIWaaaaiaaiIcacaWGcbGaaGikaiaadIhacaaI SaGaaGymaiaaiMcacaaIPaaabeaakiaaiYcacaaMf8UaamyDamaaBa aaleaacaaIXaaabeaakiaai2dacqWFLicucaWG1bGaaGikaiaadIha caaIPaGae8xjIa1aaSbaaSqaaiaadoeadaahaaqabeaacaaIXaaaai aaiIcacaWGcbGaaGikaiaadIhacaaISaGaaGymaiaaiMcacaaIPaaa beaakiaaiUdaaaa@5DD6@

u 1,λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaGaaGilaiabeU7aSbqabaaaaa@3A3E@  есть сумма коэффициентов Гёльдера функции u(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaaaa@394F@  и её производных первого порядка u/ x i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIyRaam yDaiaai+cacqGHciITcaWG4bWaaSbaaSqaaiaadMgaaeqaaaaa@3C89@ , 1in MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgs MiJkaadMgacqGHKjYOcaWGUbaaaa@3BF9@ . Отсюда следует, что

u(x) x 1 c( u 1,λ 1/(1+λ) u 0 λ/(λ+1) + u 0 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiabgkGi2kaadwhacaaIOaGaamiEaiaaiMcaaeaacqGHciIT caWG4bWaaSbaaSqaaiaaigdaaeqaaaaaaOGaay5bSlaawIa7aiabgs MiJkaadogacaaIOaGaamyDamaaBaaaleaacaaIXaGaaGilaiabeU7a SbqabaGcdaahaaWcbeqaaiaaigdacaaIVaGaaGikaiaaigdacqGHRa WkcqaH7oaBcaaIPaaaaOGaeyyXICTaamyDamaaBaaaleaacaaIWaaa beaakmaaCaaaleqabaGaeq4UdWMaaG4laiaaiIcacqaH7oaBcqGHRa WkcaaIXaGaaGykaaaakiabgUcaRiaadwhadaWgaaWcbaGaaGimaaqa baGccaaIPaGaaGOlaaaa@5F05@  (20)

Отметим, что поскольку выполнены все условия из [?, утверждение~33, V], то константа c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DB@  в формуле (20) не зависит от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ .

Из результатов Морри (см. [?, теорема~39, IV]) вытекает оценка для величины u 1, λ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaGaaGilaiabeU7aSnaaBaaabaGaaGymaaqabaaabeaa aaa@3B1A@ :

u 1,λ c[u L 2 (B(x,1)) +qu L 2 (B(x,1)) ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaGaaGilaiabeU7aSbqabaGccqGHKjYOcaWGJbGaaG4w aebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhacqWFLicudaWgaa WcbaGaamitamaaBaaabaGaaGOmaaqabaGaaGikaiaadkeacaaIOaGa amiEaiaaiYcacaaIXaGaaGykaiaaiMcaaeqaaOGaey4kaSIae8xjIa LaamyCaiaadwhacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGOm aaqabaGaaGikaiaadkeacaaIOaGaamiEaiaaiYcacaaIXaGaaGykai aaiMcaaeqaaOGaaGyxaiaaiYcaaaa@5C05@  (21)

причём постоянная в (21) по-прежнему не зависит от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F0@ . Из условий задачи |q( x 1 )| λ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadg hacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGa eyizImQaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaa@409A@ , следовательно, с помощью теоремы о среднем получаем из (21)

u 1, λ 1 c ( B(x,1) |u(y )| 2 dy) 1/2 c 1 e (λ+ε)|x| . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIXaGaaGilaiabeU7aSnaaBaaabaGaaGymaaqabaaabeaa kiabgsMiJkaadogacaaIOaWaa8quaeqaleaacaWGcbGaaGikaiaadI hacaaISaGaaGymaiaaiMcaaeqaniabgUIiYdGccaaI8bGaamyDaiaa iIcacaWG5bGaaGykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaaMi8 UaamizaiaadMhacaaIPaWaaWbaaSqabeaacaaIXaGaaG4laiaaikda aaGccqGHKjYOcaWGJbWaaWbaaSqabeaacaaIXaaaaOGaaGjcVlaadw gadaahaaWcbeqaaiabgkHiTiaaiIcacqaH7oaBcqGHRaWkcqaH1oqz caaIPaGaaGiFaiaadIhacaaI8baaaOGaaGOlaaaa@62E1@

Подставляя последнее неравенство в (20), получаем

u x 1 c ( e (λ+ε)|x| ) 1 1+λ + λ 1+λ + e (λ+ε)|x| c e (λ+ε)|x| . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada WcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4bWaaSbaaSqaaiaa igdaaeqaaaaaaOGaay5bSlaawIa7aiabgsMiJkaadogadaWadaqaai aaiIcacaWGLbWaaWbaaSqabeaacqGHsislcaaIOaGaeq4UdWMaey4k aSIaeqyTduMaaGykaiaaiYhacaWG4bGaaGiFaaaakiaaiMcadaahaa WcbeqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcqaH7oaBaaGa ey4kaSYaaSaaaeaacqaH7oaBaeaacaaIXaGaey4kaSIaeq4UdWgaaa aakiabgUcaRiaadwgadaahaaWcbeqaaiabgkHiTiaaiIcacqaH7oaB cqGHRaWkcqaH1oqzcaaIPaGaaGiFaiaadIhacaaI8baaaaGccaGLBb GaayzxaaGaeyizImQaam4yaiaayIW7caWGLbWaaWbaaSqabeaacqGH sislcaaIOaGaeq4UdWMaey4kaSIaeqyTduMaaGykaiaaiYhacaWG4b GaaGiFaaaakiaai6caaaa@750A@

Таким образом, требуемое неравенство установлено для | x 1 | R 0 +1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hadaWgaaWcbaGaaGymaaqabaGccaaI8bGaeyyzImRaamOuamaaBaaa leaacaaIWaaabeaakiabgUcaRiaaigdaaaa@3F17@ . Так как множество R 0 |x| R 0 +1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaaIWaaabeaakiabgsMiJkaaiYhacaWG4bGaaGiFaiabgsMi JkaadkfadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaaaaa@4191@  является компактом в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaad6gaaaaaaa@41CB@ , то это неравенство справедливо и при |x| R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hacaaI8bGaeyyzImRaamOuamaaBaaaleaacaaIWaaabeaaaaa@3C7F@ . Лемма 3 доказана.

Выполняя опять замену координат z= x 1 R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaai2 dacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOuamaaBaaa leaacaaIWaaabeaaaaa@3C51@ , получаем, что лемма 3 справедлива в полупространстве x 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaaicdaaaa@3A61@  (мы переобозначим z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36F2@  через x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaaaaa@37D7@  ).

2.3. Применим к уравнению (4) оператор S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@ . Из тождества (9) и перестановочности S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@  с производными 2 u/ x i 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamyDaiaai+cacqGHciITcaWG4bWaa0ba aSqaaiaadMgaaeaacaaIYaaaaaaa@3E39@ , 2in MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabgs MiJkaadMgacqGHKjYOcaWGUbaaaa@3BFA@ , получаем, что в полупространстве + n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGa ey4kaScabaGaamOBaaaaaaa@42AD@  

S(Δuq( x 1 )u)=ΔSu=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacqqHuoarcaWG1bGaeyOeI0IaamyCaiaaiIcacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaaGykaiaadwhacaaIPaGaaGypaiabfs5aejaado facaWG1bGaaGypaiaaicdacaaIUaaaaa@46F8@

Обозначим функцию Su MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadw haaaa@37C5@  через v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@36EE@ . Из (8), (15) следует, что если u(x) C 2 ( + n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGc caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFDeIudaqhaaWcbaGaey4kaScabaGaamOBaaaakiaaiMcaaaa@4AB7@ , q(x)C( + n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeacaaIOaWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGaey4kaS cabaGaamOBaaaakiaaiMcaaaa@49C0@ , то v(x) C 2 ( + n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGc caaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFDeIudaqhaaWcbaGaey4kaScabaGaamOBaaaakiaaiMcaaaa@4AB8@ . Покажем, что v(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGykaaaa@3950@  экспоненциально убывает в + n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGa ey4kaScabaGaamOBaaaaaaa@42AD@  при |x| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hacaaI8bGaeyOKH4QaeyOhIukaaa@3C5A@  и, следовательно, равна нулю.

Лемма 4. Пусть u(x)T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgIGiolaadsfacaaIOaGaeq4UdWMaey4kaSIa eqyTduMaaGykaaaa@414E@ . Тогда для x + n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hi1aa0baaSqaaiabgUcaRaqaaiaad6gaaaaaaa@452E@  

|v|=|Su|c|x| e ε|x| ,ε>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA hacaaI8bGaaGypaiaaiYhacaWGtbGaamyDaiaaiYhacqGHKjYOcaWG JbGaaGjcVlaaiYhacaWG4bGaaGiFaiaayIW7caWGLbWaaWbaaSqabe aacqGHsislcqaH1oqzcaaI8bGaamiEaiaaiYhaaaGccaaISaGaaGzb Vlabew7aLjaai6dacaaIWaGaaGOlaaaa@534A@

Доказательство. Из представления (8) и леммы 3 получаем

|Su||u(x)|+ x 1 t e λt c e (λ+ε) t 2 +| x 1 | 2 dtc( e (λ+ε)|x| + x 1 t e (λ+ε) t 2 +| x 1 | 2 dt). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaado facaWG1bGaaGiFaiabgsMiJkaaiYhacaWG1bGaaGikaiaadIhacaaI PaGaaGiFaiabgUcaRmaapehabeWcbaGaamiEamaaBaaabaGaaGymaa qabaaabaGaeyOhIukaniabgUIiYdGccaWG0bGaaGjcVlaadwgadaah aaWcbeqaaiabeU7aSjaadshaaaGccaWGJbGaaGjcVlaadwgadaahaa WcbeqaaiabgkHiTiaaiIcacqaH7oaBcqGHRaWkcqaH1oqzcaaIPaWa aOaaaeaacaWG0bWaaWbaaeqabaGaaGOmaaaacqGHRaWkcaaI8bGaam iEamaaBaaabaGaaGymaaqabaGaaGiFamaaCaaabeqaaiaaikdaaaaa beaaaaGccaaMi8UaamizaiaadshacqGHKjYOcaWGJbGaaGikaiaadw gadaahaaWcbeqaaiabgkHiTiaaiIcacqaH7oaBcqGHRaWkcqaH1oqz caaIPaGaaGiFaiaadIhacaaI8baaaOGaey4kaSYaa8qCaeqaleaaca WG4bWaaSbaaeaacaaIXaaabeaaaeaacqGHEisPa0Gaey4kIipakiaa dshacaaMi8UaamyzamaaCaaaleqabaGaeyOeI0IaaGikaiabeU7aSj abgUcaRiabew7aLjaaiMcadaGcaaqaaiaadshadaahaaqabeaacaaI YaaaaiabgUcaRiaaiYhacaWG4bWaaSbaaeaacaaIXaaabeaacaaI8b WaaWbaaeqabaGaaGOmaaaaaeqaaaaakiaayIW7caWGKbGaamiDaiaa iMcacaaIUaaaaa@8E5A@

Вычисляя интеграл с помощью замены переменных по формуле y= t 2 +| x 1 | 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dadaGcaaqaaiaadshadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 8bGaamiEamaaBaaaleaacaaIXaaabeaakiaaiYhadaahaaWcbeqaai aaikdaaaaabeaaaaa@3F79@  с последующим интегрированием по частям, получаем требуемую оценку. Лемма доказана.

Итак, v(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGykaiaai2dacaaIWaaaaa@3AD1@  в + n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGa ey4kaScabaGaamOBaaaaaaa@42AD@ . Определим на T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaaiI cacqaH7oaBcqGHRaWkcqaH1oqzcaaIPaaaaa@3C6E@  обратный к S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CB@  оператор P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaaaa@36C8@  по формуле

Pu(x)=u(x)+ x 1 N( x 1 ,t)u(t, x 1 )dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaadw hacaaIOaGaamiEaiaaiMcacaaI9aGaamyDaiaaiIcacaWG4bGaaGyk aiabgUcaRmaapehabeWcbaGaamiEamaaBaaabaGaaGymaaqabaaaba GaeyOhIukaniabgUIiYdGccaWGobGaaGikaiaadIhadaWgaaWcbaGa aGymaaqabaGccaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadshaca aISaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaMi8Uaamiz aiaadshacaaIUaaaaa@54E3@

Тогда для ядра N( x 1 ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadshacaaIPaaa aa@3BC8@  справедливы леммы 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ 3. Кроме того, если SuT(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadw hacqGHiiIZcaWGubGaaGikaiabeU7aSjabgUcaRiabew7aLjaaiMca aaa@3FC4@ , то

PSu(x)=u(x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaado facaWG1bGaaGikaiaadIhacaaIPaGaaGypaiaadwhacaaIOaGaamiE aiaaiMcacaaIUaaaaa@3FD7@  (22)

Так как, очевидно, 0T(λ+ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgI GiolaadsfacaaIOaGaeq4UdWMaey4kaSIaeqyTduMaaGykaaaa@3EAC@ , то, применяя (22) к обеим частям установленного в + n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGa ey4kaScabaGaamOBaaaaaaa@42AD@  равенства Su=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaadw hacaaI9aGaaGimaaaa@3946@ , получим u=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaaIWaaaaa@386E@  в + n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGa ey4kaScabaGaamOBaaaaaaa@42AD@ . Выше было показано, что это влечёт u0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgg Mi6kaaicdaaaa@3970@  во всём n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqa aiaad6gaaaaaaa@41CB@ .

Замечание 2. Переход к полупространству + n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaqhaaWcbaGa ey4kaScabaGaamOBaaaaaaa@42AD@  использовался при доказательстве потому, что выражение (8) не определено в области, получаемой пересечением шара |x| R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hacaaI8bGaeyizImQaamOuamaaBaaaleaacaaIWaaabeaaaaa@3C6E@  и бесконечного полуцилиндра {| x 1 | R 0 , | x 1 | R 0 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaaiY hacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGiFaiabgsMiJkaadkfa daWgaaWcbaGaaGimaaqabaGccaaISaGaaGiiaiaaiYhacaWG4bWaaS baaSqaaiaaigdaaeqaaOGaaGiFaiabgsMiJkaadkfadaWgaaWcbaGa aGimaaqabaGccaaI9baaaa@484B@ .

Итак, доказано следующее утверждение.

Теорема 1. Любое решение u(x) C 2 (|x|> R 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGc caaIOaGaaGiFaiaadIhacaaI8bGaaGOpaiaadkfadaWgaaWcbaGaaG imaaqabaGccaaIPaaaaa@438B@  стационарного уравнения Шрёдингера с ограниченным потенциалом

Δu(x)q( x 1 )u=0,x n ,|x| R 0 >0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yDaiaaiIcacaWG4bGaaGykaiabgkHiTiaadghacaaIOaGaamiEamaa BaaaleaacaaIXaaabeaakiaaiMcacaWG1bGaaGypaiaaicdacaaISa GaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy 0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaamOBaaaakiaaiYcaca aMf8UaaGiFaiaadIhacaaI8bGaeyyzImRaamOuamaaBaaaleaacaaI Waaabeaakiaai6dacaaIWaGaaGilaaaa@5E1F@

q( x 1 )C(|x| R 0 ),|q( x 1 )| λ 2 , λ>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabgIGiolaadoea caaIOaGaaGiFaiaadIhacaaI8bGaeyyzImRaamOuamaaBaaaleaaca aIWaaabeaakiaaiMcacaaISaGaaGzbVlaaiYhacaWGXbGaaGikaiaa dIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaiabgsMiJkabeU 7aSnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaIGaGaaGzbVlabeU7a Sjaai6dacaaIWaGaaGilaaaa@5852@

удовлетворяющее оценке

|u(x)|const e (λ+ε)|x| ,ε>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadw hacaaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaam4yaiaad+gacaWG UbGaam4CaiaadshacaWGLbWaaWbaaSqabeaacqGHsislcaaIOaGaeq 4UdWMaey4kaSIaeqyTduMaaGykaiaaiYhacaWG4bGaaGiFaaaakiaa iYcacaaMf8UaeqyTduMaaGOpaiaaicdacaaISaaaaa@52AC@

есть тождественный нуль.

3. Возможные обобщения. Использованная техника операторов преобразования позволяет усилить полученный результат. Будем обозначать через L 2,loc ( x 1 R 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaGaaGilaiaadYgacaWGVbGaam4yaaqabaGccaaIOaGa amiEamaaBaaaleaacaaIXaaabeaakiabgwMiZkaadkfadaWgaaWcba GaaGimaaqabaGccaaIPaaaaa@4219@  множество функций, для которых при любом x 1 R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaadkfadaWgaaWcbaGaaGimaaqa baaaaa@3B64@  конечен интеграл

R 0 x 1 ψ 2 (s)ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaWGsbWaaSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaI Xaaabeaaa0Gaey4kIipakiabeI8a5naaCaaaleqabaGaaGOmaaaaki aaiIcacaWGZbGaaGykaiaayIW7caWGKbGaam4Caiaai6caaaa@453A@

Далее, пусть задана неотрицательная функция g(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaaaa@3941@ , для которой интеграл

x 1 tg(t, x 1 )dt=p(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaWG4bWaaSbaaeaacaaIXaaabeaaaeaacqGHEisPa0Gaey4kIipa kiaadshacaaMi8Uaam4zaiaaiIcacaWG0bGaaGilaiaadIhadaWgaa WcbaGaaGymaaqabaGccaaIPaGaaGjcVlaadsgacaWG0bGaaGypaiaa dchacaaIOaGaamiEaiaaiMcaaaa@4BBA@

конечен при любом x 1 R 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIXaaabeaakiabgwMiZkaadkfadaWgaaWcbaGaaGimaaqa baaaaa@3B64@  и для некоторой постоянной α>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG Opaiaaicdaaaa@3914@  

|p(x)|cexp(α|x | δ ),δ>0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadc hacaaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaam4yaiabgwSixlGa cwgacaGG4bGaaiiCaiaaiIcacqGHsislcqaHXoqycaaI8bGaamiEai aaiYhadaahaaWcbeqaaiabes7aKbaakiaaiMcacaaISaGaaGzbVlab es7aKjaai6dacaaIWaGaaGOlaaaa@5211@

Тогда по схеме доказательства предыдущей теоремы может быть установлен следующий факт.

Теорема 2. Пусть ψ( x 1 ) L 2,loc ( x 1 R 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyicI4Saamit amaaBaaaleaacaaIYaGaaGilaiaadYgacaWGVbGaam4yaaqabaGcca aIOaGaamiEamaaBaaaleaacaaIXaaabeaakiabgwMiZkaadkfadaWg aaWcbaGaaGimaaqabaGccaaIPaaaaa@48BE@  " MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@ неубывающая функция, а функция g(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaaaa@3941@  удовлетворяет перечисленным выше требованиям. Тогда любое решение уравнения

Δu(x)q( x 1 )u=0,x n ,|x| R 0 >0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yDaiaaiIcacaWG4bGaaGykaiabgkHiTiaadghacaaIOaGaamiEamaa BaaaleaacaaIXaaabeaakiaaiMcacaWG1bGaaGypaiaaicdacaaISa GaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy 0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaamOBaaaakiaaiYcaca aMf8UaaGiFaiaadIhacaaI8bGaeyyzImRaamOuamaaBaaaleaacaaI Waaabeaakiaai6dacaaIWaGaaGilaaaa@5E1F@

|q( x 1 )| ψ 2 ( x 1 ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadg hacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaI8bGa eyizImQaeqiYdK3aaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhada WgaaWcbaGaaGymaaqabaGccaaIPaGaaGilaaaa@44C7@

для которого выполнено неравенство

ψ( x 1 )|u(x)|const e ψ( x 1 )|x| g(x),g(x)0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaGiFaiaadwha caaIOaGaamiEaiaaiMcacaaI8bGaeyizImQaam4yaiaad+gacaWGUb Gaam4CaiaadshacaWGLbWaaWbaaSqabeaacqGHsislcqaHipqEcaaI OaGaamiEamaaBaaabaGaaGymaaqabaGaaGykaiaaiYhacaWG4bGaaG iFaaaakiaadEgacaaIOaGaamiEaiaaiMcacaaISaGaaGzbVlaadEga caaIOaGaamiEaiaaiMcacqGHLjYScaaIWaGaaGilaaaa@5D2A@

есть тождественный нуль.

В условиях теоремы 1 нужно положить g(x)= e ε|x| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacqGHsislcqaH 1oqzcaaI8bGaamiEaiaaiYhaaaaaaa@40BC@ . Примером другой допустимой g(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaaaa@3941@  является функция g(x)=exp(ε|x | δ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiaai2daciGGLbGaaiiEaiaacchacaaIOaGaeyOe I0IaeqyTduMaaGiFaiaadIhacaaI8bWaaWbaaSqabeaacqaH0oazaa GccaaIPaaaaa@45C1@ , 0<δ<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH0oazcaaI8aGaaGymaaaa@3A99@ . Этот случай является также примером обобщённой задачи Ландиса" MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Мешкова (2) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3).

По аналогичной схеме может быть также рассмотрен случай потенциала, зависящего только от радиальной переменной. Ответ в первоначальной формулировке задачи Е. М. Ландиса здесь тоже положительный, после перехода к сферическим координатам нужно использовать операторы преобразования для возмущённого оператора Бесселя, подобные тем, что были рассмотрены выше (см. [3, 11, 12, 22]).

Результаты данной работы переносятся также на класс многомерных специальных потенциалов, которые представляются в виде сумм одномерных потенциалов рассмотренных типов по каждой переменной.

Возможно рассмотрение обобщений задачи Е. М. Ландиса на случай более общих дифференциальных уравнений и соответствующих оценок роста решений. Например, представляет интерес исследование поставленных вопросов для нелинейного уравнения p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36E8@  -лапласиана (см. [16, 19]); эта задача возникла во время обсуждения доклада автора на семинаре кафедры дифференциальных уравнений МГУ с проф. А. А. Коньковым.

×

Об авторах

Сергей Михайлович Ситник

Белгородский государственный национальный исследовательский университет

Автор, ответственный за переписку.
Email: sitnik@bsu.edu.ru
Россия, Белгород

Список литературы

  1. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. — М.: Наука, 1973.
  2. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 2. — М.: Наука, 1966.
  3. Катрахов В. В., Ситник С. М. Метод операторов преобразования и краевые задачи для сингулярных эллиптических уравнений// Совр. мат. Фундам. напр. — 2018. — 64, № 2. — С. 211–426.
  4. Левин Б. Я. Преобразование типа Фурье и Лапласа при помощи решенийдиф ференциального уравнения второго порядка// Докл. АН СССР. — 187–190. — 106.
  5. Марченко В. А. Спектральная теория операторов Штурма—Лиувилля. — Киев: Наукова думка, 1972.
  6. Мешков В. З. Весовые дифференциальные неравенства и их применение для оценок скорости убывания на бесконечности решений эллиптических уравненийвторого порядка// Тр. Мат. ин-та им. В. А. Стеклова АН СССР. — 1989. — 190. — С. 139–158.
  7. Мешков В. З О возможнойск орости убывания на бесконечности решений уравненийв частных производных второго порядка// Мат. сб. — 1991. — 182, № 3. — С. 364–383.
  8. Мизохата С. Теория уравненийс частными производными. — М.: Мир, 1977.
  9. Миранда К. Уравнения с частными производными эллиптического типа. — М.: ИЛ, 1957.
  10. Олейник О. А., Шубин М. А. Дифференциальные уравнения и их приложения// Усп. мат. наук. —1982. — 37, № 6 (228). — С. 278–281.
  11. Ситник С. М. Об одном интегральном уравнении в теории операторов преобразования//Ж. вычисл. мат. мат. физ. — 2020. — 60, № 8. — С. 1428–1438.
  12. Ситник С. М., Шишкина Э. Л. Метод операторов преобразования для дифференциальных уравнений с операторами Бесселя. — М.: Физматлит, 2019.
  13. Bourgain J., Kenig C. E. On localization in the continuous Anderson–Bernoulli model in higher dimension//Invent. Math. — 2005. — 161, № 2. — P. 389–426.
  14. Calderon A. P. Uniquenes in the Cauchy problem for partial differential equations// Am. J. Math. — 1958.— 80. — P. 16–36.
  15. Davey B., Kenig C., Wang J. N. The Landis conjecture for variable coeffcient second-order elliptic PDEs//Trans. Am. Math. Soc. — 2017. — 369, № 11. — P. 8209–8237.
  16. Drabek P., Kufner A., Nicolosi F. Quasilinear elliptic equations with degenerations and singularities. —Berlin–New York: de Gruyter, 1997.
  17. Kenig C. E. Some recent quantitative unique continuation theorems// in: Sémin. Équ. Dériv. Partielles..— Palaiseau: Ec. Polytech. Cent. Math., 2006. — P. 1–10.
  18. Kenig C. E., Silvestre L., Wang J. N. On Landis’ conjecture in the plane// Commun. Part. Differ. Equ. —2015. — 40, № 4. — P. 766–789.
  19. Lindqvist P. Notes on the p-Laplace equation. — Trondheim, Norway: Norwegian Univ. Sci. Techn., 2006.
  20. Morrey C. B. Second order elliptic systems of differential equations// Proc. Natl. Acad. U.S.A. — 1953. —39. — P. 201–206.
  21. Rossi L. The Landis conjecture with sharp rate of decay/ arXiv: 1807.00341 [math.APC].
  22. Shishkina E. L., Sitnik S. M. Transmutations, singular and fractional differential equations with applications to mathematical physics. — Amsterdam: Elsevier, 2020.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ситник С.М., 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».