Application of the projection-grid method for solving nonstationary problems

Cover Page

Cite item

Full Text

Abstract

The work is devoted to constructing approximate solutions of a parabolic differential equation with the Bessel operator. Solutions are sought in the form of a linear combination of piecewise continuous, compactly supported basis functions. The construction of the solution is performed in two stages. Initially, the approximation in a spatial variable is performed by using the Bubnov–Galerkin projection-grid method. Then the approximation in t is carried out by using the finite-difference method. The resulting system of equations is solved by the tridiagonal matrix algorithm.

Full Text

1. Введение. Проекционно-сеточные методы в настоящее время являются чрезвычайно действенными инструментами решения задач математической физики: теплообмена, гидродинамики, электродинамики, механики твердого деформируемого тела и топологической оптимизации.

Общая теория разностных методов разработана А. А. Самарским [11]. Различные приближенные методы решения краевых задач изложены в монографии Г. И. Марчука [8], также классический вариационный подход описан в книге С. Г. Михлина [9]. Наиболее обширные результаты, полученные при численном решении, относятся к регулярным краевым задачам, порождаемым невырожденными уравнениями с гладкими коэффициентами. Эти исследования опираются на теорию аппроксимаций в функциональных пространствах. Гораздо меньше изучены подобные вопросы для сингулярных уравнений.

В этой связи необходимо отметить работу [10], в которой рассмотрено уравнение

d dx x k p(x) du dx +q(x)u=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadsgaaeaaca WGKbGaamiEaaaadaqadaqaaiaadIhadaahaaWcbeqaaiaadUgaaaGc caWGWbGaaGikaiaadIhacaaIPaWaaSaaaeaacaWGKbGaamyDaaqaai aadsgacaWG4baaaaGaayjkaiaawMcaaiabgUcaRiaadghacaaIOaGa amiEaiaaiMcacaWG1bGaaGypaiaadAgacaaIOaGaamiEaiaaiMcaaa a@49AE@

для 0k5/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaam4AaiabgsMiJk aaiwdacaaIVaGaaGOmaaaa@3905@ , p(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaGaaG Opaiaaicdaaaa@3696@ . В ней указан порядок аппроксимации в энергетическом пространстве, зависящий от k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  и гладкости функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ .

В работе [6] В. В. Катраховым и А. А. Катраховой изучена сходимость метода Галеркина для краевой задачи

2 u x 2 + k x u x + 2 u y 2 +qu=f(x,y), du dx | x=0 =0,u | Γ + =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaqadaqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadIha daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGRbaaba GaamiEaaaadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4baa aaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaa ikdaaaaaaOGaey4kaSIaamyCaiaadwhacaaI9aGaamOzaiaaiIcaca WG4bGaaGilaiaadMhacaaIPaGaaGilaiaaywW7daWcaaqaaiaadsga caWG1baabaGaamizaiaadIhaaaGaaGiFamaaBaaaleaacaWG4bGaaG ypaiaaicdaaeqaaOGaaGypaiaaicdacaaISaGaaGzbVlaadwhacaaI 8bWaaSbaaSqaaiabfo5ahnaaCaaabeqaaiabgUcaRaaaaeqaaOGaaG ypaiaaicdacaaISaaaaa@6749@

где

Γ + = Ω + {(x,y):x=0}, Ω + R + 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aakiaai2dacqGHciITcqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiaa iUhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaaiQdacaWG4bGaaG ypaiaaicdacaaI9bGaaGilaiaaywW7cqqHPoWvdaahaaWcbeqaaiab gUcaRaaakiabgkOimlaadkfadaqhaaWcbaGaey4kaScabaGaaGOmaa aakiaai6caaaa@4CC1@

Ю. Л. Гусманом и А. А. Оганесяном [3] был развит вариационно-разностный подход для двумерного уравнения

x x μ u x + 2 u y 2 +qu=f(x,y), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadIhaaaWaaeWaaeaacaWG4bWaaWbaaSqabeaacqaH8oqBaaGcdaWc aaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4baaaaGaayjkaiaawM caaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amyDaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey 4kaSIaamyCaiaadwhacaaI9aGaamOzaiaaiIcacaWG4bGaaGilaiaa dMhacaaIPaGaaGilaaaa@4FC8@

где 0μ<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiVd0MaaGipai aaigdaaaa@3763@ . Получены точные по порядку оценки погрешности метода.

Работа [6] посвящена исследованию сингулярных краевых задач в контексте изучения сходимости приближенных методов решения.

Вопрос построения эффективных численных методов для сингулярных и вырождающихся краевых задач, несомненно, является актуальным. В настоящей статье на основе вариационного подхода устанавливается разрешимость сингулярного параболического уравнения, в котором по одной из переменных действует оператор Бесселя. Приводятся оценки погрешности аппроксимации точного решения методом Бубнова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Галеркина.

2. Постановка задачи. Рассмотрим начально-краевую задачу

du dt +Lu=f, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadsgacaWG1baabaGaam izaiaadshaaaGaey4kaSIaamitaiaadwhacaaI9aGaamOzaiaaiYca aaa@3AA7@  (1)

u(x,0)= u (0) , du dx | x=0 =0,u(1)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMca aeqaaOGaaGilaiaaywW7daWcaaqaaiaadsgacaWG1baabaGaamizai aadIhaaaGaaGiFamaaBaaaleaacaWG4bGaaGypaiaaicdaaeqaaOGa aGypaiaaicdacaaISaGaamyDaiaaiIcacaaIXaGaaGykaiaai2daca aIWaGaaGilaaaa@4BFE@  (2)

где f=f(x,t) L 2,γ (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaadAgacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOm aiaaiYcacqaHZoWzaeqaaOGaaGikaiabfM6axjaaiMcaaaa@4102@  для всех t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , xΩ=(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaeuyQdCLaaGypai aaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3A23@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , u (0) = u (0) (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccaaI9aGaamyDamaaBaaaleaacaaIOaGaaGimaiaa iMcaaeqaaOGaaGikaiaadIhacaaIPaaaaa@3B84@ . Оператор L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@328E@  имеет вид

Lu= x γ d dx x γ p(x) du dx +q(x)u, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaamyDaiaai2dacqGHsislca WG4bWaaWbaaSqabeaacqGHsislcqaHZoWzaaGcdaWcaaqaaiaadsga aeaacaWGKbGaamiEaaaadaqadaqaaiaadIhadaahaaWcbeqaaiabeo 7aNbaakiaadchacaaIOaGaamiEaiaaiMcadaWcaaqaaiaadsgacaWG 1baabaGaamizaiaadIhaaaaacaGLOaGaayzkaaGaey4kaSIaamyCai aaiIcacaWG4bGaaGykaiaadwhacaaISaaaaa@4D61@

D(L)= v:v L 2,γ ,Lv L 2,γ , dv dx L 2,γ , dv dx (0)=v(1)=0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaGikaiaadYeacaaIPaGaaG ypamaacmaabaGaamODaiaaiQdacaWG2bGaeyicI4SaamitamaaBaaa leaacaaIYaGaaGilaiabeo7aNbqabaGccaaISaGaaGjbVlaadYeaca WG2bGaeyicI4SaamitamaaBaaaleaacaaIYaGaaGilaiabeo7aNbqa baGccaaISaGaaGjbVpaalaaabaGaamizaiaadAhaaeaacaWGKbGaam iEaaaacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiYcacaaMe8+aaSaaaeaacaWGKbGaamODaaqaaiaadsgaca WG4baaaiaaiIcacaaIWaGaaGykaiaai2dacaWG2bGaaGikaiaaigda caaIPaGaaGypaiaaicdaaiaawUhacaGL9baacaaIUaaaaa@63DD@

Основы теории уравнений, содержащих подобные операторы, были заложены И. А. Киприяновым и Я. И. Житомирским (см. [5, 7, 12]).

Скалярное произведение и норма в L 2,γ (0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdacaaISa Gaeq4SdCgabeaakiaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@396D@  задаются следующим образом:

(u,v) L 2,γ (0,1) = 0 1 x γ u(x)v(x)dx,f L 2,γ (0,1) = 0 1 x γ f 2 (x)dx 1/2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiYcacaWG2bGaaG ykamaaBaaaleaacaWGmbWaaSbaaeaacaaIYaGaaGilaiabeo7aNbqa baGaaGikaiaaicdacaaISaGaaGymaiaaiMcaaeqaaOGaaGypamaape dabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaadIhadaahaaWc beqaaiabeo7aNbaakiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaG ikaiaadIhacaaIPaGaamizaiaadIhacaaISaGaaGzbVhbbfv3ySLgz GueE0jxyaGabaiab=vIiqjaadAgacqWFLicudaWgaaWcbaGaamitam aaBaaabaGaaGOmaiaaiYcacqaHZoWzaeqaaiaaiIcacaaIWaGaaGil aiaaigdacaaIPaaabeaakiaai2dadaqadaqaamaapedabeWcbaGaaG imaaqaaiaaigdaa0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7a NbaakiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiM cacaaMi8UaamizaiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaa igdacaaIVaGaaGOmaaaakiaai6caaaa@7305@

Будем считать, что p(x) C 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaGaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C49@ , q(x)C[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4Saam4qaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3B58@ , p(x) p 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaGaey yzImRaamiCamaaBaaaleaacaaIWaaabeaakiaai6dacaaIWaaaaa@3A41@ , q(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey yzImRaaGimaaaa@3795@ , p 0 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0baaaa@3929@ , γ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@ , γ1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcqGHGjsUcaaIXaaaaa@35E6@ .

Энергетическое пространство, соответствующее оператору L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@328E@ , будем обозначать H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@ . Скалярное произведение в H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@  имеет вид

[u,v)]= 0 1 x γ p u t v t +quv dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaaiYcacaWG2bGaaG ykaiaai2facaaI9aWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGH RiI8aOGaamiEamaaCaaaleqabaGaeq4SdCgaaOWaaeWaaeaacaWGWb WaaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaadaWcaaqa aiabgkGi2kaadAhaaeaacqGHciITcaWG0baaaiabgUcaRiaadghaca WG1bGaamODaaGaayjkaiaawMcaaiaadsgacaWG4bGaaGOlaaaa@50BA@  (3)

Весовые пространства H γ m (0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiabeo7aNbqaai aad2gaaaGccaaIOaGaaGimaiaaiYcacaaIXaGaaGykaaaa@38EA@  (пространства И. А. Киприянова) определяются как замыкание класса C чет ([0,1]) C ([0,1]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaa0baaSqaaiaabEebcaqG1q GaaeOqeaqaaiabg6HiLcaakiaaiIcacaaIBbGaaGimaiaaiYcacaaI XaGaaGyxaiaaiMcacqGHckcZcaWGdbWaaWbaaSqabeaacqGHEisPaa GccaaIOaGaaG4waiaaicdacaaISaGaaGymaiaai2facaaIPaaaaa@45A4@ , состоящего из четных функций по норме

f m,γ = 0 i 1 +2 i 2 m i=0,1 0 1 x γ D x i 1 B x i 2 f(x) 2 1/2 dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGMbGae8xjIa1aaSbaaSqaaiaad2gacaaISaGaeq4SdCgabeaa kiaai2dadaqadaqaamaaqafabeWcbaabaiqabaGaaGimaiabgsMiJk aadMgadaWgaaqaaiaaigdaaeqaaiabgUcaRiaaikdacaWGPbWaaSba aeaacaaIYaaabeaacqGHKjYOcaWGTbaabaGaamyAaiaai2dacaaIWa GaaGilaiaaigdaaaaabeqdcqGHris5aOWaa8qmaeqaleaacaaIWaaa baGaaGymaaqdcqGHRiI8aOGaamiEamaaCaaaleqabaGaeq4SdCgaaO WaaqWaaeaacaWGebWaa0baaSqaaiaadIhaaeaacaWGPbWaaSbaaeaa caaIXaaabeaaaaGccaWGcbWaa0baaSqaaiaadIhaaeaacaWGPbWaaS baaeaacaaIYaaabeaaaaGccaWGMbGaaGikaiaadIhacaaIPaaacaGL hWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIXaGaaG4laiaaikdaaaGccaWGKbGaamiEaiaaiYca aaa@6A26@

где D x = d dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadIhaaeqaaO GaaGypamaalaaabaGaamizaaqaaiaadsgacaWG4baaaaaa@375F@ , B x = d 2 d x 2 + γ x d dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadIhaaeqaaO GaaGypamaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaaaOqaaiaa dsgacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaaba Gaeq4SdCgabaGaamiEaaaadaWcaaqaaiaadsgaaeaacaWGKbGaamiE aaaaaaa@3FB8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  оператор Бесселя.

Произвольно выберем функцию из v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  из пространства H γ 1 ((0,1)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiabeo7aNbqaai aaigdaaaGccaaIOaGaaGikaiaaicdacaaISaGaaGymaiaaiMcacqGH xdaTcqqHPoWvcaaIPaaaaa@3DBD@ , удовлетворяющую условию v(x,T)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam ivaiaaiMcacaaI9aGaaGimaaaa@382A@ . Умножим (1) на x γ v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqaHZoWzaa GccaWG2baaaa@3593@ , проинтегрируем по области (0,T)×Ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaWGubGaaG ykaiabgEna0kabfM6axbaa@3910@ :

0 T 0 1 x γ u t vdx 0 1 x γ x γ d dx x γ p(x) du dx v+ x γ q(x)uv x γ fv dx dt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaWadaqaamaapedabeWcbaGaaGimaaqaaiaaigda a0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7aNbaakmaalaaaba GaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaamODaiaadsgacaWG 4bGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aO WaaeWaaeaacaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWG4bWaaWba aSqabeaacqGHsislcqaHZoWzaaGcdaWcaaqaaiaadsgaaeaacaWGKb GaamiEaaaadaqadaqaaiaadIhadaahaaWcbeqaaiabeo7aNbaakiaa dchacaaIOaGaamiEaiaaiMcadaWcaaqaaiaadsgacaWG1baabaGaam izaiaadIhaaaaacaGLOaGaayzkaaGaamODaiabgUcaRiaadIhadaah aaWcbeqaaiabeo7aNbaakiaadghacaaIOaGaamiEaiaaiMcacaWG1b GaamODaiabgkHiTiaadIhadaahaaWcbeqaaiabeo7aNbaakiaadAga caWG2baacaGLOaGaayzkaaGaaGjcVlaadsgacaWG4baacaGLBbGaay zxaaGaamizaiaadshacaaI9aGaaGimaiaai6caaaa@7824@

Интегрируя по частям, получим:

0 T u, v t +[u,v](f,v) dt=( u (0) ,v(x,0)), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaWadaqaaiabgkHiTmaabmaabaGaamyDaiaaiYca daWcaaqaaiabgkGi2kaadAhaaeaacqGHciITcaWG0baaaaGaayjkai aawMcaaiabgUcaRiaaiUfacaWG1bGaaGilaiaadAhacaaIDbGaeyOe I0IaaGikaiaadAgacaaISaGaamODaiaaiMcaaiaawUfacaGLDbaaca WGKbGaamiDaiaai2dacaaIOaGaamyDamaaBaaaleaacaaIOaGaaGim aiaaiMcaaeqaaOGaaGilaiaadAhacaaIOaGaamiEaiaaiYcacaaIWa GaaGykaiaaiMcacaaISaaaaa@5849@  (4)

где (,)=(, ) L 2,γ (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyyXICTaaGilaiabgwSixl aaiMcacaaI9aGaaGikaiabgwSixlaaiYcacqGHflY1caaIPaWaaSba aSqaaiaadYeadaWgaaqaaiaaikdacaaISaGaeq4SdCgabeaacaaIOa GaeuyQdCLaaGykaaqabaaaaa@470C@ .

Будем называть обобщенным решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) функцию u L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamitamaaBaaale aacaaIYaGaaGilaiabeo7aNbqabaGccaaIOaGaaGikaiaaicdacaaI SaGaamivaiaaiMcacqGHxdaTcqqHPoWvcaaIPaaaaa@4113@ , которая имеет производную u/x L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadIhacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4595@  и удовлетворяет уравнению (4) для любой такой функции v H γ 1 ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4SaamisamaaDaaale aacqaHZoWzaeaacaaIXaaaaOGaaGikaiaaiIcacaaIWaGaaGilaiaa dsfacaaIPaGaey41aqRaeuyQdCLaaGykaaaa@405A@ , что v(0,t)/x=v(1,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG2bGaaGikaiaaicdaca aISaGaamiDaiaaiMcacaaIVaGaeyOaIyRaamiEaiaai2dacaWG2bGa aGikaiaaigdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@421A@ .

Приближение решения при такой постановке можно производить как по переменной x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , так и по переменной t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  в виде рядов с базисными функциями ϕ i (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcaaaa@370B@ , ϕ j (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaamOAaaqaba GccaaIOaGaamiDaiaaiMcaaaa@3708@ . В этом случае по временной переменной получаются, как правило, неявные схемы, и затруднено использование удобных на практике разностных схем для аппроксимации производной по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ .

Пусть такое решение существует и u/t L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadshacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4591@ . Примем v(x,t)=w(x)Ψ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaam4DaiaaiIcacaWG4bGaaGykaiabfI6azjaa iIcacaWG0bGaaGykaaaa@3EDB@ , где w(x) H γ 1 (Ω),w(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaIPaGaey icI4SaamisamaaDaaaleaacqaHZoWzaeaacaaIXaaaaOGaaGikaiab fM6axjaaiMcacaaISaGaam4DaiaaiIcacaaIWaGaaGykaiaai2daca aIWaaaaa@424A@ , dΨ/dt L 2,γ (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeuiQdKLaaG4laiaadsgaca WG0bGaeyicI4SaamitamaaBaaaleaacaaIYaGaaGilaiabeo7aNbqa baGccaaIOaGaaGimaiaaiYcacaWGubGaaGykaaaa@4022@ , Ψ(T)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwcaaIOaGaamivaiaaiMcaca aI9aGaaGimaaaa@370B@ . После подстановки v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  в (4) и интегрирования по частям получим

0 T u t ,w +[u,w](f,w) Ψ(t)dt+Ψ(0) u(x,0) u (0) ,w =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaWadaqaamaabmaabaWaaSaaaeaacqGHciITcaWG 1baabaGaeyOaIyRaamiDaaaacaaISaGaam4DaaGaayjkaiaawMcaai abgUcaRiaaiUfacaWG1bGaaGilaiaadEhacaaIDbGaeyOeI0IaaGik aiaadAgacaaISaGaam4DaiaaiMcaaiaawUfacaGLDbaacqqHOoqwca aIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRiabfI6azjaaiIca caaIWaGaaGykamaabmaabaGaamyDaiaaiIcacaWG4bGaaGilaiaaic dacaaIPaGaeyOeI0IaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMca aeqaaOGaaGilaiaadEhaaiaawIcacaGLPaaacaaI9aGaaGimaiaai6 caaaa@62A4@

Учтем произвольность Ψ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwcaaIOaGaamiDaiaaiMcaaa a@35AA@ :

u t ,w (t)+[u,w](t)=(f,w)(t),(u(x,0),w)=( u (0) ,w). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDaaqaaiabgkGi2kaadshaaaGaaGilaiaadEhaaiaawIcacaGLPaaa caaIOaGaamiDaiaaiMcacqGHRaWkcaaIBbGaamyDaiaaiYcacaWG3b GaaGyxaiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaamOzaiaaiYca caWG3bGaaGykaiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaaGikai aadwhacaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaaiYcacaWG3bGa aGykaiaai2dacaaIOaGaamyDamaaBaaaleaacaaIOaGaaGimaiaaiM caaeqaaOGaaGilaiaadEhacaaIPaGaaGOlaaaa@5D10@  (5)

Будем называть обобщенным решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) функцию u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@ , которая почти при каждом t(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaGikaiaaicdaca aISaGaamivaiaaiMcaaaa@37E8@  принадлежит энергетическому пространству H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@  со скалярным произведением вида (3), имеет производную u/t L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadshacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4591@  и почти всюду на (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaWGubGaaG ykaaaa@356B@  удовлетворяет равенствам (5) при любом выборе w(x) H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaIPaGaey icI4SaamisamaaBaaaleaacaWGmbaabeaaaaa@3869@ . Второе определение обобщенного решения требует наличия производной u/t L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadshacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4591@ , однако при такой постановке переменную t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  можно рассматривать как параметр.

3. Построение проекционно-разностной схемы. Для приближенного решения задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) будем в первую очередь выполнять аппроксимацию по пространственной переменнной c помощью проекционно-сеточного метода, а затем приближение по времени t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  с использованием конечно-разностного метода.

Введем на [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B4@  сетку 0= x 0 < x 1 < x 2 << x n1 < x n =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGypaiaadIhadaWgaaWcba GaaGimaaqabaGccaaI8aGaamiEamaaBaaaleaacaaIXaaabeaakiaa iYdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGipaiablAciljaaiY dacaWG4bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiYda caWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGypaiaaigdaaaa@457E@ , i=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gaaaa@37AE@ , h= x i x i1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGypaiaadIhadaWgaaWcba GaamyAaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgacqGHsisl caaIXaaabeaaaaa@3A3E@ . Для случая, когда γ1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcqGHGjsUcaaIXaaaaa@35E6@ , базисные функции заданы следующим образом:

ϕ i (x)= x 1γ x i1 1γ x i 1γ x i1 1γ , x( x i1 , x i ), x i+1 1γ x 1γ x i+1 1γ x i 1γ , x( x i , x i+1 ), 0, x( x i1 , x i+1 ),i=1,,n1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcacaaI9aWaaiqaaeaafaqaaeWaeaaaaeaa aeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaaigdacqGHsislcqaHZo WzaaGccqGHsislcaWG4bWaa0baaSqaaiaadMgacqGHsislcaaIXaaa baGaaGymaiabgkHiTiabeo7aNbaaaOqaaiaadIhadaqhaaWcbaGaam yAaaqaaiaaigdacqGHsislcqaHZoWzaaGccqGHsislcaWG4bWaa0ba aSqaaiaadMgacqGHsislcaaIXaaabaGaaGymaiabgkHiTiabeo7aNb aaaaGccaaISaaabaaabaGaamiEaiabgIGiolaaiIcacaWG4bWaaSba aSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiYcacaWG4bWaaSbaaS qaaiaadMgaaeqaaOGaaGykaiaaiYcaaeaaaeaadaWcaaqaaiaadIha daqhaaWcbaGaamyAaiabgUcaRiaaigdaaeaacaaIXaGaeyOeI0Iaeq 4SdCgaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGymaiabgkHiTiab eo7aNbaaaOqaaiaadIhadaqhaaWcbaGaamyAaiabgUcaRiaaigdaae aacaaIXaGaeyOeI0Iaeq4SdCgaaOGaeyOeI0IaamiEamaaDaaaleaa caWGPbaabaGaaGymaiabgkHiTiabeo7aNbaaaaGccaaISaaabaaaba GaamiEaiabgIGiolaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa aGilaiaadIhadaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaG ykaiaaiYcaaeaaaeaacaaIWaGaaGilaaqaaiaaysW7aeaacaWG4bGa eyycI8SaaGikaiaadIhadaWgaaWcbaGaamyAaiabgkHiTiaaigdaae qaaOGaaGilaiaadIhadaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqa aOGaaGykaiaaiYcacaaMe8UaamyAaiaai2dacaaIXaGaaGilaiablA ciljaaiYcacaWGUbGaeyOeI0IaaGymaiaai6caaaaacaGL7baaaaa@9E9F@  (6)

ϕ 1 (x)= 1, x( x 0 , x 1 ), x 2 1γ x 1γ x 2 1γ x 1 1γ , x( x 1 , x 2 ); ϕ n (x)= x 1γ x n1 1γ x n 1γ x n1 1γ , x( x n1 , x n ), 0, x( x n1 , x n ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiMcacaaI9aWaaiqaaeaafaqaaeGaeaaaaeaa aeaacaaIXaGaaGilaaqaaiaaysW7aeaacaWG4bGaeyicI4SaaGikai aadIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiEamaaBaaaleaa caaIXaaabeaakiaaiMcacaaISaaabaaabaWaaSaaaeaacaWG4bWaa0 baaSqaaiaaikdaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaOGaeyOeI0Ia amiEamaaCaaaleqabaGaaGymaiabgkHiTiabeo7aNbaaaOqaaiaadI hadaqhaaWcbaGaaGOmaaqaaiaaigdacqGHsislcqaHZoWzaaGccqGH sislcaWG4bWaa0baaSqaaiaaigdaaeaacaaIXaGaeyOeI0Iaeq4SdC gaaaaakiaaiYcaaeaacaaMe8oabaGaamiEaiabgIGiolaaiIcacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaaG4oaaaaaiaawUhaaiaaywW7caaMf8UaaGzb VlaaywW7cqaHvpGzdaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEai aaiMcacaaI9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaadaWcaaqaaiaa dIhadaahaaWcbeqaaiaaigdacqGHsislcqaHZoWzaaGccqGHsislca WG4bWaa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaaGymaiabgkHi Tiabeo7aNbaaaOqaaiaadIhadaqhaaWcbaGaamOBaaqaaiaaigdacq GHsislcqaHZoWzaaGccqGHsislcaWG4bWaa0baaSqaaiaad6gacqGH sislcaaIXaaabaGaaGymaiabgkHiTiabeo7aNbaaaaGccaaISaaaba GaaGjbVdqaaiaadIhacqGHiiIZcaaIOaGaamiEamaaBaaaleaacaWG UbGaeyOeI0IaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaWGUb aabeaakiaaiMcacaaISaaabaaabaGaaGimaiaaiYcaaeaacaaMe8oa baGaamiEaiabgMGiplaaiIcacaWG4bWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGa aGykaiaai6caaaaacaGL7baaaaa@AA13@  (7)

Приближенное решение задачи будем искать в виде

u h = i=1 n1 a i (t) ϕ i (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaO GaaGypamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaiab gkHiTiaaigdaa0GaeyyeIuoakiaadggadaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiDaiaaiMcacqaHvpGzdaWgaaWcbaGaamyAaaqabaGc caaIOaGaamiEaiaaiMcacaaIUaaaaa@4667@

Тогда коэффициенты, являющиеся функциями от t(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaGikaiaaicdaca aISaGaamivaiaaiMcaaaa@37E8@ , будем искать из системы ОДУ, полученной с помощью метода Бубнова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Галеркина из (5):

u h t , ϕ i (t)+[ u h , ϕ i ](t)=(f, ϕ i )(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGil aiabew9aMnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaaiI cacaWG0bGaaGykaiabgUcaRiaaiUfacaWG1bWaaSbaaSqaaiaadIga aeqaaOGaaGilaiabew9aMnaaBaaaleaacaWGPbaabeaakiaai2faca aIOaGaamiDaiaaiMcacaaI9aGaaGikaiaadAgacaaISaGaeqy1dy2a aSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiIcacaWG0bGaaGykaiaaiY caaaa@53D0@  (8)

( u h (x,0) u (0) , ϕ i )=0,i=1,,N. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaBaaaleaacaWGOb aabeaakiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaeyOeI0IaamyD amaaBaaaleaacaaIOaGaaGimaiaaiMcaaeqaaOGaaGilaiabew9aMn aaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaaGimaiaaiYcacaaM f8UaamyAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGobGaaG Olaaaa@4B3D@  (9)

Уравнения (8) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (9) могут быть записаны в матричном виде:

B ^ da dt + A ^ a=F(t), B ^ a(0)= a (0) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaamaala aabaGaamizaiaadggaaeaacaWGKbGaamiDaaaacqGHRaWkdaqiaaqa aiaadgeaaiaawkWaaiaadggacaaI9aGaamOraiaaiIcacaWG0bGaaG ykaiaaiYcacaaMf8+aaecaaeaacaWGcbaacaGLcmaacaWGHbGaaGik aiaaicdacaaIPaGaaGypaiaadggadaWgaaWcbaGaaGikaiaaicdaca aIPaaabeaakiaaiYcaaaa@49D1@  (10)

где

a(t)= a 1 (t),, a n1 (t) T ,F(t)= F 1 (t),, F n1 (t) T , F i (t)=(f, ϕ i )(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadshacaaIPaGaaG ypamaabmaabaGaamyyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG 0bGaaGykaiaaiYcacqWIMaYscaaISaGaamyyamaaBaaaleaacaWGUb GaeyOeI0IaaGymaaqabaGccaaIOaGaamiDaiaaiMcaaiaawIcacaGL PaaadaahaaWcbeqaaiaadsfaaaGccaaISaGaaGzbVlaadAeacaaIOa GaamiDaiaaiMcacaaI9aWaaeWaaeaacaWGgbWaaSbaaSqaaiaaigda aeqaaOGaaGikaiaadshacaaIPaGaaGilaiablAciljaaiYcacaWGgb WaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiIcacaWG0bGa aGykaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiaaiYcaca aMf8UaamOramaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aiaai2dacaaIOaGaamOzaiaaiYcacqaHvpGzdaWgaaWcbaGaamyAaa qabaGccaaIPaGaaGikaiaadshacaaIPaGaaGilaaaa@6B06@

a (0) = a (0),1 ,, a (0),n1 T , a (0),i =( u (0) , ϕ i ), B ^ = B ij , A ^ = A ij , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccaaI9aWaaeWaaeaacaWGHbWaaSbaaSqaaiaaiIca caaIWaGaaGykaiaaiYcacaaIXaaabeaakiaaiYcacqWIMaYscaaISa GaamyyamaaBaaaleaacaaIOaGaaGimaiaaiMcacaaISaGaamOBaiab gkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGub aaaOGaaGilaiaaywW7caWGHbWaaSbaaSqaaiaaiIcacaaIWaGaaGyk aiaaiYcacaWGPbaabeaakiaai2dacaaIOaGaamyDamaaBaaaleaaca aIOaGaaGimaiaaiMcaaeqaaOGaaGilaiabew9aMnaaBaaaleaacaWG PbaabeaakiaaiMcacaaISaWaaecaaeaacaWGcbaacaGLcmaacaaI9a WaaeWaaeaacaWGcbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjk aiaawMcaaiaaiYcacaaMf8+aaecaaeaacaWGbbaacaGLcmaacaaI9a WaaeWaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjk aiaawMcaaiaaiYcaaaa@6772@

A ij = A ji = ϕ i , ϕ j = Ω ij x γ p d ϕ i dx d ϕ j dx +q ϕ i ϕ j dx,j=1,,n1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaai2dacaWGbbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaa i2dadaWadaqaaiabew9aMnaaBaaaleaacaWGPbaabeaakiaaiYcacq aHvpGzdaWgaaWcbaGaamOAaaqabaaakiaawUfacaGLDbaacaaI9aWa a8qeaeqaleaacqqHPoWvdaWgaaqaaiaadMgacaWGQbaabeaaaeqani abgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGcdaqadaqaaiaa dchadaWcaaqaaiaadsgacqaHvpGzdaWgaaWcbaGaamyAaaqabaaake aacaWGKbGaamiEaaaadaWcaaqaaiaadsgacqaHvpGzdaWgaaWcbaGa amOAaaqabaaakeaacaWGKbGaamiEaaaacqGHRaWkcaWGXbGaeqy1dy 2aaSbaaSqaaiaadMgaaeqaaOGaeqy1dy2aaSbaaSqaaiaadQgaaeqa aaGccaGLOaGaayzkaaGaamizaiaadIhacaaISaGaaGzbVlaadQgaca aI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOBaiabgkHiTiaaigda caaISaaaaa@6D01@

B ij = B ji = ϕ i , ϕ j = Ω ij x γ ϕ i ϕ j dx, Ω ij =(0,1)supp ϕ i supp ϕ j , Ω j =(0,1)supp ϕ j . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaai2dacaWGcbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaa i2dadaqadaqaaiabew9aMnaaBaaaleaacaWGPbaabeaakiaaiYcacq aHvpGzdaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacaaI9aWa a8qeaeqaleaacqqHPoWvdaWgaaqaaiaadMgacaWGQbaabeaaaeqani abgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccqaHvpGzdaWg aaWcbaGaamyAaaqabaGccqaHvpGzdaWgaaWcbaGaamOAaaqabaGcca WGKbGaamiEaiaaiYcacaaMf8UaeuyQdC1aaSbaaSqaaiaadMgacaWG Qbaabeaakiaai2dacaaIOaGaaGimaiaaiYcacaaIXaGaaGykaiabgM IihlaadohacaWG1bGaamiCaiaadchacqaHvpGzdaWgaaWcbaGaamyA aaqabaGccqGHPiYXcaWGZbGaamyDaiaadchacaWGWbGaeqy1dy2aaS baaSqaaiaadQgaaeqaaOGaaGilaiaaywW7cqqHPoWvdaWgaaWcbaGa amOAaaqabaGccaaI9aGaaGikaiaaicdacaaISaGaaGymaiaaiMcacq GHPiYXcaWGZbGaamyDaiaadchacaWGWbGaeqy1dy2aaSbaaSqaaiaa dQgaaeqaaOGaaGOlaaaa@7F8F@

F i = Ω j x γ f(x,t) ϕ i dx,i=1,,n1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaapefabeWcbaGaeuyQdC1aaSbaaeaacaWGQbaabeaaaeqa niabgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWGMbGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacqaHvpGzdaWgaaWcbaGaamyA aaqabaGccaWGKbGaamiEaiaaiYcacaaMf8UaamyAaiaai2dacaaIXa GaaGilaiablAciljaaiYcacaWGUbGaeyOeI0IaaGymaiaai6caaaa@50A4@

Поскольку скалярное произведение базисных функций в пространстве L 2,γ (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdacaaISa Gaeq4SdCgabeaakiaaiIcacqqHPoWvcaaIPaaaaa@38D0@  отлично от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  только для соседних функций, то для матрицы A ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadgeaaiaawkWaaaaa@3345@  требуется найти только элементы A j1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaaaa@36EB@ , A j,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaaaaa@3543@ , A j+1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaaaa@36E0@  (см. [1]) по следующим формулам:

A j1,j = x j1 x j x γ p d ϕ j1 dx d ϕ j dx dx+ x j1 x j x γ q ϕ j1 ϕ j dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaapehabeWcbaGaamiE amaaBaaabaGaamOAaiabgkHiTiaaigdaaeqaaaqaaiaadIhadaWgaa qaaiaadQgaaeqaaaqdcqGHRiI8aOGaamiEamaaCaaaleqabaGaeq4S dCgaaOGaamiCamaalaaabaGaamizaiabew9aMnaaBaaaleaacaWGQb GaeyOeI0IaaGymaaqabaaakeaacaWGKbGaamiEaaaadaWcaaqaaiaa dsgacqaHvpGzdaWgaaWcbaGaamOAaaqabaaakeaacaWGKbGaamiEaa aacaaMi8UaamizaiaadIhacqGHRaWkdaWdXbqabSqaaiaadIhadaWg aaqaaiaadQgacqGHsislcaaIXaaabeaaaeaacaWG4bWaaSbaaeaaca WGQbaabeaaa0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7aNbaa kiaadghacqaHvpGzdaWgaaWcbaGaamOAaiabgkHiTiaaigdaaeqaaO Gaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaadsgacaWG4bGa aGilaaaa@6D11@  (11)

A j,j = x j1 x j x γ p d ϕ j dx d ϕ j dx dx+ x j1 x j x γ q ϕ j ϕ j dx+ x j x j+1 x γ p d ϕ j dx d ϕ j dx dx+ x j x j+1 x γ q ϕ j ϕ j dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaGccaaI9aWaa8qCaeqaleaacaWG4bWaaSbaaeaacaWG QbGaeyOeI0IaaGymaaqabaaabaGaamiEamaaBaaabaGaamOAaaqaba aaniabgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWGWbWa aSaaaeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaaGcbaGaam izaiaadIhaaaWaaSaaaeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQga aeqaaaGcbaGaamizaiaadIhaaaGaaGjcVlaadsgacaWG4bGaey4kaS Yaa8qCaeqaleaacaWG4bWaaSbaaeaacaWGQbGaeyOeI0IaaGymaaqa baaabaGaamiEamaaBaaabaGaamOAaaqabaaaniabgUIiYdGccaWG4b WaaWbaaSqabeaacqaHZoWzaaGccaWGXbGaeqy1dy2aaSbaaSqaaiaa dQgaaeqaaOGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaads gacaWG4bGaey4kaSYaa8qCaeqaleaacaWG4bWaaSbaaeaacaWGQbaa beaaaeaacaWG4bWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaani abgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWGWbWaaSaa aeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaaGcbaGaamizai aadIhaaaWaaSaaaeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQgaaeqa aaGcbaGaamizaiaadIhaaaGaaGjcVlaadsgacaWG4bGaey4kaSYaa8 qCaeqaleaacaWG4bWaaSbaaeaacaWGQbaabeaaaeaacaWG4bWaaSba aeaacaWGQbGaey4kaSIaaGymaaqabaaaniabgUIiYdGccaWG4bWaaW baaSqabeaacqaHZoWzaaGccaWGXbGaeqy1dy2aaSbaaSqaaiaadQga aeqaaOGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaadsgaca WG4bGaaGilaaaa@9A34@  (12)

A j+1,j = x j x j+1 x γ p d ϕ j dx d ϕ j+1 dx dx+ x j x j+1 x γ q ϕ j+1 ϕ j dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaapehabeWcbaGaamiE amaaBaaabaGaamOAaaqabaaabaGaamiEamaaBaaabaGaamOAaiabgU caRiaaigdaaeqaaaqdcqGHRiI8aOGaamiEamaaCaaaleqabaGaeq4S dCgaaOGaamiCamaalaaabaGaamizaiabew9aMnaaBaaaleaacaWGQb aabeaaaOqaaiaadsgacaWG4baaamaalaaabaGaamizaiabew9aMnaa BaaaleaacaWGQbGaey4kaSIaaGymaaqabaaakeaacaWGKbGaamiEaa aacaaMi8UaamizaiaadIhacqGHRaWkdaWdXbqabSqaaiaadIhadaWg aaqaaiaadQgaaeqaaaqaaiaadIhadaWgaaqaaiaadQgacqGHRaWkca aIXaaabeaaa0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7aNbaa kiaadghacqaHvpGzdaWgaaWcbaGaamOAaiabgUcaRiaaigdaaeqaaO Gaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaadsgacaWG4bGa aGOlaaaa@6CDC@  (13)

Аналогично для матрицы B ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaaaaa@3346@  рассчитываются элементы B j1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaaaa@36EC@ , B j,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaaaaa@3544@ , B j+1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaaaa@36E1@ :

B j1,j = 1 x j 1γ x j1 1γ 2 ( x j 3γ x j1 3γ )(1γ) 2(3γ) + (γ1)( x j 2 x j1 1γ x j1 2 x j 1γ ) 2(γ+1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaalaaabaGaaGymaaqa amaabmaabaGaamiEamaaDaaaleaacaWGQbaabaGaaGymaiabgkHiTi abeo7aNbaakiabgkHiTiaadIhadaqhaaWcbaGaamOAaiabgkHiTiaa igdaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaaakmaabmaabaWaaSaaaeaacaaIOaGaamiE amaaDaaaleaacaWGQbaabaGaaG4maiabgkHiTiabeo7aNbaakiabgk HiTiaadIhadaqhaaWcbaGaamOAaiabgkHiTiaaigdaaeaacaaIZaGa eyOeI0Iaeq4SdCgaaOGaaGykaiaaiIcacaaIXaGaeyOeI0Iaeq4SdC MaaGykaaqaaiaaikdacaaIOaGaaG4maiabgkHiTiabeo7aNjaaiMca aaGaey4kaSYaaSaaaeaacaaIOaGaeq4SdCMaeyOeI0IaaGymaiaaiM cacaaIOaGaamiEamaaDaaaleaacaWGQbaabaGaaGOmaaaakiaadIha daqhaaWcbaGaamOAaiabgkHiTiaaigdaaeaacaaIXaGaeyOeI0Iaeq 4SdCgaaOGaeyOeI0IaamiEamaaDaaaleaacaWGQbGaeyOeI0IaaGym aaqaaiaaikdaaaGccaWG4bWaa0baaSqaaiaadQgaaeaacaaIXaGaey OeI0Iaeq4SdCgaaOGaaGykaaqaaiaaikdacaaIOaGaeq4SdCMaey4k aSIaaGymaiaaiMcaaaaacaGLOaGaayzkaaGaaGilaaaa@8523@  (14)

B j,j = 1 x j 1γ x j1 1γ 2 x j 3γ 3γ x j1 3γ (γ1) 2 (3γ)(γ+1) x j1 1γ x j 2 + x j1 22γ x j γ+1 γ+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaGccaaI9aWaaSaaaeaacaaIXaaabaWaaeWaaeaacaWG 4bWaa0baaSqaaiaadQgaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaOGaey OeI0IaamiEamaaDaaaleaacaWGQbGaeyOeI0IaaGymaaqaaiaaigda cqGHsislcqaHZoWzaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaaaOWaaeWaaeaadaWcaaqaaiaadIhadaqhaaWcbaGaamOAaaqa aiaaiodacqGHsislcqaHZoWzaaaakeaacaaIZaGaeyOeI0Iaeq4SdC gaaiabgkHiTmaalaaabaGaamiEamaaDaaaleaacaWGQbGaeyOeI0Ia aGymaaqaaiaaiodacqGHsislcqaHZoWzaaGccaaIOaGaeq4SdCMaey OeI0IaaGymaiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaIOaGa aG4maiabgkHiTiabeo7aNjaaiMcacaaIOaGaeq4SdCMaey4kaSIaaG ymaiaaiMcaaaGaeyOeI0IaamiEamaaDaaaleaacaWGQbGaeyOeI0Ia aGymaaqaaiaaigdacqGHsislcqaHZoWzaaGccaWG4bWaa0baaSqaai aadQgaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWG4bWaa0baaSqa aiaadQgacqGHsislcaaIXaaabaGaaGOmaiabgkHiTiaaikdacqaHZo WzaaGccaWG4bWaa0baaSqaaiaadQgaaeaacqaHZoWzcqGHRaWkcaaI XaaaaaGcbaGaeq4SdCMaey4kaSIaaGymaaaaaiaawIcacaGLPaaacq GHRaWkaaa@858E@

+ 1 x j+1 1γ x j 1γ 2 x j+1 3γ (1γ) 2 (3γ)(γ+1) x j 3γ 3γ + x j+1 1γ x j 2 x j 1+γ x j+1 22γ γ+1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaywW7caaMf8Uaey 4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacaWG4bWaa0baaSqaaiaa dQgacqGHRaWkcaaIXaaabaGaaGymaiabgkHiTiabeo7aNbaakiabgk HiTiaadIhadaqhaaWcbaGaamOAaaqaaiaaigdacqGHsislcqaHZoWz aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaae aadaWcaaqaaiaadIhadaqhaaWcbaGaamOAaiabgUcaRiaaigdaaeaa caaIZaGaeyOeI0Iaeq4SdCgaaOGaaGikaiaaigdacqGHsislcqaHZo WzcaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGikaiaaiodacqGH sislcqaHZoWzcaaIPaGaaGikaiabeo7aNjabgUcaRiaaigdacaaIPa aaaiabgkHiTmaalaaabaGaamiEamaaDaaaleaacaWGQbaabaGaaG4m aiabgkHiTiabeo7aNbaaaOqaaiaaiodacqGHsislcqaHZoWzaaGaey 4kaSIaamiEamaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaaiaaigda cqGHsislcqaHZoWzaaGccaWG4bWaa0baaSqaaiaadQgaaeaacaaIYa aaaOGaeyOeI0YaaSaaaeaacaWG4bWaa0baaSqaaiaadQgaaeaacaaI XaGaey4kaSIaeq4SdCgaaOGaamiEamaaDaaaleaacaWGQbGaey4kaS IaaGymaaqaaiaaikdacqGHsislcaaIYaGaeq4SdCgaaaGcbaGaeq4S dCMaey4kaSIaaGymaaaaaiaawIcacaGLPaaacaaISaaaaa@87F8@  (15)

B j+1,j = 1 x j+1 1γ x j 1γ 2 ( x j+1 3γ x j 3γ )(1γ) 2(3γ) + (γ1)( x j+1 2 x j 1γ x j 2 x j+1 1γ ) 2(γ+1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaalaaabaGaaGymaaqa amaabmaabaGaamiEamaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaai aaigdacqGHsislcqaHZoWzaaGccqGHsislcaWG4bWaa0baaSqaaiaa dQgaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaaakmaabmaabaWaaSaaaeaacaaIOaGaamiE amaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaaiaaiodacqGHsislcq aHZoWzaaGccqGHsislcaWG4bWaa0baaSqaaiaadQgaaeaacaaIZaGa eyOeI0Iaeq4SdCgaaOGaaGykaiaaiIcacaaIXaGaeyOeI0Iaeq4SdC MaaGykaaqaaiaaikdacaaIOaGaaG4maiabgkHiTiabeo7aNjaaiMca aaGaey4kaSYaaSaaaeaacaaIOaGaeq4SdCMaeyOeI0IaaGymaiaaiM cacaaIOaGaamiEamaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaaiaa ikdaaaGccaWG4bWaa0baaSqaaiaadQgaaeaacaaIXaGaeyOeI0Iaeq 4SdCgaaOGaeyOeI0IaamiEamaaDaaaleaacaWGQbaabaGaaGOmaaaa kiaadIhadaqhaaWcbaGaamOAaiabgUcaRiaaigdaaeaacaaIXaGaey OeI0Iaeq4SdCgaaOGaaGykaaqaaiaaikdacaaIOaGaeq4SdCMaey4k aSIaaGymaiaaiMcaaaaacaGLOaGaayzkaaGaaGOlaaaa@84EE@  (16)

Нетрудно убедиться, что полученные матрицы являются положительно определенными и симметричными.

4. Численное решение системы ОДУ. Введем на отрезке [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  равномерную сетку t j =jτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaadQgacqaHepaDaaa@3756@ , τ=T/J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamivaiaai+caca WGkbaaaa@36AA@ , j=0,,J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaicdacaaISaGaeS OjGSKaaGilaiaadQeaaaa@378A@ . Перепишем уравнения (10), используя для аппроксимации по времени неявную схему (см. [4]), имеющую первый порядок аппроксимации по τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3382@ :

B ^ a 0 =a(0), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaaiaadg gadaWgaaWcbaGaaGimaaqabaGccaaI9aGaamyyaiaaiIcacaaIWaGa aGykaiaaiYcaaaa@399E@  (17)

B ^ a j a j1 τ + A ^ a j =F( t j ),j=1,,J, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaamaala aabaGaamyyamaaBaaaleaacaWGQbaabeaakiabgkHiTiaadggadaWg aaWcbaGaamOAaiabgkHiTiaaigdaaeqaaaGcbaGaeqiXdqhaaiabgU caRmaaHaaabaGaamyqaaGaayPadaGaamyyamaaBaaaleaacaWGQbaa beaakiaai2dacaWGgbGaaGikaiaadshadaWgaaWcbaGaamOAaaqaba GccaaIPaGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOj GSKaaGilaiaadQeacaaISaaaaa@4E18@  (18)

где a j =( a 1,j ,, a n1,j ) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaaiIcacaWGHbWaaSbaaSqaaiaaigdacaaISaGaamOAaaqa baGccaaISaGaeSOjGSKaaGilaiaadggadaWgaaWcbaGaamOBaiabgk HiTiaaigdacaaISaGaamOAaaqabaGccaaIPaWaaWbaaSqabeaacaWG ubaaaaaa@4260@ . Сгруппируем в (18) значения по временным слоям:

( B ^ + A ^ τ) a j =τF( t j )+ B ^ a j1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWaaecaaeaacaWGcbaacaGLcm aacqGHRaWkdaqiaaqaaiaadgeaaiaawkWaaiabes8a0jaaiMcacaWG HbWaaSbaaSqaaiaadQgaaeqaaOGaaGypaiabes8a0jaadAeacaaIOa GaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacqGHRaWkdaqiaaqa aiaadkeaaiaawkWaaiaadggadaWgaaWcbaGaamOAaiabgkHiTiaaig daaeqaaaaa@47D3@  (19)

Матрица B ^ + A ^ τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaaiabgU caRmaaHaaabaGaamyqaaGaayPadaGaeqiXdqhaaa@3775@  имеет трехдиагональный вид и состоит из суммы элемнтов, рассчитанных по формулам (11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (16):

B 11 +τ A 11 B 12 +τ A 12 B 21 +τ A 21 B 22 +τ A 22 B 23 +τ A 23 B n2,n1 +τ A n2,n1 B n1,n2 +τ A n1,n2 B n1,n1 +τ A n1,n1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaauaabeqafuaaaaaabaGaam OqamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcqaHepaDcaWG bbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadkeadaWgaaWcba GaaGymaiaaikdaaeqaaOGaey4kaSIaeqiXdqNaamyqamaaBaaaleaa caaIXaGaaGOmaaqabaaakeaaaeaaaeaaaeaacaWGcbWaaSbaaSqaai aaikdacaaIXaaabeaakiabgUcaRiabes8a0jaadgeadaWgaaWcbaGa aGOmaiaaigdaaeqaaaGcbaGaamOqamaaBaaaleaacaaIYaGaaGOmaa qabaGccqGHRaWkcqaHepaDcaWGbbWaaSbaaSqaaiaaikdacaaIYaaa beaaaOqaaiaadkeadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaey4kaS IaeqiXdqNaamyqamaaBaaaleaacaaIYaGaaG4maaqabaaakeaaaeaa aeaaaeaaaeaaaeaacqWIXlYtaeaaaeaaaeaaaeaaaeaaaeaacaWGcb WaaSbaaSqaaiaad6gacqGHsislcaaIYaGaaGilaiaad6gacqGHsisl caaIXaaabeaakiabgUcaRiabes8a0jaadgeadaWgaaWcbaGaamOBai abgkHiTiaaikdacaaISaGaamOBaiabgkHiTiaaigdaaeqaaaGcbaaa baaabaaabaGaamOqamaaBaaaleaacaWGUbGaeyOeI0IaaGymaiaaiY cacaWGUbGaeyOeI0IaaGOmaaqabaGccqGHRaWkcqaHepaDcaWGbbWa aSbaaSqaaiaad6gacqGHsislcaaIXaGaaGilaiaad6gacqGHsislca aIYaaabeaaaOqaaiaadkeadaWgaaWcbaGaamOBaiabgkHiTiaaigda caaISaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaeqiXdqNaam yqamaaBaaaleaacaWGUbGaeyOeI0IaaGymaiaaiYcacaWGUbGaeyOe I0IaaGymaaqabaaaaaGccaGLBbGaayzxaaGaaGOlaaaa@8DBB@

Обозначим через f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  вектор-столбец, стоящий в правой части уравнения (19):

τF( t j )+ B ^ a j1 = f n1×1 = τ(f, ϕ 1 )( t j )+ B 11 a 1,j1 + B 12 a 2,j1 τ(f, ϕ 2 )( t j )+ B 21 a 1,j1 + B 22 a 2,j1 + B 23 a 3,j1 τ(f, ϕ i )( t j )+ B i,i1 a i1,j1 + B i,i a i,j1 + B i,i+1 a i+1,j1 τ(f, ϕ n1 )( t j )+ B n1,n2 a n2,j1 + B n1,n1 a n1,j1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaWGgbGaaGikaiaadshada WgaaWcbaGaamOAaaqabaGccaaIPaGaey4kaSYaaecaaeaacaWGcbaa caGLcmaacaWGHbWaaSbaaSqaaiaadQgacqGHsislcaaIXaaabeaaki aai2dacaWGMbWaaSbaaSqaaiaad6gacqGHsislcaaIXaGaey41aqRa aGymaaqabaGccaaI9aWaamWaaeaafaqabeGbbaaaaeaacqaHepaDca aIOaGaamOzaiaaiYcacqaHvpGzdaWgaaWcbaGaaGymaaqabaGccaaI PaGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPaGaey4kaS IaamOqamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbWaaSbaaSqa aiaaigdacaaISaGaamOAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam OqamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaa ikdacaaISaGaamOAaiabgkHiTiaaigdaaeqaaaGcbaGaeqiXdqNaaG ikaiaadAgacaaISaGaeqy1dy2aaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaaiIcacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiabgUcaRi aadkeadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamyyamaaBaaaleaa caaIXaGaaGilaiaadQgacqGHsislcaaIXaaabeaakiabgUcaRiaadk eadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaI YaGaaGilaiaadQgacqGHsislcaaIXaaabeaakiabgUcaRiaadkeada WgaaWcbaGaaGOmaiaaiodaaeqaaOGaamyyamaaBaaaleaacaaIZaGa aGilaiaadQgacqGHsislcaaIXaaabeaaaOqaaiabl6Uinbqaaiabes 8a0jaaiIcacaWGMbGaaGilaiabew9aMnaaBaaaleaacaWGPbaabeaa kiaaiMcacaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacq GHRaWkcaWGcbWaaSbaaSqaaiaadMgacaaISaGaamyAaiabgkHiTiaa igdaaeqaaOGaamyyamaaBaaaleaacaWGPbGaeyOeI0IaaGymaiaaiY cacaWGQbGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWGcbWaaSbaaSqa aiaadMgacaaISaGaamyAaaqabaGccaWGHbWaaSbaaSqaaiaadMgaca aISaGaamOAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamOqamaaBaaa leaacaWGPbGaaGilaiaadMgacqGHRaWkcaaIXaaabeaakiaadggada WgaaWcbaGaamyAaiabgUcaRiaaigdacaaISaGaamOAaiabgkHiTiaa igdaaeqaaaGcbaGaeSO7I0eabaGaeqiXdqNaaGikaiaadAgacaaISa Gaeqy1dy2aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiMca caaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacqGHRaWkca WGcbWaaSbaaSqaaiaad6gacqGHsislcaaIXaGaaGilaiaad6gacqGH sislcaaIYaaabeaakiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaik dacaaISaGaamOAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamOqamaa BaaaleaacaWGUbGaeyOeI0IaaGymaiaaiYcacaWGUbGaeyOeI0IaaG ymaaqabaGccaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaGaaGil aiaadQgacqGHsislcaaIXaaabeaaaaaakiaawUfacaGLDbaaaaa@E607@

Такую систему можно записать в виде

c i a i1,j + d i a i,j + e i a i+1,j = f i ,i=2,,n2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaadMgaaeqaaO GaamyyamaaBaaaleaacaWGPbGaeyOeI0IaaGymaiaaiYcacaWGQbaa beaakiabgUcaRiaadsgadaWgaaWcbaGaamyAaaqabaGccaWGHbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccqGHRaWkcaWGLbWaaSba aSqaaiaadMgaaeqaaOGaamyyamaaBaaaleaacaWGPbGaey4kaSIaaG ymaiaaiYcacaWGQbaabeaakiaai2dacaWGMbWaaSbaaSqaaiaadMga aeqaaOGaaGilaiaaywW7caWGPbGaaGypaiaaikdacaaISaGaeSOjGS KaaGilaiaad6gacqGHsislcaaIYaGaaGilaaaa@5565@

d 1 e 1 0 0 c 2 d 2 e 2 0 c n1 d n1 a 1,j a 2,j a n1,j = f 1 f 2 f n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqafuaaaaaabaGaam izamaaBaaaleaacaaIXaaabeaaaOqaaiaadwgadaWgaaWcbaGaaGym aaqabaaakeaacaaIWaaabaGaeS47IWeabaGaaGimaaqaaiaadogada WgaaWcbaGaaGOmaaqabaaakeaacaWGKbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaamyzamaaBaaaleaacaaIYaaabeaaaOqaaiabl+Uimbqaai aaicdaaeaaaeaaaeaaaeaacqWIXlYtaeaaaeaaaeaaaeaaaeaacaWG JbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOqaaiaadsgada WgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGcbaaabaaabaaabaaa baaaaaGaayjkaiaawMcaamaabmaabaqbaeqabuqbaaaaaeaacaWGHb WaaSbaaSqaaiaaigdacaaISaGaamOAaaqabaaakeaaaeaaaeaaaeaa aeaacaWGHbWaaSbaaSqaaiaaikdacaaISaGaamOAaaqabaaakeaaae aaaeaaaeaaaeaacqWIUlstaeaaaeaaaeaaaeaaaeaacaWGHbWaaSba aSqaaiaad6gacqGHsislcaaIXaGaaGilaiaadQgaaeqaaaGcbaaaba aabaaabaaabaaabaaabaaabaaabaaaaaGaayjkaiaawMcaaiaai2da daqadaqaauaabeqafuaaaaaabaGaamOzamaaBaaaleaacaaIXaaabe aaaOqaaaqaaaqaaaqaaaqaaiaadAgadaWgaaWcbaGaaGOmaaqabaaa keaaaeaaaeaaaeaaaeaacqWIUlstaeaaaeaaaeaaaeaaaeaacaWGMb WaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOqaaaqaaaqaaaqa aaqaaaqaaaqaaaqaaaqaaaaaaiaawIcacaGLPaaaaaa@67FC@

и применять для решения метод последовательного исключения неизвестных (метод прогонки).

5. Оценки сходимости. Для получения априорной оценки u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  обобщенного решения умножим каждое из уравнений (8) на функцию a i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3625@  и просуммируем по всем i=1,,n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gacqGHsislcaaIXaaaaa@3956@ :

u h t , i=1 n1 a i (t) ϕ i + u h , i=1 n1 a i (t) ϕ i = f, i=1 n1 a i (t) ϕ i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGil amaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaiabgkHiTi aaigdaa0GaeyyeIuoakiaadggadaWgaaWcbaGaamyAaaqabaGccaaI OaGaamiDaiaaiMcacqaHvpGzdaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaacqGHRaWkdaWadaqaaiaadwhadaWgaaWcbaGaamiAaaqa baGccaaISaWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOGaamyyamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG0bGaaGykaiabew9aMnaaBaaaleaacaWGPbaabe aaaOGaay5waiaaw2faaiaai2dadaqadaqaaiaadAgacaaISaWaaabC aeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbGaeyOeI0IaaGymaa qdcqGHris5aOGaamyyamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG 0bGaaGykaiabew9aMnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caaiaaiYcaaaa@7040@

а затем проинтегрируем по t (0,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG0bGbauaacqGHiiIZcaaIOaGaaG imaiaaiYcacaWG0bGaaGykaaaa@3814@ :

0 t u h t , u h d t + 0 t u h , u h d t = 0 t f, u h d t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyDamaaBaaa leaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGilaiaadwhada WgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaWGKbGabmiDayaa faGaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aO WaamWaaeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaOGaaGilaiaadwha daWgaaWcbaGaamiAaaqabaaakiaawUfacaGLDbaacaWGKbGabmiDay aafaGaaGypamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipa kmaabmaabaGaamOzaiaaiYcacaWG1bWaaSbaaSqaaiaadIgaaeqaaa GccaGLOaGaayzkaaGaamizaiqadshagaqbaiaai6caaaa@5C14@  (20)

Применим интегрирование по частям:

0 t u h t , u h d t = 0 1 0 t u h t u h x γ d t dx= 0 1 u h x γ u h dx | 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyDamaaBaaa leaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGilaiaadwhada WgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaWGKbGabmiDayaa faGaaGypamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakmaalaaabaGa eyOaIyRaamyDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaads haaaGaamyDamaaBaaaleaacaWGObaabeaakiaadIhadaahaaWcbeqa aiabeo7aNbaakiaadsgaceWG0bGbauaacaWGKbGaamiEaiaai2dada qadaqaamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaa dwhadaWgaaWcbaGaamiAaaqabaGccaWG4bWaaWbaaSqabeaacqaHZo WzaaGccaWG1bWaaSbaaSqaaiaadIgaaeqaaOGaamizaiaadIhaaiaa wIcacaGLPaaacaaI8bWaa0baaSqaaiaaicdaaeaacaaIXaaaaOGaey OeI0caaa@6B88@

0 t u h t , u h = d t = u h 2 (t) u h 2 (0) 0 t u h t , u h d t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXaqabSqaaiaaicdaae aacaWG0baaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyD amaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGilai aadwhadaWgaaWcbaGaamiAaaqabaGccaaI9aaacaGLOaGaayzkaaGa amizaiqadshagaqbaiaai2darqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGikaiaadshacaaIPaGaeyOeI0Iae8xjIaLaamyDam aaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaa kiaaiIcacaaIWaGaaGykaiabgkHiTmaapedabeWcbaGaaGimaaqaai aadshaa0Gaey4kIipakmaabmaabaWaaSaaaeaacqGHciITcaWG1bWa aSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaISaGaam yDamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaadsgaceWG 0bGbauaacaaIUaaaaa@6AB8@

Тогда

2 0 t u h t , u h d t = u h 2 (t) u h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaa8qmaeqaleaacaaIWaaaba GaamiDaaqdcqGHRiI8aOWaaeWaaeaadaWcaaqaaiabgkGi2kaadwha daWgaaWcbaGaamiAaaqabaaakeaacqGHciITcaWG0baaaiaaiYcaca WG1bWaaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaGaamizaiqa dshagaqbaiaai2darqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG1b WaaSbaaSqaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaa aOGaaGikaiaadshacaaIPaGaeyOeI0Iae8xjIaLaamyDamaaBaaale aacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIca caaIWaGaaGykaiaai6caaaa@58B0@

Перепишем равенство (20):

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t = 0 t f, u h d t + 1 2 u h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacaaI9aWaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRi I8aOWaaeWaaeaacaWGMbGaaGilaiaadwhadaWgaaWcbaGaamiAaaqa baaakiaawIcacaGLPaaacaWGKbGabmiDayaafaGaey4kaSYaaSaaae aacaaIXaaabaGaaGOmaaaacqWFLicucaWG1bWaaSbaaSqaaiaadIga aeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdaca aIPaGaaGOlaaaa@63ED@

Из (9) вытекает равенство

u h (x,0), u h (x,0) = u (0) , u h (x,0) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaadwhadaWgaaWcbaGaam iAaaqabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaaiYcacaWG 1bWaaSbaaSqaaiaadIgaaeqaaOGaaGikaiaadIhacaaISaGaaGimai aaiMcaaiaawIcacaGLPaaacaaI9aWaaeWaaeaacaWG1bWaaSbaaSqa aiaaiIcacaaIWaGaaGykaaqabaGccaaISaGaamyDamaaBaaaleaaca WGObaabeaakiaaiIcacaWG4bGaaGilaiaaicdacaaIPaaacaGLOaGa ayzkaaGaaGilaaaa@4CD4@

откуда получаем u h (0) u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadIgaaeqaaOGae8xjIaLaaGikaiaaicda caaIPaGaeyizImQae8xjIaLaamyDamaaBaaaleaacaaIWaaabeaaki ab=vIiqbaa@42A3@ . Тогда

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 0 t f 2 ( t )d t 1/2 0 t u h 2 ( t )d t 1/2 + 1 2 u (0) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacqGHKjYOdaqadaqaamaapedabeWcbaGaaGimaaqaaiaads haa0Gaey4kIipakiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaa ikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG0bGbauaaai aawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakmaa bmaabaWaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGae8 xjIaLaamyDamaaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGaamizaiqadshaga qbaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaIYaaa aOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacqWFLicucaWG1b WaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqWFLicudaahaaWc beqaaiaaikdaaaGccaaIUaaaaa@7A8E@  (21)

Рассмотрим норму в энергетическом пространстве:

[u,u]= 0 1 x γ p(x) du dx 2 +q(x) u 2 dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaaiYcacaWG1bGaaG yxaiaai2dadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGc caWG4bWaaWbaaSqabeaacqaHZoWzaaGcdaWadaqaaiaadchacaaIOa GaamiEaiaaiMcadaqadaqaamaalaaabaGaamizaiaadwhaaeaacaWG KbGaamiEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaWGXbGaaGikaiaadIhacaaIPaGaamyDamaaCaaaleqabaGa aGOmaaaaaOGaay5waiaaw2faaiaadsgacaWG4bGaaGOlaaaa@51E1@

В последней формуле отбросим неотрицательное слагаемое q(x) u 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaam yDamaaCaaaleqabaGaaGOmaaaaaaa@36F8@ , а p(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaaaaa@3514@  заменим на p 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaicdaaeqaaa aa@3398@ :

[u,u] p 0 0 1 x γ du dx 2 dx= p 0 u x 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaaiYcacaWG1bGaaG yxaiabgwMiZkaadchadaWgaaWcbaGaaGimaaqabaGcdaWdXaqabSqa aiaaicdaaeaacaaIXaaaniabgUIiYdGccaWG4bWaaWbaaSqabeaacq aHZoWzaaGcdaqadaqaamaalaaabaGaamizaiaadwhaaeaacaWGKbGa amiEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGKb GaamiEaiaai2dacaWGWbWaaSbaaSqaaiaaicdaaeqaaebbfv3ySLgz GueE0jxyaGabaOGae8xjIaLabmyDayaafaWaaSbaaSqaaiaadIhaae qaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@5600@  (22)

Покажем, что справедлива оценка

u L 2,γ 2 u L 2,γ 2 1 2(1+γ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaI SaGaeq4SdCgabeaaaeaacaaIYaaaaOGaeyizImQae8xjIaLabmyDay aafaGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaISaGa eq4SdCgabeaaaeaacaaIYaaaaOWaaSaaaeaacaaIXaaabaGaaGOmai aaiIcacaaIXaGaey4kaSIaeq4SdCMaaGykaaaacaaIUaaaaa@4F61@  (23)

Запишем c учетом u(1)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaigdacaaIPaGaaG ypaiaaicdaaaa@3658@ :

u(x)= x 1 u (ξ)dξ, u 2 (x)= x 1 u (ξ) ξ γ/2 ξ γ/2 2 dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaIPaGaaG ypaiabgkHiTmaapedabeWcbaGaamiEaaqaaiaaigdaa0Gaey4kIipa kiqadwhagaqbaiaaiIcacqaH+oaEcaaIPaGaamizaiabe67a4jaaiY cacaaMf8UaamyDamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGa aGykaiaai2dadaWdXaqabSqaaiaadIhaaeaacaaIXaaaniabgUIiYd GcdaqadaqaaiqadwhagaqbaiaaiIcacqaH+oaEcaaIPaGaeqOVdG3a aWbaaSqabeaacqGHsislcqaHZoWzcaaIVaGaaGOmaaaakiabe67a4n aaCaaaleqabaGaeq4SdCMaaG4laiaaikdaaaaakiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaGccaWGKbGaeqOVdGNaaGOlaaaa@6200@

С использованием неравенства Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Буняковского для 0x1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiEaiabgsMiJk aaigdaaaa@3799@  получаем

u 2 (x) x 1 ( u (ξ)) 2 ξ γ dξ x 1 ξ γ dξ 0 1 ( u (ξ)) 2 ξ γ dξ ξ 1γ 1γ | x 1 = u L 2,γ 2 1 x 1γ 1γ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaIPaGaeyizIm6aaeWaaeaadaWdXaqabSqaaiaa dIhaaeaacaaIXaaaniabgUIiYdGccaaIOaGabmyDayaafaGaaGikai abe67a4jaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaeqOVdG3a aWbaaSqabeaacqaHZoWzaaGccaWGKbGaeqOVdGhacaGLOaGaayzkaa WaaeWaaeaadaWdXaqabSqaaiaadIhaaeaacaaIXaaaniabgUIiYdGc cqaH+oaEdaahaaWcbeqaaiabgkHiTiabeo7aNbaakiaadsgacqaH+o aEaiaawIcacaGLPaaacqGHKjYOdaqadaqaamaapedabeWcbaGaaGim aaqaaiaaigdaa0Gaey4kIipakiaaiIcaceWG1bGbauaacaaIOaGaeq OVdGNaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqaH+oaEdaah aaWcbeqaaiabeo7aNbaakiaadsgacqaH+oaEaiaawIcacaGLPaaada Wcaaqaaiabe67a4naaCaaaleqabaGaaGymaiabgkHiTiabeo7aNbaa aOqaaiaaigdacqGHsislcqaHZoWzaaGaaGiFamaaDaaaleaacaWG4b aabaGaaGymaaaakiaai2darqqr1ngBPrgifHhDYfgaiqaacqWFLicu ceWG1bGbauaacqWFLicudaqhaaWcbaGaamitamaaBaaabaGaaGOmai aaiYcacqaHZoWzaeqaaaqaaiaaikdaaaGcdaWcaaqaaiaaigdacqGH sislcaWG4bWaaWbaaSqabeaacaaIXaGaeyOeI0Iaeq4SdCgaaaGcba GaaGymaiabgkHiTiabeo7aNbaacaaIUaaaaa@8DEF@

Проинтегрируем от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  до 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@  c весом x γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqaHZoWzaa aaaa@348E@ :

u L 2,γ 2 u L 2,γ 2 0 1 x γ (1 x 1γ ) 1γ dx= u L 2,γ 2 1 1γ x γ+1 γ+1 x 2 2 | 0 1 = u L 2,γ 2 1 2(1+γ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaI SaGaeq4SdCgabeaaaeaacaaIYaaaaOGaeyizImQae8xjIaLabmyDay aafaGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaISaGa eq4SdCgabeaaaeaacaaIYaaaaOWaa8qmaeqaleaacaaIWaaabaGaaG ymaaqdcqGHRiI8aOWaaSaaaeaacaWG4bWaaWbaaSqabeaacqaHZoWz aaGccaaIOaGaaGymaiabgkHiTiaadIhadaahaaWcbeqaaiaaigdacq GHsislcqaHZoWzaaGccaaIPaaabaGaaGymaiabgkHiTiabeo7aNbaa caWGKbGaamiEaiaai2dacqWFLicuceWG1bGbauaacqWFLicudaqhaa WcbaGaamitamaaBaaabaGaaGOmaiaaiYcacqaHZoWzaeqaaaqaaiaa ikdaaaGcdaWcaaqaaiaaigdaaeaacaaIXaGaeyOeI0Iaeq4SdCgaam aabmaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacqaHZoWzcqGHRaWk caaIXaaaaaGcbaGaeq4SdCMaey4kaSIaaGymaaaacqGHsisldaWcaa qaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaGaayjk aiaawMcaaiaaiYhadaqhaaWcbaGaaGimaaqaaiaaigdaaaGccaaI9a Gae8xjIaLabmyDayaafaGae8xjIa1aa0baaSqaaiaadYeadaWgaaqa aiaaikdacaaISaGaeq4SdCgabeaaaeaacaaIYaaaaOWaaSaaaeaaca aIXaaabaGaaGOmaiaaiIcacaaIXaGaey4kaSIaeq4SdCMaaGykaaaa caaIUaaaaa@888A@

Подставим оценку (23) в неравенство (22):

[u] 2 2 p 0 (1+γ)u 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaai2fadaahaaWcbe qaaiaaikdaaaGccqGHLjYScaaIYaGaamiCamaaBaaaleaacaaIWaaa beaakiaaiIcacaaIXaGaey4kaSIaeq4SdCMaaGykaebbfv3ySLgzGu eE0jxyaGabaiab=vIiqjaadwhacqWFLicudaahaaWcbeqaaiaaikda aaGccaaIUaaaaa@47FE@  (24)

C учетом (24) запишем (21):

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 0 t f 2 ( t )d t 1/2 c 1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 1/2 + 1 2 u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacqGHKjYOdaqadaqaamaapedabeWcbaGaaGimaaqaaiaads haa0Gaey4kIipakiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaa ikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG0bGbauaaai aawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakiaa dogadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaGae8xjIaLaam yDamaaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaa qaaiaadshaa0Gaey4kIipakiaaiUfacaWG1bWaaSbaaSqaaiaadIga aeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGbau aacaaIPaGaamizaiqadshagaqbaaGaayjkaiaawMcaamaaCaaaleqa baGaaGymaiaai+cacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaaaacqWFLicucaWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGyk aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaISaaaaa@8517@

где c=2 p 0 (1+γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGypaiaaikdacaWGWbWaaS baaSqaaiaaicdaaeqaaOGaaGikaiaaigdacqGHRaWkcqaHZoWzcaaI Paaaaa@3AB6@ . К последнему соотношению применим ϵ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYdaa@3DB7@  -неравенство |ab| a 2 /(4ϵ)+ϵ b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyyaiaadkgacaaI8bGaey izImQaamyyamaaCaaaleqabaGaaGOmaaaakiaai+cacaaIOaGaaGin amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9di VaaGykaiabgUcaRiab=v=aYlaadkgadaahaaWcbeqaaiaaikdaaaaa aa@4D1B@ :

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t c 4ϵ 0 t f 2 ( t )d t +cϵ 1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t + 1 2 u (0) 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacqGHKjYOdaWcaaqaaiaadogaaeaacaaI0aWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqGF1pG8aaWaa8qmaeqa leaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGae8xjIaLaamOzaiab=v IiqnaaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGa amizaiqadshagaqbaiabgUcaRiaadogacqGF1pG8daqadaqaamaala aabaGaaGymaaqaaiaaikdaaaGae8xjIaLaamyDamaaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacaWG1bWaaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCa aaleqabaGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGaamizaiqa dshagaqbaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaai aaikdaaaGae8xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMca aeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdaca aIPaGaaGOlaaaa@91E1@  (25)

Примем ϵ=c/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYlaai2dacaWGJbGaaG4laiaaikdaaaa@40DB@ . Имеем

2 c 2 2 1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 1 2 0 t f 2 ( t )d t + u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaaikdacqGHsisldaWcaa qaaiaadogadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaGaayjk aiaawMcaamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaarqqr1n gBPrgifHhDYfgaiqaacqWFLicucaWG1bWaaSbaaSqaaiaadIgaaeqa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaadshacaaIPa Gaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGa aG4waiaadwhadaWgaaWcbaGaamiAaaqabaGccaaIDbWaaWbaaSqabe aacaaIYaaaaOGaaGikaiqadshagaqbaiaaiMcacaWGKbGabmiDayaa faaacaGLOaGaayzkaaGaeyizIm6aaSaaaeaacaaIXaaabaGaaGOmaa aadaqadaqaamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipa kiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOa GabmiDayaafaGaaGykaiaadsgaceWG0bGbauaacqGHRaWkcqWFLicu caWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqWFLicuda ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaISaaaaa@6E10@

2 c 2 2 u h 2 (t)+2 0 t [ u h ] 2 ( t )d t 0 t f 2 ( t )d t + u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaaikdacqGHsisldaWcaa qaaiaadogadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaGaayjk aiaawMcaamaabmaabaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaam yDamaaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG0bGaaGykaiabgUcaRiaaikdadaWdXaqabSqaai aaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaamyDamaaBaaaleaa caWGObaabeaakiaai2fadaahaaWcbeqaaiaaikdaaaGccaaIOaGabm iDayaafaGaaGykaiaadsgaceWG0bGbauaaaiaawIcacaGLPaaacqGH KjYOdaqadaqaamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIi pakiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaaikdaaaGccaaI OaGabmiDayaafaGaaGykaiaadsgaceWG0bGbauaacqGHRaWkcqWFLi cucaWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqWFLicu daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaISaaaaa@6BBE@

u h 2 (t)+ 0 t [ u h ] 2 ( t )d t C 0 t f 2 ( t )d t + u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGikaiaadshacaaIPaGaey4kaSYaa8qmaeqaleaaca aIWaaabaGaamiDaaqdcqGHRiI8aOGaaG4waiaadwhadaWgaaWcbaGa amiAaaqabaGccaaIDbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiqads hagaqbaiaaiMcacaWGKbGabmiDayaafaGaeyizImQaam4qamaabmaa baWaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGae8xjIa LaamOzaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGb auaacaaIPaGaamizaiqadshagaqbaiabgUcaRiab=vIiqjaadwhada WgaaWcbaGaaGikaiaaicdacaaIPaaabeaakiab=vIiqnaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@6468@

max t(0,T) u h 2 (t)+ 0 T [ u h ] 2 ( t )d t C 0 T f 2 ( t )d t + u (0) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHiiIZca aIOaGaaGimaiaaiYcacaWGubGaaGykaaqabOqaaiGac2gacaGGHbGa aiiEaaaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG1bWaaSbaaS qaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGik aiaadshacaaIPaGaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamivaa qdcqGHRiI8aOGaaG4waiaadwhadaWgaaWcbaGaamiAaaqabaGccaaI DbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiqadshagaqbaiaaiMcaca WGKbGabmiDayaafaGaeyizImQaam4qamaabmaabaWaa8qmaeqaleaa caaIWaaabaGaamivaaqdcqGHRiI8aOGae8xjIaLaamOzaiab=vIiqn aaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGaamiz aiqadshagaqbaiabgUcaRiab=vIiqjaadwhadaWgaaWcbaGaaGikai aaicdacaaIPaaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaiaai6caaaa@6DAD@

Отсюда следует непрерывная зависимость приближенного решения u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  задачи от f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и u (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaaaaa@3502@ .

Оценим скорость сходимости u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  к u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  при h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaeyOKH4QaaGimaaaa@3551@ . Положим ξ h =u u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaamiAaaqaba GccaaI9aGaamyDaiabgkHiTiaadwhadaWgaaWcbaGaamiAaaqabaaa aa@3964@ ; тогда для любой функции v h = 1 n1 b i (t) ϕ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadIgaaeqaaO GaaGypamaaqahabeWcbaGaaGymaaqaaiaad6gacqGHsislcaaIXaaa niabggHiLdGccaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaads hacaaIPaGaeqy1dy2aaSbaaSqaaiaadMgaaeqaaaaa@4190@  имеем

ξ h t , v h (t)+[ ξ h , v h ](t)= u t , v h (t)+[u, v h ](t) u h t , v h (t)[ u h , v h ](t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaamODamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaaiI cacaWG0bGaaGykaiabgUcaRiaaiUfacqaH+oaEdaWgaaWcbaGaamiA aaqabaGccaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2faca aIOaGaamiDaiaaiMcacaaI9aWaaeWaaeaadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaaiYcacaWG2bWaaSbaaSqaaiaadI gaaeqaaaGccaGLOaGaayzkaaGaaGikaiaadshacaaIPaGaey4kaSIa aG4waiaadwhacaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2 facaaIOaGaamiDaiaaiMcacqGHsisldaqadaqaamaalaaabaGaeyOa IyRaamyDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaa GaaGilaiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaa caaIOaGaamiDaiaaiMcacqGHsislcaaIBbGaamyDamaaBaaaleaaca WGObaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGyx aiaaiIcacaWG0bGaaGykaiaaiYcaaaa@777C@

u h t , v h (t)+[ u h , v h ](t)=(f, v h )(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGil aiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaaIOa GaamiDaiaaiMcacqGHRaWkcaaIBbGaamyDamaaBaaaleaacaWGObaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGyxaiaaiI cacaWG0bGaaGykaiaai2dacaaIOaGaamOzaiaaiYcacaWG2bWaaSba aSqaaiaadIgaaeqaaOGaaGykaiaaiIcacaWG0bGaaGykaiaaiYcaaa a@5166@

ξ h t , v h (t)+[ ξ h , v h ](t)= u t , v h (t)+[u, v h ](t)(f, v h )(t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaamODamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaaiI cacaWG0bGaaGykaiabgUcaRiaaiUfacqaH+oaEdaWgaaWcbaGaamiA aaqabaGccaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2faca aIOaGaamiDaiaaiMcacaaI9aWaaeWaaeaadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaaiYcacaWG2bWaaSbaaSqaaiaadI gaaeqaaaGccaGLOaGaayzkaaGaaGikaiaadshacaaIPaGaey4kaSIa aG4waiaadwhacaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2 facaaIOaGaamiDaiaaiMcacqGHsislcaaIOaGaamOzaiaaiYcacaWG 2bWaaSbaaSqaaiaadIgaaeqaaOGaaGykaiaaiIcacaWG0bGaaGykai aai2dacaaIWaGaaGilaaaa@69CA@

ξ h , v h (0)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiabe67a4naaBaaaleaaca WGObaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaadIgaaeqaaaGccaGL OaGaayzkaaGaaGikaiaaicdacaaIPaGaaGypaiaaicdacaaIUaaaaa@3D58@

Значит,

ξ h t , ξ h +[ ξ h , ξ h ]= ξ h t ,u v h +[ ξ h ,u v h ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaeqOVdG3aaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaGaey 4kaSIaaG4waiabe67a4naaBaaaleaacaWGObaabeaakiaaiYcacqaH +oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbGaaGypamaabmaabaWaaS aaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaamiAaaqabaaakeaacqGH ciITcaWG0baaaiaaiYcacaWG1bGaeyOeI0IaamODamaaBaaaleaaca WGObaabeaaaOGaayjkaiaawMcaaiabgUcaRiaaiUfacqaH+oaEdaWg aaWcbaGaamiAaaqabaGccaaISaGaamyDaiabgkHiTiaadAhadaWgaa WcbaGaamiAaaqabaGccaaIDbGaaGOlaaaa@5F9A@

Применяя к ξ h t , ξ h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaeqOVdG3aaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaaaaa@3D9D@  интегрирование по частям, получим

1 2 ξ h 2 (t)+ 0 t [ ξ h ] 2 d t = 0 t [ ξ h ,u v h ]d t + 0 t ξ h t ,u v h d t + 1 2 ξ h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjabe67a4naaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiaai2dadaWdXbqa bSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaS baaSqaaiaadIgaaeqaaOGaaGilaiaadwhacqGHsislcaWG2bWaaSba aSqaaiaadIgaaeqaaOGaaGyxaiaadsgaceWG0bGbauaacqGHRaWkda WdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaqadaqaamaa laaabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaey OaIyRaamiDaaaacaaISaGaamyDaiabgkHiTiaadAhadaWgaaWcbaGa amiAaaqabaaakiaawIcacaGLPaaacaWGKbGabmiDayaafaGaey4kaS YaaSaaaeaacaaIXaaabaGaaGOmaaaacqWFLicucqaH+oaEdaWgaaWc baGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOa GaaGimaiaaiMcacaaIUaaaaa@7C7A@  (26)

Вычислим

0 t ξ h t ,u v h d t = ξ h ,u v h (t) ξ h ,u v h (0) 0 t ξ h , u t v h t d t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaeqOVdG3aaSba aSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaISaGaamyDai abgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaa caWGKbGabmiDayaafaGaaGypamaabmaabaGaeqOVdG3aaSbaaSqaai aadIgaaeqaaOGaaGilaiaadwhacqGHsislcaWG2bWaaSbaaSqaaiaa dIgaaeqaaaGccaGLOaGaayzkaaGaaGikaiaadshacaaIPaGaeyOeI0 YaaeWaaeaacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaISaGaamyD aiabgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPa aacaaIOaGaaGimaiaaiMcacqGHsisldaWdXbqabSqaaiaaicdaaeaa caWG0baaniabgUIiYdGcdaqadaqaaiabe67a4naaBaaaleaacaWGOb aabeaakiaaiYcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG 0baaaiabgkHiTmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGOb aabeaaaOqaaiabgkGi2kaadshaaaaacaGLOaGaayzkaaGaamizaiqa dshagaqbaiaai6caaaa@75E4@

Для (26) справедлива оценка

1 2 ξ h 2 (t)+ 0 t [ ξ h ] 2 d t 0 t [ ξ h ] 2 d t 1/2 0 t [u v h ] 2 d t 1/2 + ξ h (t)u v h (t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjabe67a4naaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgsMiJoaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakmaabmaabaGaaG4wai abe67a4naaBaaaleaacaWGObaabeaakiaai2fadaahaaWcbeqaaiaa ikdaaaGccaWGKbGabmiDayaafaaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIXaGaaG4laiaaikdaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG 0baaniabgUIiYdGcdaqadaqaaiaaiUfacaWG1bGaeyOeI0IaamODam aaBaaaleaacaWGObaabeaakiaai2fadaahaaWcbeqaaiaaikdaaaGc caWGKbGabmiDayaafaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXa GaaG4laiaaikdaaaGccqGHRaWkcqWFLicucqaH+oaEdaWgaaWcbaGa amiAaaqabaGccaaIOaGaamiDaiaaiMcacqWFLicucqWFLicucaWG1b GaeyOeI0IaamODamaaBaaaleaacaWGObaabeaakiab=vIiqjaaiIca caWG0bGaaGykaiabgUcaRaaa@80ED@

+ ξ h (0) u (0) v h (0)+ 0 t ξ h 2 d t 1/2 * 0 t u t v h t 2 d t 1/2 1 2 ξ h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkrqqr1ngBPrgifHhDYfgaiq aacqWFLicucqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIOaGaaGim aiaaiMcacqWFLicucqWFLicucaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGa aGikaiaaicdacaaIPaGae8xjIaLaey4kaSYaa8qCaeqaleaacaaIWa aabaGaamiDaaqdcqGHRiI8aOWaaeWaaeaacqWFLicucqaH+oaEdaWg aaWcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGcca WGKbGabmiDayaafaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGa aG4laiaaikdaaaGccaaIQaWaa8qCaeqaleaacaaIWaaabaGaamiDaa qdcqGHRiI8aOWaaeWaaeaadaqbdaqaamaalaaabaGaeyOaIyRaamyD aaqaaiabgkGi2kaadshaaaGaeyOeI0YaaSaaaeaacqGHciITcaWG2b WaaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawMa7 caGLkWoadaahaaWcbeqaaiaaikdaaaGccaWGKbGabmiDayaafaaaca GLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaaG4laiaaikdaaaGcdaWc aaqaaiaaigdaaeaacaaIYaaaaiab=vIiqjabe67a4naaBaaaleaaca WGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaaI WaGaaGykaiaai6caaaa@7F11@  (27)

Так как u h (x,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaO GaaGikaiaadIhacaaISaGaaGimaiaaiMcaaaa@37AC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  ортогональная проекция u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaa aa@339D@  на H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@ , то

ξ h (0) u (0) v h (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIOaGaaGimaiaaiMca cqWFLicucqGHKjYOcqWFLicucaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGa aGikaiaaicdacaaIPaGae8xjIaLaaGOlaaaa@4AB3@

Используя неравенство |ab| a 2 /(4ϵ)+ϵ b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyyaiaadkgacaaI8bGaey izImQaamyyamaaCaaaleqabaGaaGOmaaaakiaai+cacaaIOaGaaGin amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9di VaaGykaiabgUcaRiab=v=aYlaadkgadaahaaWcbeqaaiaaikdaaaaa aa@4D1B@  и оценку (27), получаем:

1 2 ξ h 2 (t)+ 0 t [ ξ h ] 2 d t 1 4 ϵ 1 0 t [ ξ h ] 2 d t + ϵ 1 0 t [u v h ] 2 d t + u (0) v h (0) 2 + 1 4 ϵ 2 ξ h (t) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjabe67a4naaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgsMiJoaalaaa baGaaGymaaqaaiaaisdatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab+v=aYpaaBaaaleaacaaIXaaabeaaaaGcdaWdXbqa bSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaS baaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaa dsgaceWG0bGbauaacqGHRaWkcqGF1pG8daWgaaWcbaGaaGymaaqaba GcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGa amyDaiabgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgUcaRiab=vIi qjaadwhadaWgaaWcbaGaaGikaiaaicdacaaIPaaabeaakiabgkHiTi aadAhadaWgaaWcbaGaamiAaaqabaGccaaIOaGaaGimaiaaiMcacqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaae aacaaI0aGae4x9di=aaSbaaSqaaiaaikdaaeqaaaaakiab=vIiqjab e67a4naaBaaaleaacaWGObaabeaakiaaiIcacaWG0bGaaGykaiab=v IiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRaaa@9589@

+ ϵ 2 u v h 2 (t)+ c 4 ϵ 3 0 t [ ξ h ] 2 d t + ϵ 3 0 t u t v h t 2 d t + 1 2 u (0) v h (0) 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIYaaabeaa rqqr1ngBPrgifHhDYfgaiuaakiab+vIiqjaadwhacqGHsislcaWG2b WaaSbaaSqaaiaadIgaaeqaaOGae4xjIa1aaWbaaSqabeaacaaIYaaa aOGaaGikaiaadshacaaIPaGaey4kaSYaaSaaaeaacaWGJbaabaGaaG inaiab=v=aYpaaBaaaleaacaaIZaaabeaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaSbaaSqaai aadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaadsgaceWG 0bGbauaacqGHRaWkcqWF1pG8daWgaaWcbaGaaG4maaqabaGcdaWdXb qabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaqbdaqaamaalaaa baGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaeyOeI0YaaSaaae aacqGHciITcaWG2bWaaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRa amiDaaaaaiaawMa7caGLkWoadaahaaWcbeqaaiaaikdaaaGccaWGKb GabmiDayaafaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacqGF LicucaWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqGHsi slcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGikaiaaicdacaaIPaGa e4xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdacaaIPaGaaG Olaaaa@8A6B@

1 2 1 4 ϵ 2 ξ h 2 (t)+ 1 1 4 ϵ 1 c 4 ϵ 3 0 t [ ξ h ] 2 d t ϵ 2 u v h 2 (t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaaGymaaqaai aaikdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9di=aaSbaaSqaai aaikdaaeqaaaaaaOGaayjkaiaawMcaaebbfv3ySLgzGueE0jxyaGqb aiab+vIiqjabe67a4naaBaaaleaacaWGObaabeaakiab+vIiqnaaCa aaleqabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiabgUcaRmaabmaa baGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaaisdacqWF1pG8da WgaaWcbaGaaGymaaqabaaaaOGaeyOeI0YaaSaaaeaacaWGJbaabaGa aGinaiab=v=aYpaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPa aadaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGa eqOVdG3aaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaG OmaaaakiaadsgaceWG0bGbauaacqGHKjYOcqWF1pG8daWgaaWcbaGa aGOmaaqabaGccqGFLicucaWG1bGaeyOeI0IaamODamaaBaaaleaaca WGObaabeaakiab+vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 0bGaaGykaiabgUcaRaaa@7B77@

+ ϵ 1 0 t [u v h ] 2 d t + ϵ 3 0 t u t v h t 2 d t + 3 2 u (0) v h (0) 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIXaaabeaa kmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaaiUfaca WG1bGaeyOeI0IaamODamaaBaaaleaacaWGObaabeaakiaai2fadaah aaWcbeqaaiaaikdaaaGccaWGKbGabmiDayaafaGaey4kaSIae8x9di =aaSbaaSqaaiaaiodaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiD aaqdcqGHRiI8aOWaauWaaeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITcaWG0baaaiabgkHiTmaalaaabaGaeyOaIyRaamODamaaBaaa leaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaaacaGLjWUaayPcSd WaaWbaaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgUcaRmaa laaabaGaaG4maaqaaiaaikdaaaqeeuuDJXwAKbsr4rNCHbacfaGae4 xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMcaaeqaaOGaeyOe I0IaamODamaaBaaaleaacaWGObaabeaakiaaiIcacaaIWaGaaGykai ab+vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGykaiaa i6caaaa@7C05@  (28)

Пусть [b] ϵ 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIYaaabeaakiaai2da caaIXaaaaa@402B@ , ϵ 1 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIXaaabeaakiaai2da caaIXaaaaa@402A@ , 1 2 1 4 ϵ 2 =1 1 4 ϵ 1 c 4 ϵ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaai abgkHiTmaalaaabaGaaGymaaqaaiaaisdatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIYaaabe aaaaGccaaI9aGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaaisda cqWF1pG8daWgaaWcbaGaaGymaaqabaaaaOGaeyOeI0YaaSaaaeaaca WGJbaabaGaaGinaiab=v=aYpaaBaaaleaacaaIZaaabeaaaaaaaa@4FF9@ ; тогда ϵ 3 = c 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIZaaabeaakiaai2da daWcaaqaaiaadogaaeaacaaIYaaaaaaa@4125@ . C учетом введенных значений перепишем (28):

ξ h 2 (t)+ 0 t [ ξ h ] 2 d t 4u v h 2 (t)+4 0 t [u v h ] 2 d t +2c 0 t u t v h t 2 d t +6 ξ h 2 (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaH+oaEdaWgaaWcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqa aiaaikdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkdaWdXbqabSqaai aaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaSbaaSqa aiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaadsgace WG0bGbauaacqGHKjYOcaaI0aGae8xjIaLaamyDaiabgkHiTiaadAha daWgaaWcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaa GccaaIOaGaamiDaiaaiMcacqGHRaWkcaaI0aWaa8qCaeqaleaacaaI WaaabaGaamiDaaqdcqGHRiI8aOGaaG4waiaadwhacqGHsislcaWG2b WaaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaa kiaadsgaceWG0bGbauaacqGHRaWkcaaIYaGaam4yamaapehabeWcba GaaGimaaqaaiaadshaa0Gaey4kIipakmaafmaabaWaaSaaaeaacqGH ciITcaWG1baabaGaeyOaIyRaamiDaaaacqGHsisldaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaamiAaaqabaaakeaacqGHciITcaWG0baa aaGaayzcSlaawQa7amaaCaaaleqabaGaaGOmaaaakiaadsgaceWG0b GbauaacqGHRaWkcaaI2aGae8xjIaLaeqOVdG3aaSbaaSqaaiaadIga aeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdaca aIPaGaeyizImkaaa@89C8@

4u v h 2 (t)+ c ^ 0 t [u v h ] 2 d t + 0 t u t v h t 2 d t + u (0) v h (0) 2 (0) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaI0aqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamyDaiabgkHiTiaadAhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaqiaaqaaiaadogaaiaawkWaamaabmaabaWaa8qC aeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaaG4waiaadwhacq GHsislcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqa baGaaGOmaaaakiaadsgaceWG0bGbauaacqGHRaWkdaWdXbqabSqaai aaicdaaeaacaWG0baaniabgUIiYdGcdaqbdaqaamaalaaabaGaeyOa IyRaamyDaaqaaiabgkGi2kaadshaaaGaeyOeI0YaaSaaaeaacqGHci ITcaWG2bWaaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaa aiaawMa7caGLkWoadaahaaWcbeqaaiaaikdaaaGccaWGKbGabmiDay aafaGaey4kaSIae8xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaa iMcaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaWGObaabeaakiaaiI cacaaIWaGaaGykaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIca caaIWaGaaGykaaGaayjkaiaawMcaaiaaiYcaaaa@7962@

max t(0,T) ξ h 2 (t)+ 0 T [ ξ h ] 2 d t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHiiIZca aIOaGaaGimaiaaiYcacaWGubGaaGykaaqabOqaaiGac2gacaGGHbGa aiiEaaaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaH+oaEdaWgaa WcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaI OaGaamiDaiaaiMcacqGHRaWkdaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaaIBbGaeqOVdG3aaSbaaSqaaiaadIgaaeqaaOGa aGyxamaaCaaaleqabaGaaGOmaaaakiaadsgaceWG0bGbauaacqGHKj YOaaa@567B@

4 max t(0,T) u v h 2 (t)+ c ^ 0 T [u v h ] 2 d t + 0 T u t v h t 2 d t + u (0) v h (0) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaI0aWaaybuaeqaleaaca WG0bGaeyicI4SaaGikaiaaicdacaaISaGaamivaiaaiMcaaeqakeaa ciGGTbGaaiyyaiaacIhaaaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIa LaamyDaiabgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaGccqWFLicu daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkda qiaaqaaiaadogaaiaawkWaamaabmaabaWaa8qCaeqaleaacaaIWaaa baGaamivaaqdcqGHRiI8aOGaaG4waiaadwhacqGHsislcaWG2bWaaS baaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaa dsgaceWG0bGbauaacqGHRaWkdaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaqbdaqaamaalaaabaGaeyOaIyRaamyDaaqaaiab gkGi2kaadshaaaGaeyOeI0YaaSaaaeaacqGHciITcaWG2bWaaSbaaS qaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawMa7caGLkWoa daahaaWcbeqaaiaaikdaaaGccaWGKbGabmiDayaafaGaey4kaSIae8 xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMcaaeqaaOGaeyOe I0IaamODamaaBaaaleaacaWGObaabeaakiaaiIcacaaIWaGaaGykai ab=vIiqnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai6ca aaa@8088@  (29)

Пусть теперь v h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadIgaaeqaaa aa@33D1@  имеет коэффициенты b i =u( x i ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadwhacaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaa iYcacaWG0bGaaGykaaaa@3ABE@ . Из (29), учитывая свойства базисных функций, получаем сходимость u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  к u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  при h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaeyOKH4QaaGimaaaa@3551@ :

max t(0,T) u u h 2 (t)+ 0 T [u u h ] 2 d t 0,h0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHiiIZca aIOaGaaGimaiaaiYcacaWGubGaaGykaaqabOqaaiGac2gacaGGHbGa aiiEaaaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucaaMe8UaamyDai abgkHiTiaadwhadaWgaaWcbaGaamiAaaqabaGccqWFLicudaahaaWc beqaaiaaikdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkdaWdXbqabS qaaiaaicdaaeaacaWGubaaniabgUIiYdGccaaIBbGaamyDaiabgkHi TiaadwhadaWgaaWcbaGaamiAaaqabaGccaaIDbWaaWbaaSqabeaaca aIYaaaaOGaamizaiqadshagaqbaiabgkziUkaaicdacaaISaGaaGzb VlaadIgacqGHsgIRcaaIWaGaaGOlaaaa@61C6@

6. Заключение. Рассмотренная в работе форма применения проекционно-сеточного метода для нестационарной задачи объединяет преимущества разностных и проекционных методов. При решении начально-краевых задач целесообразно вводить сетку по оси времени, а затем, после приближения производной по времени, применять схему аппроксимации по пространственной переменной на каждом временном слое. Использование метода Бубнова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Галеркина для аппроксимации по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  с финитными базисными функциями приводит к простой вычислительной схеме с достаточно хорошей точностью. Для приближения по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  ипользовалась неявная схема с первым порядком аппроксимации.

×

About the authors

Olga P. Barabash

Voronezh State University

Author for correspondence.
Email: navyS9@yandex.ru
Russian Federation, Voronezh

References

  1. Барабаш О. П. Некоторые особенности реализации метода конечных элементов для сингулярного дифференциального уравнения// Вестн. Воронеж. гос. ун-та. Сер. Физ. Мат. — 2023. — № 2. — С. 27–35.
  2. Виноградова Г. А. О решении сингулярной задачи вариационным методом// Вестн. факта ПММ. —2015. — № 10. — С. 39–42.
  3. Гусман Ю. А. Оценки сходимости конечно-разностных схем для вырожденных эллиптических уравнений// Ж. вычисл. мат. мат. физ. — 1965. — № 2. — С. 351–357.
  4. Емельянов В. Н. Введение в теорию разностных схем. — СПб., 2006.
  5. Житомирский Я. И. Задача Коши для систем линейных уравнений в частных произодных с дифференциальными операторами типа Бесселя// Мат. сб. — 1955. — 36 (78), № 2. — С. 299–310.
  6. Катрахов В. В. Метод конечных элементов для некоторых вырождающихся эллиптических краевых задач// Докл. АН СССР. — 1984. — 279, № 4. — С. 799–802.
  7. Киприянов И. А. Краевые задачи сингулярных эллиптических операторов в частных производных//Докл. АН СССР. — 1970. — 195, № 1. — С. 32–35.
  8. Марчук Г. И. Методы вычислительной математики. — М.: Наука, 1977.
  9. Михлин С. Г. Численная реализация вариационных методов. — М.: Наука, 1966.
  10. Михлин С. Г. Некоторые вопросы сеточной аппроксимации и их приложения к вариационно-сеточному методу// в кн.: Вариационно-разностные методы в математической физике (Михлин С. Г., ред.). —Новосибирск: ВЦ СО АН СССР, 1973.
  11. Самарский А. А. Введение в теорию разностных схем. — М.: Наука, 1971.
  12. Ситник С. М. Метод операторов преобразования для дифференциальных уравнений с операторами Бесселя. — М.: Физматлит, 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Barabash O.P.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».