Применение проекционно-сеточного метода для решения нестационарной задачи

Обложка

Цитировать

Полный текст

Аннотация

Работа посвящена построению приближенного решения параболического дифференциального уравнения c оператором Бесселя. Решение задачи ищется в виде линейной комбинации кусочно непрерывных базисных функций, имеющих компактный носитель. Построение решения осуществляется в два этапа. Первоначально проводится аппроксимация по пространственной переменной с использованием проекционно-сеточного метода Бубнова—Галеркина. Затем конечно-разностным методом проводится приближение по t. Возникающая при этом система уравнений имеет трехдиагональную матрицу и решается методом прогонки.

Полный текст

1. Введение. Проекционно-сеточные методы в настоящее время являются чрезвычайно действенными инструментами решения задач математической физики: теплообмена, гидродинамики, электродинамики, механики твердого деформируемого тела и топологической оптимизации.

Общая теория разностных методов разработана А. А. Самарским [11]. Различные приближенные методы решения краевых задач изложены в монографии Г. И. Марчука [8], также классический вариационный подход описан в книге С. Г. Михлина [9]. Наиболее обширные результаты, полученные при численном решении, относятся к регулярным краевым задачам, порождаемым невырожденными уравнениями с гладкими коэффициентами. Эти исследования опираются на теорию аппроксимаций в функциональных пространствах. Гораздо меньше изучены подобные вопросы для сингулярных уравнений.

В этой связи необходимо отметить работу [10], в которой рассмотрено уравнение

d dx x k p(x) du dx +q(x)u=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadsgaaeaaca WGKbGaamiEaaaadaqadaqaaiaadIhadaahaaWcbeqaaiaadUgaaaGc caWGWbGaaGikaiaadIhacaaIPaWaaSaaaeaacaWGKbGaamyDaaqaai aadsgacaWG4baaaaGaayjkaiaawMcaaiabgUcaRiaadghacaaIOaGa amiEaiaaiMcacaWG1bGaaGypaiaadAgacaaIOaGaamiEaiaaiMcaaa a@49AE@

для 0k5/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaam4AaiabgsMiJk aaiwdacaaIVaGaaGOmaaaa@3905@ , p(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaGaaG Opaiaaicdaaaa@3696@ . В ней указан порядок аппроксимации в энергетическом пространстве, зависящий от k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  и гладкости функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ .

В работе [6] В. В. Катраховым и А. А. Катраховой изучена сходимость метода Галеркина для краевой задачи

2 u x 2 + k x u x + 2 u y 2 +qu=f(x,y), du dx | x=0 =0,u | Γ + =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaqadaqaamaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadIha daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGRbaaba GaamiEaaaadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4baa aaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabe aacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaa ikdaaaaaaOGaey4kaSIaamyCaiaadwhacaaI9aGaamOzaiaaiIcaca WG4bGaaGilaiaadMhacaaIPaGaaGilaiaaywW7daWcaaqaaiaadsga caWG1baabaGaamizaiaadIhaaaGaaGiFamaaBaaaleaacaWG4bGaaG ypaiaaicdaaeqaaOGaaGypaiaaicdacaaISaGaaGzbVlaadwhacaaI 8bWaaSbaaSqaaiabfo5ahnaaCaaabeqaaiabgUcaRaaaaeqaaOGaaG ypaiaaicdacaaISaaaaa@6749@

где

Γ + = Ω + {(x,y):x=0}, Ω + R + 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaahaaWcbeqaaiabgUcaRa aakiaai2dacqGHciITcqqHPoWvdaahaaWcbeqaaiabgUcaRaaakiaa iUhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaaiQdacaWG4bGaaG ypaiaaicdacaaI9bGaaGilaiaaywW7cqqHPoWvdaahaaWcbeqaaiab gUcaRaaakiabgkOimlaadkfadaqhaaWcbaGaey4kaScabaGaaGOmaa aakiaai6caaaa@4CC1@

Ю. Л. Гусманом и А. А. Оганесяном [3] был развит вариационно-разностный подход для двумерного уравнения

x x μ u x + 2 u y 2 +qu=f(x,y), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2cqaaiabgkGi2k aadIhaaaWaaeWaaeaacaWG4bWaaWbaaSqabeaacqaH8oqBaaGcdaWc aaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG4baaaaGaayjkaiaawM caaiabgUcaRmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amyDaaqaaiabgkGi2kaadMhadaahaaWcbeqaaiaaikdaaaaaaOGaey 4kaSIaamyCaiaadwhacaaI9aGaamOzaiaaiIcacaWG4bGaaGilaiaa dMhacaaIPaGaaGilaaaa@4FC8@

где 0μ<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiVd0MaaGipai aaigdaaaa@3763@ . Получены точные по порядку оценки погрешности метода.

Работа [6] посвящена исследованию сингулярных краевых задач в контексте изучения сходимости приближенных методов решения.

Вопрос построения эффективных численных методов для сингулярных и вырождающихся краевых задач, несомненно, является актуальным. В настоящей статье на основе вариационного подхода устанавливается разрешимость сингулярного параболического уравнения, в котором по одной из переменных действует оператор Бесселя. Приводятся оценки погрешности аппроксимации точного решения методом Бубнова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Галеркина.

2. Постановка задачи. Рассмотрим начально-краевую задачу

du dt +Lu=f, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadsgacaWG1baabaGaam izaiaadshaaaGaey4kaSIaamitaiaadwhacaaI9aGaamOzaiaaiYca aaa@3AA7@  (1)

u(x,0)= u (0) , du dx | x=0 =0,u(1)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMca aeqaaOGaaGilaiaaywW7daWcaaqaaiaadsgacaWG1baabaGaamizai aadIhaaaGaaGiFamaaBaaaleaacaWG4bGaaGypaiaaicdaaeqaaOGa aGypaiaaicdacaaISaGaamyDaiaaiIcacaaIXaGaaGykaiaai2daca aIWaGaaGilaaaa@4BFE@  (2)

где f=f(x,t) L 2,γ (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaadAgacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgIGiolaadYeadaWgaaWcbaGaaGOm aiaaiYcacqaHZoWzaeqaaOGaaGikaiabfM6axjaaiMcaaaa@4102@  для всех t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , xΩ=(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaeuyQdCLaaGypai aaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@3A23@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , u (0) = u (0) (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccaaI9aGaamyDamaaBaaaleaacaaIOaGaaGimaiaa iMcaaeqaaOGaaGikaiaadIhacaaIPaaaaa@3B84@ . Оператор L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@328E@  имеет вид

Lu= x γ d dx x γ p(x) du dx +q(x)u, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaamyDaiaai2dacqGHsislca WG4bWaaWbaaSqabeaacqGHsislcqaHZoWzaaGcdaWcaaqaaiaadsga aeaacaWGKbGaamiEaaaadaqadaqaaiaadIhadaahaaWcbeqaaiabeo 7aNbaakiaadchacaaIOaGaamiEaiaaiMcadaWcaaqaaiaadsgacaWG 1baabaGaamizaiaadIhaaaaacaGLOaGaayzkaaGaey4kaSIaamyCai aaiIcacaWG4bGaaGykaiaadwhacaaISaaaaa@4D61@

D(L)= v:v L 2,γ ,Lv L 2,γ , dv dx L 2,γ , dv dx (0)=v(1)=0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaGikaiaadYeacaaIPaGaaG ypamaacmaabaGaamODaiaaiQdacaWG2bGaeyicI4SaamitamaaBaaa leaacaaIYaGaaGilaiabeo7aNbqabaGccaaISaGaaGjbVlaadYeaca WG2bGaeyicI4SaamitamaaBaaaleaacaaIYaGaaGilaiabeo7aNbqa baGccaaISaGaaGjbVpaalaaabaGaamizaiaadAhaaeaacaWGKbGaam iEaaaacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiYcacaaMe8+aaSaaaeaacaWGKbGaamODaaqaaiaadsgaca WG4baaaiaaiIcacaaIWaGaaGykaiaai2dacaWG2bGaaGikaiaaigda caaIPaGaaGypaiaaicdaaiaawUhacaGL9baacaaIUaaaaa@63DD@

Основы теории уравнений, содержащих подобные операторы, были заложены И. А. Киприяновым и Я. И. Житомирским (см. [5, 7, 12]).

Скалярное произведение и норма в L 2,γ (0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdacaaISa Gaeq4SdCgabeaakiaaiIcacaaIWaGaaGilaiaaigdacaaIPaaaaa@396D@  задаются следующим образом:

(u,v) L 2,γ (0,1) = 0 1 x γ u(x)v(x)dx,f L 2,γ (0,1) = 0 1 x γ f 2 (x)dx 1/2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiYcacaWG2bGaaG ykamaaBaaaleaacaWGmbWaaSbaaeaacaaIYaGaaGilaiabeo7aNbqa baGaaGikaiaaicdacaaISaGaaGymaiaaiMcaaeqaaOGaaGypamaape dabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaadIhadaahaaWc beqaaiabeo7aNbaakiaadwhacaaIOaGaamiEaiaaiMcacaWG2bGaaG ikaiaadIhacaaIPaGaamizaiaadIhacaaISaGaaGzbVhbbfv3ySLgz GueE0jxyaGabaiab=vIiqjaadAgacqWFLicudaWgaaWcbaGaamitam aaBaaabaGaaGOmaiaaiYcacqaHZoWzaeqaaiaaiIcacaaIWaGaaGil aiaaigdacaaIPaaabeaakiaai2dadaqadaqaamaapedabeWcbaGaaG imaaqaaiaaigdaa0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7a NbaakiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiM cacaaMi8UaamizaiaadIhaaiaawIcacaGLPaaadaahaaWcbeqaaiaa igdacaaIVaGaaGOmaaaakiaai6caaaa@7305@

Будем считать, что p(x) C 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaGaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C49@ , q(x)C[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4Saam4qaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3B58@ , p(x) p 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaGaey yzImRaamiCamaaBaaaleaacaaIWaaabeaakiaai6dacaaIWaaaaa@3A41@ , q(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey yzImRaaGimaaaa@3795@ , p 0 =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0baaaa@3929@ , γ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@ , γ1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcqGHGjsUcaaIXaaaaa@35E6@ .

Энергетическое пространство, соответствующее оператору L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@328E@ , будем обозначать H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@ . Скалярное произведение в H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@  имеет вид

[u,v)]= 0 1 x γ p u t v t +quv dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaaiYcacaWG2bGaaG ykaiaai2facaaI9aWaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGH RiI8aOGaamiEamaaCaaaleqabaGaeq4SdCgaaOWaaeWaaeaacaWGWb WaaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaadaWcaaqa aiabgkGi2kaadAhaaeaacqGHciITcaWG0baaaiabgUcaRiaadghaca WG1bGaamODaaGaayjkaiaawMcaaiaadsgacaWG4bGaaGOlaaaa@50BA@  (3)

Весовые пространства H γ m (0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiabeo7aNbqaai aad2gaaaGccaaIOaGaaGimaiaaiYcacaaIXaGaaGykaaaa@38EA@  (пространства И. А. Киприянова) определяются как замыкание класса C чет ([0,1]) C ([0,1]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaa0baaSqaaiaabEebcaqG1q GaaeOqeaqaaiabg6HiLcaakiaaiIcacaaIBbGaaGimaiaaiYcacaaI XaGaaGyxaiaaiMcacqGHckcZcaWGdbWaaWbaaSqabeaacqGHEisPaa GccaaIOaGaaG4waiaaicdacaaISaGaaGymaiaai2facaaIPaaaaa@45A4@ , состоящего из четных функций по норме

f m,γ = 0 i 1 +2 i 2 m i=0,1 0 1 x γ D x i 1 B x i 2 f(x) 2 1/2 dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGMbGae8xjIa1aaSbaaSqaaiaad2gacaaISaGaeq4SdCgabeaa kiaai2dadaqadaqaamaaqafabeWcbaabaiqabaGaaGimaiabgsMiJk aadMgadaWgaaqaaiaaigdaaeqaaiabgUcaRiaaikdacaWGPbWaaSba aeaacaaIYaaabeaacqGHKjYOcaWGTbaabaGaamyAaiaai2dacaaIWa GaaGilaiaaigdaaaaabeqdcqGHris5aOWaa8qmaeqaleaacaaIWaaa baGaaGymaaqdcqGHRiI8aOGaamiEamaaCaaaleqabaGaeq4SdCgaaO WaaqWaaeaacaWGebWaa0baaSqaaiaadIhaaeaacaWGPbWaaSbaaeaa caaIXaaabeaaaaGccaWGcbWaa0baaSqaaiaadIhaaeaacaWGPbWaaS baaeaacaaIYaaabeaaaaGccaWGMbGaaGikaiaadIhacaaIPaaacaGL hWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIXaGaaG4laiaaikdaaaGccaWGKbGaamiEaiaaiYca aaa@6A26@

где D x = d dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadIhaaeqaaO GaaGypamaalaaabaGaamizaaqaaiaadsgacaWG4baaaaaa@375F@ , B x = d 2 d x 2 + γ x d dx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadIhaaeqaaO GaaGypamaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaaaOqaaiaa dsgacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRmaalaaaba Gaeq4SdCgabaGaamiEaaaadaWcaaqaaiaadsgaaeaacaWGKbGaamiE aaaaaaa@3FB8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  оператор Бесселя.

Произвольно выберем функцию из v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  из пространства H γ 1 ((0,1)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiabeo7aNbqaai aaigdaaaGccaaIOaGaaGikaiaaicdacaaISaGaaGymaiaaiMcacqGH xdaTcqqHPoWvcaaIPaaaaa@3DBD@ , удовлетворяющую условию v(x,T)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam ivaiaaiMcacaaI9aGaaGimaaaa@382A@ . Умножим (1) на x γ v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqaHZoWzaa GccaWG2baaaa@3593@ , проинтегрируем по области (0,T)×Ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaWGubGaaG ykaiabgEna0kabfM6axbaa@3910@ :

0 T 0 1 x γ u t vdx 0 1 x γ x γ d dx x γ p(x) du dx v+ x γ q(x)uv x γ fv dx dt=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaWadaqaamaapedabeWcbaGaaGimaaqaaiaaigda a0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7aNbaakmaalaaaba GaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaamODaiaadsgacaWG 4bGaeyOeI0Yaa8qmaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aO WaaeWaaeaacaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWG4bWaaWba aSqabeaacqGHsislcqaHZoWzaaGcdaWcaaqaaiaadsgaaeaacaWGKb GaamiEaaaadaqadaqaaiaadIhadaahaaWcbeqaaiabeo7aNbaakiaa dchacaaIOaGaamiEaiaaiMcadaWcaaqaaiaadsgacaWG1baabaGaam izaiaadIhaaaaacaGLOaGaayzkaaGaamODaiabgUcaRiaadIhadaah aaWcbeqaaiabeo7aNbaakiaadghacaaIOaGaamiEaiaaiMcacaWG1b GaamODaiabgkHiTiaadIhadaahaaWcbeqaaiabeo7aNbaakiaadAga caWG2baacaGLOaGaayzkaaGaaGjcVlaadsgacaWG4baacaGLBbGaay zxaaGaamizaiaadshacaaI9aGaaGimaiaai6caaaa@7824@

Интегрируя по частям, получим:

0 T u, v t +[u,v](f,v) dt=( u (0) ,v(x,0)), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaWadaqaaiabgkHiTmaabmaabaGaamyDaiaaiYca daWcaaqaaiabgkGi2kaadAhaaeaacqGHciITcaWG0baaaaGaayjkai aawMcaaiabgUcaRiaaiUfacaWG1bGaaGilaiaadAhacaaIDbGaeyOe I0IaaGikaiaadAgacaaISaGaamODaiaaiMcaaiaawUfacaGLDbaaca WGKbGaamiDaiaai2dacaaIOaGaamyDamaaBaaaleaacaaIOaGaaGim aiaaiMcaaeqaaOGaaGilaiaadAhacaaIOaGaamiEaiaaiYcacaaIWa GaaGykaiaaiMcacaaISaaaaa@5849@  (4)

где (,)=(, ) L 2,γ (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyyXICTaaGilaiabgwSixl aaiMcacaaI9aGaaGikaiabgwSixlaaiYcacqGHflY1caaIPaWaaSba aSqaaiaadYeadaWgaaqaaiaaikdacaaISaGaeq4SdCgabeaacaaIOa GaeuyQdCLaaGykaaqabaaaaa@470C@ .

Будем называть обобщенным решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) функцию u L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamitamaaBaaale aacaaIYaGaaGilaiabeo7aNbqabaGccaaIOaGaaGikaiaaicdacaaI SaGaamivaiaaiMcacqGHxdaTcqqHPoWvcaaIPaaaaa@4113@ , которая имеет производную u/x L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadIhacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4595@  и удовлетворяет уравнению (4) для любой такой функции v H γ 1 ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4SaamisamaaDaaale aacqaHZoWzaeaacaaIXaaaaOGaaGikaiaaiIcacaaIWaGaaGilaiaa dsfacaaIPaGaey41aqRaeuyQdCLaaGykaaaa@405A@ , что v(0,t)/x=v(1,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG2bGaaGikaiaaicdaca aISaGaamiDaiaaiMcacaaIVaGaeyOaIyRaamiEaiaai2dacaWG2bGa aGikaiaaigdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@421A@ .

Приближение решения при такой постановке можно производить как по переменной x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , так и по переменной t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  в виде рядов с базисными функциями ϕ i (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcaaaa@370B@ , ϕ j (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaamOAaaqaba GccaaIOaGaamiDaiaaiMcaaaa@3708@ . В этом случае по временной переменной получаются, как правило, неявные схемы, и затруднено использование удобных на практике разностных схем для аппроксимации производной по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ .

Пусть такое решение существует и u/t L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadshacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4591@ . Примем v(x,t)=w(x)Ψ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaam4DaiaaiIcacaWG4bGaaGykaiabfI6azjaa iIcacaWG0bGaaGykaaaa@3EDB@ , где w(x) H γ 1 (Ω),w(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaIPaGaey icI4SaamisamaaDaaaleaacqaHZoWzaeaacaaIXaaaaOGaaGikaiab fM6axjaaiMcacaaISaGaam4DaiaaiIcacaaIWaGaaGykaiaai2daca aIWaaaaa@424A@ , dΨ/dt L 2,γ (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeuiQdKLaaG4laiaadsgaca WG0bGaeyicI4SaamitamaaBaaaleaacaaIYaGaaGilaiabeo7aNbqa baGccaaIOaGaaGimaiaaiYcacaWGubGaaGykaaaa@4022@ , Ψ(T)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwcaaIOaGaamivaiaaiMcaca aI9aGaaGimaaaa@370B@ . После подстановки v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  в (4) и интегрирования по частям получим

0 T u t ,w +[u,w](f,w) Ψ(t)dt+Ψ(0) u(x,0) u (0) ,w =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaWadaqaamaabmaabaWaaSaaaeaacqGHciITcaWG 1baabaGaeyOaIyRaamiDaaaacaaISaGaam4DaaGaayjkaiaawMcaai abgUcaRiaaiUfacaWG1bGaaGilaiaadEhacaaIDbGaeyOeI0IaaGik aiaadAgacaaISaGaam4DaiaaiMcaaiaawUfacaGLDbaacqqHOoqwca aIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgUcaRiabfI6azjaaiIca caaIWaGaaGykamaabmaabaGaamyDaiaaiIcacaWG4bGaaGilaiaaic dacaaIPaGaeyOeI0IaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMca aeqaaOGaaGilaiaadEhaaiaawIcacaGLPaaacaaI9aGaaGimaiaai6 caaaa@62A4@

Учтем произвольность Ψ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwcaaIOaGaamiDaiaaiMcaaa a@35AA@ :

u t ,w (t)+[u,w](t)=(f,w)(t),(u(x,0),w)=( u (0) ,w). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDaaqaaiabgkGi2kaadshaaaGaaGilaiaadEhaaiaawIcacaGLPaaa caaIOaGaamiDaiaaiMcacqGHRaWkcaaIBbGaamyDaiaaiYcacaWG3b GaaGyxaiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaamOzaiaaiYca caWG3bGaaGykaiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaaGikai aadwhacaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaaiYcacaWG3bGa aGykaiaai2dacaaIOaGaamyDamaaBaaaleaacaaIOaGaaGimaiaaiM caaeqaaOGaaGilaiaadEhacaaIPaGaaGOlaaaa@5D10@  (5)

Будем называть обобщенным решением задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) функцию u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@ , которая почти при каждом t(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaGikaiaaicdaca aISaGaamivaiaaiMcaaaa@37E8@  принадлежит энергетическому пространству H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@  со скалярным произведением вида (3), имеет производную u/t L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadshacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4591@  и почти всюду на (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaWGubGaaG ykaaaa@356B@  удовлетворяет равенствам (5) при любом выборе w(x) H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaIPaGaey icI4SaamisamaaBaaaleaacaWGmbaabeaaaaa@3869@ . Второе определение обобщенного решения требует наличия производной u/t L 2,γ ((0,T)×Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaG4laiabgkGi2k aadshacqGHiiIZcaWGmbWaaSbaaSqaaiaaikdacaaISaGaeq4SdCga beaakiaaiIcacaaIOaGaaGimaiaaiYcacaWGubGaaGykaiabgEna0k abfM6axjaaiMcaaaa@4591@ , однако при такой постановке переменную t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  можно рассматривать как параметр.

3. Построение проекционно-разностной схемы. Для приближенного решения задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) будем в первую очередь выполнять аппроксимацию по пространственной переменнной c помощью проекционно-сеточного метода, а затем приближение по времени t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  с использованием конечно-разностного метода.

Введем на [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B4@  сетку 0= x 0 < x 1 < x 2 << x n1 < x n =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGypaiaadIhadaWgaaWcba GaaGimaaqabaGccaaI8aGaamiEamaaBaaaleaacaaIXaaabeaakiaa iYdacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGipaiablAciljaaiY dacaWG4bWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiYda caWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGypaiaaigdaaaa@457E@ , i=1,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gaaaa@37AE@ , h= x i x i1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaaGypaiaadIhadaWgaaWcba GaamyAaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaadMgacqGHsisl caaIXaaabeaaaaa@3A3E@ . Для случая, когда γ1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcqGHGjsUcaaIXaaaaa@35E6@ , базисные функции заданы следующим образом:

ϕ i (x)= x 1γ x i1 1γ x i 1γ x i1 1γ , x( x i1 , x i ), x i+1 1γ x 1γ x i+1 1γ x i 1γ , x( x i , x i+1 ), 0, x( x i1 , x i+1 ),i=1,,n1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcacaaI9aWaaiqaaeaafaqaaeWaeaaaaeaa aeaadaWcaaqaaiaadIhadaahaaWcbeqaaiaaigdacqGHsislcqaHZo WzaaGccqGHsislcaWG4bWaa0baaSqaaiaadMgacqGHsislcaaIXaaa baGaaGymaiabgkHiTiabeo7aNbaaaOqaaiaadIhadaqhaaWcbaGaam yAaaqaaiaaigdacqGHsislcqaHZoWzaaGccqGHsislcaWG4bWaa0ba aSqaaiaadMgacqGHsislcaaIXaaabaGaaGymaiabgkHiTiabeo7aNb aaaaGccaaISaaabaaabaGaamiEaiabgIGiolaaiIcacaWG4bWaaSba aSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiYcacaWG4bWaaSbaaS qaaiaadMgaaeqaaOGaaGykaiaaiYcaaeaaaeaadaWcaaqaaiaadIha daqhaaWcbaGaamyAaiabgUcaRiaaigdaaeaacaaIXaGaeyOeI0Iaeq 4SdCgaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGymaiabgkHiTiab eo7aNbaaaOqaaiaadIhadaqhaaWcbaGaamyAaiabgUcaRiaaigdaae aacaaIXaGaeyOeI0Iaeq4SdCgaaOGaeyOeI0IaamiEamaaDaaaleaa caWGPbaabaGaaGymaiabgkHiTiabeo7aNbaaaaGccaaISaaabaaaba GaamiEaiabgIGiolaaiIcacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGa aGilaiaadIhadaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaG ykaiaaiYcaaeaaaeaacaaIWaGaaGilaaqaaiaaysW7aeaacaWG4bGa eyycI8SaaGikaiaadIhadaWgaaWcbaGaamyAaiabgkHiTiaaigdaae qaaOGaaGilaiaadIhadaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqa aOGaaGykaiaaiYcacaaMe8UaamyAaiaai2dacaaIXaGaaGilaiablA ciljaaiYcacaWGUbGaeyOeI0IaaGymaiaai6caaaaacaGL7baaaaa@9E9F@  (6)

ϕ 1 (x)= 1, x( x 0 , x 1 ), x 2 1γ x 1γ x 2 1γ x 1 1γ , x( x 1 , x 2 ); ϕ n (x)= x 1γ x n1 1γ x n 1γ x n1 1γ , x( x n1 , x n ), 0, x( x n1 , x n ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiMcacaaI9aWaaiqaaeaafaqaaeGaeaaaaeaa aeaacaaIXaGaaGilaaqaaiaaysW7aeaacaWG4bGaeyicI4SaaGikai aadIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiEamaaBaaaleaa caaIXaaabeaakiaaiMcacaaISaaabaaabaWaaSaaaeaacaWG4bWaa0 baaSqaaiaaikdaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaOGaeyOeI0Ia amiEamaaCaaaleqabaGaaGymaiabgkHiTiabeo7aNbaaaOqaaiaadI hadaqhaaWcbaGaaGOmaaqaaiaaigdacqGHsislcqaHZoWzaaGccqGH sislcaWG4bWaa0baaSqaaiaaigdaaeaacaaIXaGaeyOeI0Iaeq4SdC gaaaaakiaaiYcaaeaacaaMe8oabaGaamiEaiabgIGiolaaiIcacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadIhadaWgaaWcbaGaaG OmaaqabaGccaaIPaGaaG4oaaaaaiaawUhaaiaaywW7caaMf8UaaGzb VlaaywW7cqaHvpGzdaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiEai aaiMcacaaI9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaadaWcaaqaaiaa dIhadaahaaWcbeqaaiaaigdacqGHsislcqaHZoWzaaGccqGHsislca WG4bWaa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaaGymaiabgkHi Tiabeo7aNbaaaOqaaiaadIhadaqhaaWcbaGaamOBaaqaaiaaigdacq GHsislcqaHZoWzaaGccqGHsislcaWG4bWaa0baaSqaaiaad6gacqGH sislcaaIXaaabaGaaGymaiabgkHiTiabeo7aNbaaaaGccaaISaaaba GaaGjbVdqaaiaadIhacqGHiiIZcaaIOaGaamiEamaaBaaaleaacaWG UbGaeyOeI0IaaGymaaqabaGccaaISaGaamiEamaaBaaaleaacaWGUb aabeaakiaaiMcacaaISaaabaaabaGaaGimaiaaiYcaaeaacaaMe8oa baGaamiEaiabgMGiplaaiIcacaWG4bWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGa aGykaiaai6caaaaacaGL7baaaaa@AA13@  (7)

Приближенное решение задачи будем искать в виде

u h = i=1 n1 a i (t) ϕ i (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaO GaaGypamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaiab gkHiTiaaigdaa0GaeyyeIuoakiaadggadaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiDaiaaiMcacqaHvpGzdaWgaaWcbaGaamyAaaqabaGc caaIOaGaamiEaiaaiMcacaaIUaaaaa@4667@

Тогда коэффициенты, являющиеся функциями от t(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaGikaiaaicdaca aISaGaamivaiaaiMcaaaa@37E8@ , будем искать из системы ОДУ, полученной с помощью метода Бубнова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Галеркина из (5):

u h t , ϕ i (t)+[ u h , ϕ i ](t)=(f, ϕ i )(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGil aiabew9aMnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaaiI cacaWG0bGaaGykaiabgUcaRiaaiUfacaWG1bWaaSbaaSqaaiaadIga aeqaaOGaaGilaiabew9aMnaaBaaaleaacaWGPbaabeaakiaai2faca aIOaGaamiDaiaaiMcacaaI9aGaaGikaiaadAgacaaISaGaeqy1dy2a aSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiIcacaWG0bGaaGykaiaaiY caaaa@53D0@  (8)

( u h (x,0) u (0) , ϕ i )=0,i=1,,N. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaBaaaleaacaWGOb aabeaakiaaiIcacaWG4bGaaGilaiaaicdacaaIPaGaeyOeI0IaamyD amaaBaaaleaacaaIOaGaaGimaiaaiMcaaeqaaOGaaGilaiabew9aMn aaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaaGimaiaaiYcacaaM f8UaamyAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGobGaaG Olaaaa@4B3D@  (9)

Уравнения (8) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (9) могут быть записаны в матричном виде:

B ^ da dt + A ^ a=F(t), B ^ a(0)= a (0) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaamaala aabaGaamizaiaadggaaeaacaWGKbGaamiDaaaacqGHRaWkdaqiaaqa aiaadgeaaiaawkWaaiaadggacaaI9aGaamOraiaaiIcacaWG0bGaaG ykaiaaiYcacaaMf8+aaecaaeaacaWGcbaacaGLcmaacaWGHbGaaGik aiaaicdacaaIPaGaaGypaiaadggadaWgaaWcbaGaaGikaiaaicdaca aIPaaabeaakiaaiYcaaaa@49D1@  (10)

где

a(t)= a 1 (t),, a n1 (t) T ,F(t)= F 1 (t),, F n1 (t) T , F i (t)=(f, ϕ i )(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadshacaaIPaGaaG ypamaabmaabaGaamyyamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG 0bGaaGykaiaaiYcacqWIMaYscaaISaGaamyyamaaBaaaleaacaWGUb GaeyOeI0IaaGymaaqabaGccaaIOaGaamiDaiaaiMcaaiaawIcacaGL PaaadaahaaWcbeqaaiaadsfaaaGccaaISaGaaGzbVlaadAeacaaIOa GaamiDaiaaiMcacaaI9aWaaeWaaeaacaWGgbWaaSbaaSqaaiaaigda aeqaaOGaaGikaiaadshacaaIPaGaaGilaiablAciljaaiYcacaWGgb WaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiIcacaWG0bGa aGykaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiaaiYcaca aMf8UaamOramaaBaaaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGyk aiaai2dacaaIOaGaamOzaiaaiYcacqaHvpGzdaWgaaWcbaGaamyAaa qabaGccaaIPaGaaGikaiaadshacaaIPaGaaGilaaaa@6B06@

a (0) = a (0),1 ,, a (0),n1 T , a (0),i =( u (0) , ϕ i ), B ^ = B ij , A ^ = A ij , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccaaI9aWaaeWaaeaacaWGHbWaaSbaaSqaaiaaiIca caaIWaGaaGykaiaaiYcacaaIXaaabeaakiaaiYcacqWIMaYscaaISa GaamyyamaaBaaaleaacaaIOaGaaGimaiaaiMcacaaISaGaamOBaiab gkHiTiaaigdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaWGub aaaOGaaGilaiaaywW7caWGHbWaaSbaaSqaaiaaiIcacaaIWaGaaGyk aiaaiYcacaWGPbaabeaakiaai2dacaaIOaGaamyDamaaBaaaleaaca aIOaGaaGimaiaaiMcaaeqaaOGaaGilaiabew9aMnaaBaaaleaacaWG PbaabeaakiaaiMcacaaISaWaaecaaeaacaWGcbaacaGLcmaacaaI9a WaaeWaaeaacaWGcbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjk aiaawMcaaiaaiYcacaaMf8+aaecaaeaacaWGbbaacaGLcmaacaaI9a WaaeWaaeaacaWGbbWaaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjk aiaawMcaaiaaiYcaaaa@6772@

A ij = A ji = ϕ i , ϕ j = Ω ij x γ p d ϕ i dx d ϕ j dx +q ϕ i ϕ j dx,j=1,,n1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaai2dacaWGbbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaa i2dadaWadaqaaiabew9aMnaaBaaaleaacaWGPbaabeaakiaaiYcacq aHvpGzdaWgaaWcbaGaamOAaaqabaaakiaawUfacaGLDbaacaaI9aWa a8qeaeqaleaacqqHPoWvdaWgaaqaaiaadMgacaWGQbaabeaaaeqani abgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGcdaqadaqaaiaa dchadaWcaaqaaiaadsgacqaHvpGzdaWgaaWcbaGaamyAaaqabaaake aacaWGKbGaamiEaaaadaWcaaqaaiaadsgacqaHvpGzdaWgaaWcbaGa amOAaaqabaaakeaacaWGKbGaamiEaaaacqGHRaWkcaWGXbGaeqy1dy 2aaSbaaSqaaiaadMgaaeqaaOGaeqy1dy2aaSbaaSqaaiaadQgaaeqa aaGccaGLOaGaayzkaaGaamizaiaadIhacaaISaGaaGzbVlaadQgaca aI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamOBaiabgkHiTiaaigda caaISaaaaa@6D01@

B ij = B ji = ϕ i , ϕ j = Ω ij x γ ϕ i ϕ j dx, Ω ij =(0,1)supp ϕ i supp ϕ j , Ω j =(0,1)supp ϕ j . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaai2dacaWGcbWaaSbaaSqaaiaadQgacaWGPbaabeaakiaa i2dadaqadaqaaiabew9aMnaaBaaaleaacaWGPbaabeaakiaaiYcacq aHvpGzdaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacaaI9aWa a8qeaeqaleaacqqHPoWvdaWgaaqaaiaadMgacaWGQbaabeaaaeqani abgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccqaHvpGzdaWg aaWcbaGaamyAaaqabaGccqaHvpGzdaWgaaWcbaGaamOAaaqabaGcca WGKbGaamiEaiaaiYcacaaMf8UaeuyQdC1aaSbaaSqaaiaadMgacaWG Qbaabeaakiaai2dacaaIOaGaaGimaiaaiYcacaaIXaGaaGykaiabgM IihlaadohacaWG1bGaamiCaiaadchacqaHvpGzdaWgaaWcbaGaamyA aaqabaGccqGHPiYXcaWGZbGaamyDaiaadchacaWGWbGaeqy1dy2aaS baaSqaaiaadQgaaeqaaOGaaGilaiaaywW7cqqHPoWvdaWgaaWcbaGa amOAaaqabaGccaaI9aGaaGikaiaaicdacaaISaGaaGymaiaaiMcacq GHPiYXcaWGZbGaamyDaiaadchacaWGWbGaeqy1dy2aaSbaaSqaaiaa dQgaaeqaaOGaaGOlaaaa@7F8F@

F i = Ω j x γ f(x,t) ϕ i dx,i=1,,n1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaapefabeWcbaGaeuyQdC1aaSbaaeaacaWGQbaabeaaaeqa niabgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWGMbGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacqaHvpGzdaWgaaWcbaGaamyA aaqabaGccaWGKbGaamiEaiaaiYcacaaMf8UaamyAaiaai2dacaaIXa GaaGilaiablAciljaaiYcacaWGUbGaeyOeI0IaaGymaiaai6caaaa@50A4@

Поскольку скалярное произведение базисных функций в пространстве L 2,γ (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdacaaISa Gaeq4SdCgabeaakiaaiIcacqqHPoWvcaaIPaaaaa@38D0@  отлично от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  только для соседних функций, то для матрицы A ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadgeaaiaawkWaaaaa@3345@  требуется найти только элементы A j1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaaaa@36EB@ , A j,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaaaaa@3543@ , A j+1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaaaa@36E0@  (см. [1]) по следующим формулам:

A j1,j = x j1 x j x γ p d ϕ j1 dx d ϕ j dx dx+ x j1 x j x γ q ϕ j1 ϕ j dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaapehabeWcbaGaamiE amaaBaaabaGaamOAaiabgkHiTiaaigdaaeqaaaqaaiaadIhadaWgaa qaaiaadQgaaeqaaaqdcqGHRiI8aOGaamiEamaaCaaaleqabaGaeq4S dCgaaOGaamiCamaalaaabaGaamizaiabew9aMnaaBaaaleaacaWGQb GaeyOeI0IaaGymaaqabaaakeaacaWGKbGaamiEaaaadaWcaaqaaiaa dsgacqaHvpGzdaWgaaWcbaGaamOAaaqabaaakeaacaWGKbGaamiEaa aacaaMi8UaamizaiaadIhacqGHRaWkdaWdXbqabSqaaiaadIhadaWg aaqaaiaadQgacqGHsislcaaIXaaabeaaaeaacaWG4bWaaSbaaeaaca WGQbaabeaaa0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7aNbaa kiaadghacqaHvpGzdaWgaaWcbaGaamOAaiabgkHiTiaaigdaaeqaaO Gaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaadsgacaWG4bGa aGilaaaa@6D11@  (11)

A j,j = x j1 x j x γ p d ϕ j dx d ϕ j dx dx+ x j1 x j x γ q ϕ j ϕ j dx+ x j x j+1 x γ p d ϕ j dx d ϕ j dx dx+ x j x j+1 x γ q ϕ j ϕ j dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaGccaaI9aWaa8qCaeqaleaacaWG4bWaaSbaaeaacaWG QbGaeyOeI0IaaGymaaqabaaabaGaamiEamaaBaaabaGaamOAaaqaba aaniabgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWGWbWa aSaaaeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaaGcbaGaam izaiaadIhaaaWaaSaaaeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQga aeqaaaGcbaGaamizaiaadIhaaaGaaGjcVlaadsgacaWG4bGaey4kaS Yaa8qCaeqaleaacaWG4bWaaSbaaeaacaWGQbGaeyOeI0IaaGymaaqa baaabaGaamiEamaaBaaabaGaamOAaaqabaaaniabgUIiYdGccaWG4b WaaWbaaSqabeaacqaHZoWzaaGccaWGXbGaeqy1dy2aaSbaaSqaaiaa dQgaaeqaaOGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaads gacaWG4bGaey4kaSYaa8qCaeqaleaacaWG4bWaaSbaaeaacaWGQbaa beaaaeaacaWG4bWaaSbaaeaacaWGQbGaey4kaSIaaGymaaqabaaani abgUIiYdGccaWG4bWaaWbaaSqabeaacqaHZoWzaaGccaWGWbWaaSaa aeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaaGcbaGaamizai aadIhaaaWaaSaaaeaacaWGKbGaeqy1dy2aaSbaaSqaaiaadQgaaeqa aaGcbaGaamizaiaadIhaaaGaaGjcVlaadsgacaWG4bGaey4kaSYaa8 qCaeqaleaacaWG4bWaaSbaaeaacaWGQbaabeaaaeaacaWG4bWaaSba aeaacaWGQbGaey4kaSIaaGymaaqabaaaniabgUIiYdGccaWG4bWaaW baaSqabeaacqaHZoWzaaGccaWGXbGaeqy1dy2aaSbaaSqaaiaadQga aeqaaOGaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaadsgaca WG4bGaaGilaaaa@9A34@  (12)

A j+1,j = x j x j+1 x γ p d ϕ j dx d ϕ j+1 dx dx+ x j x j+1 x γ q ϕ j+1 ϕ j dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaapehabeWcbaGaamiE amaaBaaabaGaamOAaaqabaaabaGaamiEamaaBaaabaGaamOAaiabgU caRiaaigdaaeqaaaqdcqGHRiI8aOGaamiEamaaCaaaleqabaGaeq4S dCgaaOGaamiCamaalaaabaGaamizaiabew9aMnaaBaaaleaacaWGQb aabeaaaOqaaiaadsgacaWG4baaamaalaaabaGaamizaiabew9aMnaa BaaaleaacaWGQbGaey4kaSIaaGymaaqabaaakeaacaWGKbGaamiEaa aacaaMi8UaamizaiaadIhacqGHRaWkdaWdXbqabSqaaiaadIhadaWg aaqaaiaadQgaaeqaaaqaaiaadIhadaWgaaqaaiaadQgacqGHRaWkca aIXaaabeaaa0Gaey4kIipakiaadIhadaahaaWcbeqaaiabeo7aNbaa kiaadghacqaHvpGzdaWgaaWcbaGaamOAaiabgUcaRiaaigdaaeqaaO Gaeqy1dy2aaSbaaSqaaiaadQgaaeqaaOGaaGjcVlaadsgacaWG4bGa aGOlaaaa@6CDC@  (13)

Аналогично для матрицы B ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaaaaa@3346@  рассчитываются элементы B j1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaaaa@36EC@ , B j,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaaaaa@3544@ , B j+1,j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaaaa@36E1@ :

B j1,j = 1 x j 1γ x j1 1γ 2 ( x j 3γ x j1 3γ )(1γ) 2(3γ) + (γ1)( x j 2 x j1 1γ x j1 2 x j 1γ ) 2(γ+1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHsi slcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaalaaabaGaaGymaaqa amaabmaabaGaamiEamaaDaaaleaacaWGQbaabaGaaGymaiabgkHiTi abeo7aNbaakiabgkHiTiaadIhadaqhaaWcbaGaamOAaiabgkHiTiaa igdaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaaakmaabmaabaWaaSaaaeaacaaIOaGaamiE amaaDaaaleaacaWGQbaabaGaaG4maiabgkHiTiabeo7aNbaakiabgk HiTiaadIhadaqhaaWcbaGaamOAaiabgkHiTiaaigdaaeaacaaIZaGa eyOeI0Iaeq4SdCgaaOGaaGykaiaaiIcacaaIXaGaeyOeI0Iaeq4SdC MaaGykaaqaaiaaikdacaaIOaGaaG4maiabgkHiTiabeo7aNjaaiMca aaGaey4kaSYaaSaaaeaacaaIOaGaeq4SdCMaeyOeI0IaaGymaiaaiM cacaaIOaGaamiEamaaDaaaleaacaWGQbaabaGaaGOmaaaakiaadIha daqhaaWcbaGaamOAaiabgkHiTiaaigdaaeaacaaIXaGaeyOeI0Iaeq 4SdCgaaOGaeyOeI0IaamiEamaaDaaaleaacaWGQbGaeyOeI0IaaGym aaqaaiaaikdaaaGccaWG4bWaa0baaSqaaiaadQgaaeaacaaIXaGaey OeI0Iaeq4SdCgaaOGaaGykaaqaaiaaikdacaaIOaGaeq4SdCMaey4k aSIaaGymaiaaiMcaaaaacaGLOaGaayzkaaGaaGilaaaa@8523@  (14)

B j,j = 1 x j 1γ x j1 1γ 2 x j 3γ 3γ x j1 3γ (γ1) 2 (3γ)(γ+1) x j1 1γ x j 2 + x j1 22γ x j γ+1 γ+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacaaISa GaamOAaaqabaGccaaI9aWaaSaaaeaacaaIXaaabaWaaeWaaeaacaWG 4bWaa0baaSqaaiaadQgaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaOGaey OeI0IaamiEamaaDaaaleaacaWGQbGaeyOeI0IaaGymaaqaaiaaigda cqGHsislcqaHZoWzaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaaaOWaaeWaaeaadaWcaaqaaiaadIhadaqhaaWcbaGaamOAaaqa aiaaiodacqGHsislcqaHZoWzaaaakeaacaaIZaGaeyOeI0Iaeq4SdC gaaiabgkHiTmaalaaabaGaamiEamaaDaaaleaacaWGQbGaeyOeI0Ia aGymaaqaaiaaiodacqGHsislcqaHZoWzaaGccaaIOaGaeq4SdCMaey OeI0IaaGymaiaaiMcadaahaaWcbeqaaiaaikdaaaaakeaacaaIOaGa aG4maiabgkHiTiabeo7aNjaaiMcacaaIOaGaeq4SdCMaey4kaSIaaG ymaiaaiMcaaaGaeyOeI0IaamiEamaaDaaaleaacaWGQbGaeyOeI0Ia aGymaaqaaiaaigdacqGHsislcqaHZoWzaaGccaWG4bWaa0baaSqaai aadQgaaeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWG4bWaa0baaSqa aiaadQgacqGHsislcaaIXaaabaGaaGOmaiabgkHiTiaaikdacqaHZo WzaaGccaWG4bWaa0baaSqaaiaadQgaaeaacqaHZoWzcqGHRaWkcaaI XaaaaaGcbaGaeq4SdCMaey4kaSIaaGymaaaaaiaawIcacaGLPaaacq GHRaWkaaa@858E@

+ 1 x j+1 1γ x j 1γ 2 x j+1 3γ (1γ) 2 (3γ)(γ+1) x j 3γ 3γ + x j+1 1γ x j 2 x j 1+γ x j+1 22γ γ+1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaywW7caaMf8Uaey 4kaSYaaSaaaeaacaaIXaaabaWaaeWaaeaacaWG4bWaa0baaSqaaiaa dQgacqGHRaWkcaaIXaaabaGaaGymaiabgkHiTiabeo7aNbaakiabgk HiTiaadIhadaqhaaWcbaGaamOAaaqaaiaaigdacqGHsislcqaHZoWz aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaae aadaWcaaqaaiaadIhadaqhaaWcbaGaamOAaiabgUcaRiaaigdaaeaa caaIZaGaeyOeI0Iaeq4SdCgaaOGaaGikaiaaigdacqGHsislcqaHZo WzcaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGikaiaaiodacqGH sislcqaHZoWzcaaIPaGaaGikaiabeo7aNjabgUcaRiaaigdacaaIPa aaaiabgkHiTmaalaaabaGaamiEamaaDaaaleaacaWGQbaabaGaaG4m aiabgkHiTiabeo7aNbaaaOqaaiaaiodacqGHsislcqaHZoWzaaGaey 4kaSIaamiEamaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaaiaaigda cqGHsislcqaHZoWzaaGccaWG4bWaa0baaSqaaiaadQgaaeaacaaIYa aaaOGaeyOeI0YaaSaaaeaacaWG4bWaa0baaSqaaiaadQgaaeaacaaI XaGaey4kaSIaeq4SdCgaaOGaamiEamaaDaaaleaacaWGQbGaey4kaS IaaGymaaqaaiaaikdacqGHsislcaaIYaGaeq4SdCgaaaGcbaGaeq4S dCMaey4kaSIaaGymaaaaaiaawIcacaGLPaaacaaISaaaaa@87F8@  (15)

B j+1,j = 1 x j+1 1γ x j 1γ 2 ( x j+1 3γ x j 3γ )(1γ) 2(3γ) + (γ1)( x j+1 2 x j 1γ x j 2 x j+1 1γ ) 2(γ+1) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadQgacqGHRa WkcaaIXaGaaGilaiaadQgaaeqaaOGaaGypamaalaaabaGaaGymaaqa amaabmaabaGaamiEamaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaai aaigdacqGHsislcqaHZoWzaaGccqGHsislcaWG4bWaa0baaSqaaiaa dQgaaeaacaaIXaGaeyOeI0Iaeq4SdCgaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaaaakmaabmaabaWaaSaaaeaacaaIOaGaamiE amaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaaiaaiodacqGHsislcq aHZoWzaaGccqGHsislcaWG4bWaa0baaSqaaiaadQgaaeaacaaIZaGa eyOeI0Iaeq4SdCgaaOGaaGykaiaaiIcacaaIXaGaeyOeI0Iaeq4SdC MaaGykaaqaaiaaikdacaaIOaGaaG4maiabgkHiTiabeo7aNjaaiMca aaGaey4kaSYaaSaaaeaacaaIOaGaeq4SdCMaeyOeI0IaaGymaiaaiM cacaaIOaGaamiEamaaDaaaleaacaWGQbGaey4kaSIaaGymaaqaaiaa ikdaaaGccaWG4bWaa0baaSqaaiaadQgaaeaacaaIXaGaeyOeI0Iaeq 4SdCgaaOGaeyOeI0IaamiEamaaDaaaleaacaWGQbaabaGaaGOmaaaa kiaadIhadaqhaaWcbaGaamOAaiabgUcaRiaaigdaaeaacaaIXaGaey OeI0Iaeq4SdCgaaOGaaGykaaqaaiaaikdacaaIOaGaeq4SdCMaey4k aSIaaGymaiaaiMcaaaaacaGLOaGaayzkaaGaaGOlaaaa@84EE@  (16)

Нетрудно убедиться, что полученные матрицы являются положительно определенными и симметричными.

4. Численное решение системы ОДУ. Введем на отрезке [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  равномерную сетку t j =jτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaadQgacqaHepaDaaa@3756@ , τ=T/J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamivaiaai+caca WGkbaaaa@36AA@ , j=0,,J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaicdacaaISaGaeS OjGSKaaGilaiaadQeaaaa@378A@ . Перепишем уравнения (10), используя для аппроксимации по времени неявную схему (см. [4]), имеющую первый порядок аппроксимации по τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3382@ :

B ^ a 0 =a(0), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaaiaadg gadaWgaaWcbaGaaGimaaqabaGccaaI9aGaamyyaiaaiIcacaaIWaGa aGykaiaaiYcaaaa@399E@  (17)

B ^ a j a j1 τ + A ^ a j =F( t j ),j=1,,J, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaamaala aabaGaamyyamaaBaaaleaacaWGQbaabeaakiabgkHiTiaadggadaWg aaWcbaGaamOAaiabgkHiTiaaigdaaeqaaaGcbaGaeqiXdqhaaiabgU caRmaaHaaabaGaamyqaaGaayPadaGaamyyamaaBaaaleaacaWGQbaa beaakiaai2dacaWGgbGaaGikaiaadshadaWgaaWcbaGaamOAaaqaba GccaaIPaGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOj GSKaaGilaiaadQeacaaISaaaaa@4E18@  (18)

где a j =( a 1,j ,, a n1,j ) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaaiIcacaWGHbWaaSbaaSqaaiaaigdacaaISaGaamOAaaqa baGccaaISaGaeSOjGSKaaGilaiaadggadaWgaaWcbaGaamOBaiabgk HiTiaaigdacaaISaGaamOAaaqabaGccaaIPaWaaWbaaSqabeaacaWG ubaaaaaa@4260@ . Сгруппируем в (18) значения по временным слоям:

( B ^ + A ^ τ) a j =τF( t j )+ B ^ a j1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWaaecaaeaacaWGcbaacaGLcm aacqGHRaWkdaqiaaqaaiaadgeaaiaawkWaaiabes8a0jaaiMcacaWG HbWaaSbaaSqaaiaadQgaaeqaaOGaaGypaiabes8a0jaadAeacaaIOa GaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacqGHRaWkdaqiaaqa aiaadkeaaiaawkWaaiaadggadaWgaaWcbaGaamOAaiabgkHiTiaaig daaeqaaaaa@47D3@  (19)

Матрица B ^ + A ^ τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadkeaaiaawkWaaiabgU caRmaaHaaabaGaamyqaaGaayPadaGaeqiXdqhaaa@3775@  имеет трехдиагональный вид и состоит из суммы элемнтов, рассчитанных по формулам (11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (16):

B 11 +τ A 11 B 12 +τ A 12 B 21 +τ A 21 B 22 +τ A 22 B 23 +τ A 23 B n2,n1 +τ A n2,n1 B n1,n2 +τ A n1,n2 B n1,n1 +τ A n1,n1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaauaabeqafuaaaaaabaGaam OqamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcqaHepaDcaWG bbWaaSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaadkeadaWgaaWcba GaaGymaiaaikdaaeqaaOGaey4kaSIaeqiXdqNaamyqamaaBaaaleaa caaIXaGaaGOmaaqabaaakeaaaeaaaeaaaeaacaWGcbWaaSbaaSqaai aaikdacaaIXaaabeaakiabgUcaRiabes8a0jaadgeadaWgaaWcbaGa aGOmaiaaigdaaeqaaaGcbaGaamOqamaaBaaaleaacaaIYaGaaGOmaa qabaGccqGHRaWkcqaHepaDcaWGbbWaaSbaaSqaaiaaikdacaaIYaaa beaaaOqaaiaadkeadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaey4kaS IaeqiXdqNaamyqamaaBaaaleaacaaIYaGaaG4maaqabaaakeaaaeaa aeaaaeaaaeaaaeaacqWIXlYtaeaaaeaaaeaaaeaaaeaaaeaacaWGcb WaaSbaaSqaaiaad6gacqGHsislcaaIYaGaaGilaiaad6gacqGHsisl caaIXaaabeaakiabgUcaRiabes8a0jaadgeadaWgaaWcbaGaamOBai abgkHiTiaaikdacaaISaGaamOBaiabgkHiTiaaigdaaeqaaaGcbaaa baaabaaabaGaamOqamaaBaaaleaacaWGUbGaeyOeI0IaaGymaiaaiY cacaWGUbGaeyOeI0IaaGOmaaqabaGccqGHRaWkcqaHepaDcaWGbbWa aSbaaSqaaiaad6gacqGHsislcaaIXaGaaGilaiaad6gacqGHsislca aIYaaabeaaaOqaaiaadkeadaWgaaWcbaGaamOBaiabgkHiTiaaigda caaISaGaamOBaiabgkHiTiaaigdaaeqaaOGaey4kaSIaeqiXdqNaam yqamaaBaaaleaacaWGUbGaeyOeI0IaaGymaiaaiYcacaWGUbGaeyOe I0IaaGymaaqabaaaaaGccaGLBbGaayzxaaGaaGOlaaaa@8DBB@

Обозначим через f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  вектор-столбец, стоящий в правой части уравнения (19):

τF( t j )+ B ^ a j1 = f n1×1 = τ(f, ϕ 1 )( t j )+ B 11 a 1,j1 + B 12 a 2,j1 τ(f, ϕ 2 )( t j )+ B 21 a 1,j1 + B 22 a 2,j1 + B 23 a 3,j1 τ(f, ϕ i )( t j )+ B i,i1 a i1,j1 + B i,i a i,j1 + B i,i+1 a i+1,j1 τ(f, ϕ n1 )( t j )+ B n1,n2 a n2,j1 + B n1,n1 a n1,j1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaWGgbGaaGikaiaadshada WgaaWcbaGaamOAaaqabaGccaaIPaGaey4kaSYaaecaaeaacaWGcbaa caGLcmaacaWGHbWaaSbaaSqaaiaadQgacqGHsislcaaIXaaabeaaki aai2dacaWGMbWaaSbaaSqaaiaad6gacqGHsislcaaIXaGaey41aqRa aGymaaqabaGccaaI9aWaamWaaeaafaqabeGbbaaaaeaacqaHepaDca aIOaGaamOzaiaaiYcacqaHvpGzdaWgaaWcbaGaaGymaaqabaGccaaI PaGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPaGaey4kaS IaamOqamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbWaaSbaaSqa aiaaigdacaaISaGaamOAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaam OqamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaa ikdacaaISaGaamOAaiabgkHiTiaaigdaaeqaaaGcbaGaeqiXdqNaaG ikaiaadAgacaaISaGaeqy1dy2aaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaaiIcacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiabgUcaRi aadkeadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamyyamaaBaaaleaa caaIXaGaaGilaiaadQgacqGHsislcaaIXaaabeaakiabgUcaRiaadk eadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaI YaGaaGilaiaadQgacqGHsislcaaIXaaabeaakiabgUcaRiaadkeada WgaaWcbaGaaGOmaiaaiodaaeqaaOGaamyyamaaBaaaleaacaaIZaGa aGilaiaadQgacqGHsislcaaIXaaabeaaaOqaaiabl6Uinbqaaiabes 8a0jaaiIcacaWGMbGaaGilaiabew9aMnaaBaaaleaacaWGPbaabeaa kiaaiMcacaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacq GHRaWkcaWGcbWaaSbaaSqaaiaadMgacaaISaGaamyAaiabgkHiTiaa igdaaeqaaOGaamyyamaaBaaaleaacaWGPbGaeyOeI0IaaGymaiaaiY cacaWGQbGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWGcbWaaSbaaSqa aiaadMgacaaISaGaamyAaaqabaGccaWGHbWaaSbaaSqaaiaadMgaca aISaGaamOAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamOqamaaBaaa leaacaWGPbGaaGilaiaadMgacqGHRaWkcaaIXaaabeaakiaadggada WgaaWcbaGaamyAaiabgUcaRiaaigdacaaISaGaamOAaiabgkHiTiaa igdaaeqaaaGcbaGaeSO7I0eabaGaeqiXdqNaaGikaiaadAgacaaISa Gaeqy1dy2aaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaakiaaiMca caaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacqGHRaWkca WGcbWaaSbaaSqaaiaad6gacqGHsislcaaIXaGaaGilaiaad6gacqGH sislcaaIYaaabeaakiaadggadaWgaaWcbaGaamOBaiabgkHiTiaaik dacaaISaGaamOAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamOqamaa BaaaleaacaWGUbGaeyOeI0IaaGymaiaaiYcacaWGUbGaeyOeI0IaaG ymaaqabaGccaWGHbWaaSbaaSqaaiaad6gacqGHsislcaaIXaGaaGil aiaadQgacqGHsislcaaIXaaabeaaaaaakiaawUfacaGLDbaaaaa@E607@

Такую систему можно записать в виде

c i a i1,j + d i a i,j + e i a i+1,j = f i ,i=2,,n2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaadMgaaeqaaO GaamyyamaaBaaaleaacaWGPbGaeyOeI0IaaGymaiaaiYcacaWGQbaa beaakiabgUcaRiaadsgadaWgaaWcbaGaamyAaaqabaGccaWGHbWaaS baaSqaaiaadMgacaaISaGaamOAaaqabaGccqGHRaWkcaWGLbWaaSba aSqaaiaadMgaaeqaaOGaamyyamaaBaaaleaacaWGPbGaey4kaSIaaG ymaiaaiYcacaWGQbaabeaakiaai2dacaWGMbWaaSbaaSqaaiaadMga aeqaaOGaaGilaiaaywW7caWGPbGaaGypaiaaikdacaaISaGaeSOjGS KaaGilaiaad6gacqGHsislcaaIYaGaaGilaaaa@5565@

d 1 e 1 0 0 c 2 d 2 e 2 0 c n1 d n1 a 1,j a 2,j a n1,j = f 1 f 2 f n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaauaabeqafuaaaaaabaGaam izamaaBaaaleaacaaIXaaabeaaaOqaaiaadwgadaWgaaWcbaGaaGym aaqabaaakeaacaaIWaaabaGaeS47IWeabaGaaGimaaqaaiaadogada WgaaWcbaGaaGOmaaqabaaakeaacaWGKbWaaSbaaSqaaiaaikdaaeqa aaGcbaGaamyzamaaBaaaleaacaaIYaaabeaaaOqaaiabl+Uimbqaai aaicdaaeaaaeaaaeaaaeaacqWIXlYtaeaaaeaaaeaaaeaaaeaacaWG JbWaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOqaaiaadsgada WgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaaGcbaaabaaabaaabaaa baaaaaGaayjkaiaawMcaamaabmaabaqbaeqabuqbaaaaaeaacaWGHb WaaSbaaSqaaiaaigdacaaISaGaamOAaaqabaaakeaaaeaaaeaaaeaa aeaacaWGHbWaaSbaaSqaaiaaikdacaaISaGaamOAaaqabaaakeaaae aaaeaaaeaaaeaacqWIUlstaeaaaeaaaeaaaeaaaeaacaWGHbWaaSba aSqaaiaad6gacqGHsislcaaIXaGaaGilaiaadQgaaeqaaaGcbaaaba aabaaabaaabaaabaaabaaabaaabaaaaaGaayjkaiaawMcaaiaai2da daqadaqaauaabeqafuaaaaaabaGaamOzamaaBaaaleaacaaIXaaabe aaaOqaaaqaaaqaaaqaaaqaaiaadAgadaWgaaWcbaGaaGOmaaqabaaa keaaaeaaaeaaaeaaaeaacqWIUlstaeaaaeaaaeaaaeaaaeaacaWGMb WaaSbaaSqaaiaad6gacqGHsislcaaIXaaabeaaaOqaaaqaaaqaaaqa aaqaaaqaaaqaaaqaaaqaaaaaaiaawIcacaGLPaaaaaa@67FC@

и применять для решения метод последовательного исключения неизвестных (метод прогонки).

5. Оценки сходимости. Для получения априорной оценки u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  обобщенного решения умножим каждое из уравнений (8) на функцию a i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaIPaaaaa@3625@  и просуммируем по всем i=1,,n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad6gacqGHsislcaaIXaaaaa@3956@ :

u h t , i=1 n1 a i (t) ϕ i + u h , i=1 n1 a i (t) ϕ i = f, i=1 n1 a i (t) ϕ i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGil amaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaiabgkHiTi aaigdaa0GaeyyeIuoakiaadggadaWgaaWcbaGaamyAaaqabaGccaaI OaGaamiDaiaaiMcacqaHvpGzdaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaacqGHRaWkdaWadaqaaiaadwhadaWgaaWcbaGaamiAaaqa baGccaaISaWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOGaamyyamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG0bGaaGykaiabew9aMnaaBaaaleaacaWGPbaabe aaaOGaay5waiaaw2faaiaai2dadaqadaqaaiaadAgacaaISaWaaabC aeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbGaeyOeI0IaaGymaa qdcqGHris5aOGaamyyamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG 0bGaaGykaiabew9aMnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caaiaaiYcaaaa@7040@

а затем проинтегрируем по t (0,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG0bGbauaacqGHiiIZcaaIOaGaaG imaiaaiYcacaWG0bGaaGykaaaa@3814@ :

0 t u h t , u h d t + 0 t u h , u h d t = 0 t f, u h d t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyDamaaBaaa leaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGilaiaadwhada WgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaWGKbGabmiDayaa faGaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aO WaamWaaeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaOGaaGilaiaadwha daWgaaWcbaGaamiAaaqabaaakiaawUfacaGLDbaacaWGKbGabmiDay aafaGaaGypamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipa kmaabmaabaGaamOzaiaaiYcacaWG1bWaaSbaaSqaaiaadIgaaeqaaa GccaGLOaGaayzkaaGaamizaiqadshagaqbaiaai6caaaa@5C14@  (20)

Применим интегрирование по частям:

0 t u h t , u h d t = 0 1 0 t u h t u h x γ d t dx= 0 1 u h x γ u h dx | 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyDamaaBaaa leaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGilaiaadwhada WgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaWGKbGabmiDayaa faGaaGypamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakm aapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakmaalaaabaGa eyOaIyRaamyDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaads haaaGaamyDamaaBaaaleaacaWGObaabeaakiaadIhadaahaaWcbeqa aiabeo7aNbaakiaadsgaceWG0bGbauaacaWGKbGaamiEaiaai2dada qadaqaamaapedabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaa dwhadaWgaaWcbaGaamiAaaqabaGccaWG4bWaaWbaaSqabeaacqaHZo WzaaGccaWG1bWaaSbaaSqaaiaadIgaaeqaaOGaamizaiaadIhaaiaa wIcacaGLPaaacaaI8bWaa0baaSqaaiaaicdaaeaacaaIXaaaaOGaey OeI0caaa@6B88@

0 t u h t , u h = d t = u h 2 (t) u h 2 (0) 0 t u h t , u h d t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWdXaqabSqaaiaaicdaae aacaWG0baaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaamyD amaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGilai aadwhadaWgaaWcbaGaamiAaaqabaGccaaI9aaacaGLOaGaayzkaaGa amizaiqadshagaqbaiaai2darqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGikaiaadshacaaIPaGaeyOeI0Iae8xjIaLaamyDam aaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaa kiaaiIcacaaIWaGaaGykaiabgkHiTmaapedabeWcbaGaaGimaaqaai aadshaa0Gaey4kIipakmaabmaabaWaaSaaaeaacqGHciITcaWG1bWa aSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaISaGaam yDamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaadsgaceWG 0bGbauaacaaIUaaaaa@6AB8@

Тогда

2 0 t u h t , u h d t = u h 2 (t) u h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaa8qmaeqaleaacaaIWaaaba GaamiDaaqdcqGHRiI8aOWaaeWaaeaadaWcaaqaaiabgkGi2kaadwha daWgaaWcbaGaamiAaaqabaaakeaacqGHciITcaWG0baaaiaaiYcaca WG1bWaaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaGaamizaiqa dshagaqbaiaai2darqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG1b WaaSbaaSqaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaa aOGaaGikaiaadshacaaIPaGaeyOeI0Iae8xjIaLaamyDamaaBaaale aacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIca caaIWaGaaGykaiaai6caaaa@58B0@

Перепишем равенство (20):

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t = 0 t f, u h d t + 1 2 u h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacaaI9aWaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRi I8aOWaaeWaaeaacaWGMbGaaGilaiaadwhadaWgaaWcbaGaamiAaaqa baaakiaawIcacaGLPaaacaWGKbGabmiDayaafaGaey4kaSYaaSaaae aacaaIXaaabaGaaGOmaaaacqWFLicucaWG1bWaaSbaaSqaaiaadIga aeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdaca aIPaGaaGOlaaaa@63ED@

Из (9) вытекает равенство

u h (x,0), u h (x,0) = u (0) , u h (x,0) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaadwhadaWgaaWcbaGaam iAaaqabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaaiYcacaWG 1bWaaSbaaSqaaiaadIgaaeqaaOGaaGikaiaadIhacaaISaGaaGimai aaiMcaaiaawIcacaGLPaaacaaI9aWaaeWaaeaacaWG1bWaaSbaaSqa aiaaiIcacaaIWaGaaGykaaqabaGccaaISaGaamyDamaaBaaaleaaca WGObaabeaakiaaiIcacaWG4bGaaGilaiaaicdacaaIPaaacaGLOaGa ayzkaaGaaGilaaaa@4CD4@

откуда получаем u h (0) u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadIgaaeqaaOGae8xjIaLaaGikaiaaicda caaIPaGaeyizImQae8xjIaLaamyDamaaBaaaleaacaaIWaaabeaaki ab=vIiqbaa@42A3@ . Тогда

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 0 t f 2 ( t )d t 1/2 0 t u h 2 ( t )d t 1/2 + 1 2 u (0) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacqGHKjYOdaqadaqaamaapedabeWcbaGaaGimaaqaaiaads haa0Gaey4kIipakiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaa ikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG0bGbauaaai aawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakmaa bmaabaWaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGae8 xjIaLaamyDamaaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGaamizaiqadshaga qbaaGaayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaIYaaa aOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacqWFLicucaWG1b WaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqWFLicudaahaaWc beqaaiaaikdaaaGccaaIUaaaaa@7A8E@  (21)

Рассмотрим норму в энергетическом пространстве:

[u,u]= 0 1 x γ p(x) du dx 2 +q(x) u 2 dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaaiYcacaWG1bGaaG yxaiaai2dadaWdXaqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGc caWG4bWaaWbaaSqabeaacqaHZoWzaaGcdaWadaqaaiaadchacaaIOa GaamiEaiaaiMcadaqadaqaamaalaaabaGaamizaiaadwhaaeaacaWG KbGaamiEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaWGXbGaaGikaiaadIhacaaIPaGaamyDamaaCaaaleqabaGa aGOmaaaaaOGaay5waiaaw2faaiaadsgacaWG4bGaaGOlaaaa@51E1@

В последней формуле отбросим неотрицательное слагаемое q(x) u 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaam yDamaaCaaaleqabaGaaGOmaaaaaaa@36F8@ , а p(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhacaaIPaaaaa@3514@  заменим на p 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaicdaaeqaaa aa@3398@ :

[u,u] p 0 0 1 x γ du dx 2 dx= p 0 u x 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaaiYcacaWG1bGaaG yxaiabgwMiZkaadchadaWgaaWcbaGaaGimaaqabaGcdaWdXaqabSqa aiaaicdaaeaacaaIXaaaniabgUIiYdGccaWG4bWaaWbaaSqabeaacq aHZoWzaaGcdaqadaqaamaalaaabaGaamizaiaadwhaaeaacaWGKbGa amiEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGKb GaamiEaiaai2dacaWGWbWaaSbaaSqaaiaaicdaaeqaaebbfv3ySLgz GueE0jxyaGabaOGae8xjIaLabmyDayaafaWaaSbaaSqaaiaadIhaae qaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@5600@  (22)

Покажем, что справедлива оценка

u L 2,γ 2 u L 2,γ 2 1 2(1+γ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaI SaGaeq4SdCgabeaaaeaacaaIYaaaaOGaeyizImQae8xjIaLabmyDay aafaGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaISaGa eq4SdCgabeaaaeaacaaIYaaaaOWaaSaaaeaacaaIXaaabaGaaGOmai aaiIcacaaIXaGaey4kaSIaeq4SdCMaaGykaaaacaaIUaaaaa@4F61@  (23)

Запишем c учетом u(1)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaigdacaaIPaGaaG ypaiaaicdaaaa@3658@ :

u(x)= x 1 u (ξ)dξ, u 2 (x)= x 1 u (ξ) ξ γ/2 ξ γ/2 2 dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaIPaGaaG ypaiabgkHiTmaapedabeWcbaGaamiEaaqaaiaaigdaa0Gaey4kIipa kiqadwhagaqbaiaaiIcacqaH+oaEcaaIPaGaamizaiabe67a4jaaiY cacaaMf8UaamyDamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGa aGykaiaai2dadaWdXaqabSqaaiaadIhaaeaacaaIXaaaniabgUIiYd GcdaqadaqaaiqadwhagaqbaiaaiIcacqaH+oaEcaaIPaGaeqOVdG3a aWbaaSqabeaacqGHsislcqaHZoWzcaaIVaGaaGOmaaaakiabe67a4n aaCaaaleqabaGaeq4SdCMaaG4laiaaikdaaaaakiaawIcacaGLPaaa daahaaWcbeqaaiaaikdaaaGccaWGKbGaeqOVdGNaaGOlaaaa@6200@

С использованием неравенства Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Буняковского для 0x1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiEaiabgsMiJk aaigdaaaa@3799@  получаем

u 2 (x) x 1 ( u (ξ)) 2 ξ γ dξ x 1 ξ γ dξ 0 1 ( u (ξ)) 2 ξ γ dξ ξ 1γ 1γ | x 1 = u L 2,γ 2 1 x 1γ 1γ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadIhacaaIPaGaeyizIm6aaeWaaeaadaWdXaqabSqaaiaa dIhaaeaacaaIXaaaniabgUIiYdGccaaIOaGabmyDayaafaGaaGikai abe67a4jaaiMcacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaeqOVdG3a aWbaaSqabeaacqaHZoWzaaGccaWGKbGaeqOVdGhacaGLOaGaayzkaa WaaeWaaeaadaWdXaqabSqaaiaadIhaaeaacaaIXaaaniabgUIiYdGc cqaH+oaEdaahaaWcbeqaaiabgkHiTiabeo7aNbaakiaadsgacqaH+o aEaiaawIcacaGLPaaacqGHKjYOdaqadaqaamaapedabeWcbaGaaGim aaqaaiaaigdaa0Gaey4kIipakiaaiIcaceWG1bGbauaacaaIOaGaeq OVdGNaaGykaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqaH+oaEdaah aaWcbeqaaiabeo7aNbaakiaadsgacqaH+oaEaiaawIcacaGLPaaada Wcaaqaaiabe67a4naaCaaaleqabaGaaGymaiabgkHiTiabeo7aNbaa aOqaaiaaigdacqGHsislcqaHZoWzaaGaaGiFamaaDaaaleaacaWG4b aabaGaaGymaaaakiaai2darqqr1ngBPrgifHhDYfgaiqaacqWFLicu ceWG1bGbauaacqWFLicudaqhaaWcbaGaamitamaaBaaabaGaaGOmai aaiYcacqaHZoWzaeqaaaqaaiaaikdaaaGcdaWcaaqaaiaaigdacqGH sislcaWG4bWaaWbaaSqabeaacaaIXaGaeyOeI0Iaeq4SdCgaaaGcba GaaGymaiabgkHiTiabeo7aNbaacaaIUaaaaa@8DEF@

Проинтегрируем от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  до 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@  c весом x γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqaHZoWzaa aaaa@348E@ :

u L 2,γ 2 u L 2,γ 2 0 1 x γ (1 x 1γ ) 1γ dx= u L 2,γ 2 1 1γ x γ+1 γ+1 x 2 2 | 0 1 = u L 2,γ 2 1 2(1+γ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaI SaGaeq4SdCgabeaaaeaacaaIYaaaaOGaeyizImQae8xjIaLabmyDay aafaGae8xjIa1aa0baaSqaaiaadYeadaWgaaqaaiaaikdacaaISaGa eq4SdCgabeaaaeaacaaIYaaaaOWaa8qmaeqaleaacaaIWaaabaGaaG ymaaqdcqGHRiI8aOWaaSaaaeaacaWG4bWaaWbaaSqabeaacqaHZoWz aaGccaaIOaGaaGymaiabgkHiTiaadIhadaahaaWcbeqaaiaaigdacq GHsislcqaHZoWzaaGccaaIPaaabaGaaGymaiabgkHiTiabeo7aNbaa caWGKbGaamiEaiaai2dacqWFLicuceWG1bGbauaacqWFLicudaqhaa WcbaGaamitamaaBaaabaGaaGOmaiaaiYcacqaHZoWzaeqaaaqaaiaa ikdaaaGcdaWcaaqaaiaaigdaaeaacaaIXaGaeyOeI0Iaeq4SdCgaam aabmaabaWaaSaaaeaacaWG4bWaaWbaaSqabeaacqaHZoWzcqGHRaWk caaIXaaaaaGcbaGaeq4SdCMaey4kaSIaaGymaaaacqGHsisldaWcaa qaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaGaayjk aiaawMcaaiaaiYhadaqhaaWcbaGaaGimaaqaaiaaigdaaaGccaaI9a Gae8xjIaLabmyDayaafaGae8xjIa1aa0baaSqaaiaadYeadaWgaaqa aiaaikdacaaISaGaeq4SdCgabeaaaeaacaaIYaaaaOWaaSaaaeaaca aIXaaabaGaaGOmaiaaiIcacaaIXaGaey4kaSIaeq4SdCMaaGykaaaa caaIUaaaaa@888A@

Подставим оценку (23) в неравенство (22):

[u] 2 2 p 0 (1+γ)u 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyDaiaai2fadaahaaWcbe qaaiaaikdaaaGccqGHLjYScaaIYaGaamiCamaaBaaaleaacaaIWaaa beaakiaaiIcacaaIXaGaey4kaSIaeq4SdCMaaGykaebbfv3ySLgzGu eE0jxyaGabaiab=vIiqjaadwhacqWFLicudaahaaWcbeqaaiaaikda aaGccaaIUaaaaa@47FE@  (24)

C учетом (24) запишем (21):

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 0 t f 2 ( t )d t 1/2 c 1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 1/2 + 1 2 u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacqGHKjYOdaqadaqaamaapedabeWcbaGaaGimaaqaaiaads haa0Gaey4kIipakiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaa ikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG0bGbauaaai aawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIVaGaaGOmaaaakiaa dogadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaGae8xjIaLaam yDamaaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG0bGaaGykaiabgUcaRmaapedabeWcbaGaaGimaa qaaiaadshaa0Gaey4kIipakiaaiUfacaWG1bWaaSbaaSqaaiaadIga aeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGbau aacaaIPaGaamizaiqadshagaqbaaGaayjkaiaawMcaamaaCaaaleqa baGaaGymaiaai+cacaaIYaaaaOGaey4kaSYaaSaaaeaacaaIXaaaba GaaGOmaaaacqWFLicucaWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGyk aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaISaaaaa@8517@

где c=2 p 0 (1+γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGypaiaaikdacaWGWbWaaS baaSqaaiaaicdaaeqaaOGaaGikaiaaigdacqGHRaWkcqaHZoWzcaaI Paaaaa@3AB6@ . К последнему соотношению применим ϵ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYdaa@3DB7@  -неравенство |ab| a 2 /(4ϵ)+ϵ b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyyaiaadkgacaaI8bGaey izImQaamyyamaaCaaaleqabaGaaGOmaaaakiaai+cacaaIOaGaaGin amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9di VaaGykaiabgUcaRiab=v=aYlaadkgadaahaaWcbeqaaiaaikdaaaaa aa@4D1B@ :

1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t c 4ϵ 0 t f 2 ( t )d t +cϵ 1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t + 1 2 u (0) 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjaadwhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWdXaqabSqaaiaaicdaaeaacaWG0baaniabgUIi YdGccaaIBbGaamyDamaaBaaaleaacaWGObaabeaakiaai2fadaahaa WcbeqaaiaaikdaaaGccaaIOaGabmiDayaafaGaaGykaiaadsgaceWG 0bGbauaacqGHKjYOdaWcaaqaaiaadogaaeaacaaI0aWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGacqGF1pG8aaWaa8qmaeqa leaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGae8xjIaLaamOzaiab=v IiqnaaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGa amizaiqadshagaqbaiabgUcaRiaadogacqGF1pG8daqadaqaamaala aabaGaaGymaaqaaiaaikdaaaGae8xjIaLaamyDamaaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacaWG1bWaaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCa aaleqabaGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGaamizaiqa dshagaqbaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaaGymaaqaai aaikdaaaGae8xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMca aeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdaca aIPaGaaGOlaaaa@91E1@  (25)

Примем ϵ=c/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYlaai2dacaWGJbGaaG4laiaaikdaaaa@40DB@ . Имеем

2 c 2 2 1 2 u h 2 (t)+ 0 t [ u h ] 2 ( t )d t 1 2 0 t f 2 ( t )d t + u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaaikdacqGHsisldaWcaa qaaiaadogadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaGaayjk aiaawMcaamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaarqqr1n gBPrgifHhDYfgaiqaacqWFLicucaWG1bWaaSbaaSqaaiaadIgaaeqa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaadshacaaIPa Gaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGa aG4waiaadwhadaWgaaWcbaGaamiAaaqabaGccaaIDbWaaWbaaSqabe aacaaIYaaaaOGaaGikaiqadshagaqbaiaaiMcacaWGKbGabmiDayaa faaacaGLOaGaayzkaaGaeyizIm6aaSaaaeaacaaIXaaabaGaaGOmaa aadaqadaqaamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipa kiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOa GabmiDayaafaGaaGykaiaadsgaceWG0bGbauaacqGHRaWkcqWFLicu caWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqWFLicuda ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaISaaaaa@6E10@

2 c 2 2 u h 2 (t)+2 0 t [ u h ] 2 ( t )d t 0 t f 2 ( t )d t + u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaaikdacqGHsisldaWcaa qaaiaadogadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaGaayjk aiaawMcaamaabmaabaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIaLaam yDamaaBaaaleaacaWGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG0bGaaGykaiabgUcaRiaaikdadaWdXaqabSqaai aaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaamyDamaaBaaaleaa caWGObaabeaakiaai2fadaahaaWcbeqaaiaaikdaaaGccaaIOaGabm iDayaafaGaaGykaiaadsgaceWG0bGbauaaaiaawIcacaGLPaaacqGH KjYOdaqadaqaamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIi pakiab=vIiqjaadAgacqWFLicudaahaaWcbeqaaiaaikdaaaGccaaI OaGabmiDayaafaGaaGykaiaadsgaceWG0bGbauaacqGHRaWkcqWFLi cucaWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqWFLicu daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaISaaaaa@6BBE@

u h 2 (t)+ 0 t [ u h ] 2 ( t )d t C 0 t f 2 ( t )d t + u (0) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGikaiaadshacaaIPaGaey4kaSYaa8qmaeqaleaaca aIWaaabaGaamiDaaqdcqGHRiI8aOGaaG4waiaadwhadaWgaaWcbaGa amiAaaqabaGccaaIDbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiqads hagaqbaiaaiMcacaWGKbGabmiDayaafaGaeyizImQaam4qamaabmaa baWaa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGae8xjIa LaamOzaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGb auaacaaIPaGaamizaiqadshagaqbaiabgUcaRiab=vIiqjaadwhada WgaaWcbaGaaGikaiaaicdacaaIPaaabeaakiab=vIiqnaaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@6468@

max t(0,T) u h 2 (t)+ 0 T [ u h ] 2 ( t )d t C 0 T f 2 ( t )d t + u (0) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHiiIZca aIOaGaaGimaiaaiYcacaWGubGaaGykaaqabOqaaiGac2gacaGGHbGa aiiEaaaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG1bWaaSbaaS qaaiaadIgaaeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGik aiaadshacaaIPaGaey4kaSYaa8qmaeqaleaacaaIWaaabaGaamivaa qdcqGHRiI8aOGaaG4waiaadwhadaWgaaWcbaGaamiAaaqabaGccaaI DbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiqadshagaqbaiaaiMcaca WGKbGabmiDayaafaGaeyizImQaam4qamaabmaabaWaa8qmaeqaleaa caaIWaaabaGaamivaaqdcqGHRiI8aOGae8xjIaLaamOzaiab=vIiqn aaCaaaleqabaGaaGOmaaaakiaaiIcaceWG0bGbauaacaaIPaGaamiz aiqadshagaqbaiabgUcaRiab=vIiqjaadwhadaWgaaWcbaGaaGikai aaicdacaaIPaaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaiaai6caaaa@6DAD@

Отсюда следует непрерывная зависимость приближенного решения u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  задачи от f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и u (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaaaaa@3502@ .

Оценим скорость сходимости u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  к u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  при h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaeyOKH4QaaGimaaaa@3551@ . Положим ξ h =u u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaWgaaWcbaGaamiAaaqaba GccaaI9aGaamyDaiabgkHiTiaadwhadaWgaaWcbaGaamiAaaqabaaa aa@3964@ ; тогда для любой функции v h = 1 n1 b i (t) ϕ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadIgaaeqaaO GaaGypamaaqahabeWcbaGaaGymaaqaaiaad6gacqGHsislcaaIXaaa niabggHiLdGccaWGIbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaads hacaaIPaGaeqy1dy2aaSbaaSqaaiaadMgaaeqaaaaa@4190@  имеем

ξ h t , v h (t)+[ ξ h , v h ](t)= u t , v h (t)+[u, v h ](t) u h t , v h (t)[ u h , v h ](t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaamODamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaaiI cacaWG0bGaaGykaiabgUcaRiaaiUfacqaH+oaEdaWgaaWcbaGaamiA aaqabaGccaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2faca aIOaGaamiDaiaaiMcacaaI9aWaaeWaaeaadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaaiYcacaWG2bWaaSbaaSqaaiaadI gaaeqaaaGccaGLOaGaayzkaaGaaGikaiaadshacaaIPaGaey4kaSIa aG4waiaadwhacaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2 facaaIOaGaamiDaiaaiMcacqGHsisldaqadaqaamaalaaabaGaeyOa IyRaamyDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaa GaaGilaiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaa caaIOaGaamiDaiaaiMcacqGHsislcaaIBbGaamyDamaaBaaaleaaca WGObaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGyx aiaaiIcacaWG0bGaaGykaiaaiYcaaaa@777C@

u h t , v h (t)+[ u h , v h ](t)=(f, v h )(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaam yDamaaBaaaleaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaGaaGil aiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaacaaIOa GaamiDaiaaiMcacqGHRaWkcaaIBbGaamyDamaaBaaaleaacaWGObaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGyxaiaaiI cacaWG0bGaaGykaiaai2dacaaIOaGaamOzaiaaiYcacaWG2bWaaSba aSqaaiaadIgaaeqaaOGaaGykaiaaiIcacaWG0bGaaGykaiaaiYcaaa a@5166@

ξ h t , v h (t)+[ ξ h , v h ](t)= u t , v h (t)+[u, v h ](t)(f, v h )(t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaamODamaaBaaaleaacaWGObaabeaaaOGaayjkaiaawMcaaiaaiI cacaWG0bGaaGykaiabgUcaRiaaiUfacqaH+oaEdaWgaaWcbaGaamiA aaqabaGccaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2faca aIOaGaamiDaiaaiMcacaaI9aWaaeWaaeaadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaaiYcacaWG2bWaaSbaaSqaaiaadI gaaeqaaaGccaGLOaGaayzkaaGaaGikaiaadshacaaIPaGaey4kaSIa aG4waiaadwhacaaISaGaamODamaaBaaaleaacaWGObaabeaakiaai2 facaaIOaGaamiDaiaaiMcacqGHsislcaaIOaGaamOzaiaaiYcacaWG 2bWaaSbaaSqaaiaadIgaaeqaaOGaaGykaiaaiIcacaWG0bGaaGykai aai2dacaaIWaGaaGilaaaa@69CA@

ξ h , v h (0)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiabe67a4naaBaaaleaaca WGObaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaadIgaaeqaaaGccaGL OaGaayzkaaGaaGikaiaaicdacaaIPaGaaGypaiaaicdacaaIUaaaaa@3D58@

Значит,

ξ h t , ξ h +[ ξ h , ξ h ]= ξ h t ,u v h +[ ξ h ,u v h ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaeqOVdG3aaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaGaey 4kaSIaaG4waiabe67a4naaBaaaleaacaWGObaabeaakiaaiYcacqaH +oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbGaaGypamaabmaabaWaaS aaaeaacqGHciITcqaH+oaEdaWgaaWcbaGaamiAaaqabaaakeaacqGH ciITcaWG0baaaiaaiYcacaWG1bGaeyOeI0IaamODamaaBaaaleaaca WGObaabeaaaOGaayjkaiaawMcaaiabgUcaRiaaiUfacqaH+oaEdaWg aaWcbaGaamiAaaqabaGccaaISaGaamyDaiabgkHiTiaadAhadaWgaa WcbaGaamiAaaqabaGccaaIDbGaaGOlaaaa@5F9A@

Применяя к ξ h t , ξ h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaeyOaIyRaeq OVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaI SaGaeqOVdG3aaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaaaaa@3D9D@  интегрирование по частям, получим

1 2 ξ h 2 (t)+ 0 t [ ξ h ] 2 d t = 0 t [ ξ h ,u v h ]d t + 0 t ξ h t ,u v h d t + 1 2 ξ h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjabe67a4naaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiaai2dadaWdXbqa bSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaS baaSqaaiaadIgaaeqaaOGaaGilaiaadwhacqGHsislcaWG2bWaaSba aSqaaiaadIgaaeqaaOGaaGyxaiaadsgaceWG0bGbauaacqGHRaWkda WdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaqadaqaamaa laaabaGaeyOaIyRaeqOVdG3aaSbaaSqaaiaadIgaaeqaaaGcbaGaey OaIyRaamiDaaaacaaISaGaamyDaiabgkHiTiaadAhadaWgaaWcbaGa amiAaaqabaaakiaawIcacaGLPaaacaWGKbGabmiDayaafaGaey4kaS YaaSaaaeaacaaIXaaabaGaaGOmaaaacqWFLicucqaH+oaEdaWgaaWc baGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOa GaaGimaiaaiMcacaaIUaaaaa@7C7A@  (26)

Вычислим

0 t ξ h t ,u v h d t = ξ h ,u v h (t) ξ h ,u v h (0) 0 t ξ h , u t v h t d t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGcdaqadaqaamaalaaabaGaeyOaIyRaeqOVdG3aaSba aSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaacaaISaGaamyDai abgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPaaa caWGKbGabmiDayaafaGaaGypamaabmaabaGaeqOVdG3aaSbaaSqaai aadIgaaeqaaOGaaGilaiaadwhacqGHsislcaWG2bWaaSbaaSqaaiaa dIgaaeqaaaGccaGLOaGaayzkaaGaaGikaiaadshacaaIPaGaeyOeI0 YaaeWaaeaacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaISaGaamyD aiabgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaaakiaawIcacaGLPa aacaaIOaGaaGimaiaaiMcacqGHsisldaWdXbqabSqaaiaaicdaaeaa caWG0baaniabgUIiYdGcdaqadaqaaiabe67a4naaBaaaleaacaWGOb aabeaakiaaiYcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG 0baaaiabgkHiTmaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGOb aabeaaaOqaaiabgkGi2kaadshaaaaacaGLOaGaayzkaaGaamizaiqa dshagaqbaiaai6caaaa@75E4@

Для (26) справедлива оценка

1 2 ξ h 2 (t)+ 0 t [ ξ h ] 2 d t 0 t [ ξ h ] 2 d t 1/2 0 t [u v h ] 2 d t 1/2 + ξ h (t)u v h (t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjabe67a4naaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgsMiJoaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakmaabmaabaGaaG4wai abe67a4naaBaaaleaacaWGObaabeaakiaai2fadaahaaWcbeqaaiaa ikdaaaGccaWGKbGabmiDayaafaaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIXaGaaG4laiaaikdaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG 0baaniabgUIiYdGcdaqadaqaaiaaiUfacaWG1bGaeyOeI0IaamODam aaBaaaleaacaWGObaabeaakiaai2fadaahaaWcbeqaaiaaikdaaaGc caWGKbGabmiDayaafaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXa GaaG4laiaaikdaaaGccqGHRaWkcqWFLicucqaH+oaEdaWgaaWcbaGa amiAaaqabaGccaaIOaGaamiDaiaaiMcacqWFLicucqWFLicucaWG1b GaeyOeI0IaamODamaaBaaaleaacaWGObaabeaakiab=vIiqjaaiIca caWG0bGaaGykaiabgUcaRaaa@80ED@

+ ξ h (0) u (0) v h (0)+ 0 t ξ h 2 d t 1/2 * 0 t u t v h t 2 d t 1/2 1 2 ξ h 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkrqqr1ngBPrgifHhDYfgaiq aacqWFLicucqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIOaGaaGim aiaaiMcacqWFLicucqWFLicucaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGa aGikaiaaicdacaaIPaGae8xjIaLaey4kaSYaa8qCaeqaleaacaaIWa aabaGaamiDaaqdcqGHRiI8aOWaaeWaaeaacqWFLicucqaH+oaEdaWg aaWcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGcca WGKbGabmiDayaafaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGa aG4laiaaikdaaaGccaaIQaWaa8qCaeqaleaacaaIWaaabaGaamiDaa qdcqGHRiI8aOWaaeWaaeaadaqbdaqaamaalaaabaGaeyOaIyRaamyD aaqaaiabgkGi2kaadshaaaGaeyOeI0YaaSaaaeaacqGHciITcaWG2b WaaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawMa7 caGLkWoadaahaaWcbeqaaiaaikdaaaGccaWGKbGabmiDayaafaaaca GLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaaG4laiaaikdaaaGcdaWc aaqaaiaaigdaaeaacaaIYaaaaiab=vIiqjabe67a4naaBaaaleaaca WGObaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaaI WaGaaGykaiaai6caaaa@7F11@  (27)

Так как u h (x,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaO GaaGikaiaadIhacaaISaGaaGimaiaaiMcaaaa@37AC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  ортогональная проекция u 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaa aa@339D@  на H L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadYeaaeqaaa aa@3387@ , то

ξ h (0) u (0) v h (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIOaGaaGimaiaaiMca cqWFLicucqGHKjYOcqWFLicucaWG1bWaaSbaaSqaaiaaiIcacaaIWa GaaGykaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGa aGikaiaaicdacaaIPaGae8xjIaLaaGOlaaaa@4AB3@

Используя неравенство |ab| a 2 /(4ϵ)+ϵ b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyyaiaadkgacaaI8bGaey izImQaamyyamaaCaaaleqabaGaaGOmaaaakiaai+cacaaIOaGaaGin amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9di VaaGykaiabgUcaRiab=v=aYlaadkgadaahaaWcbeqaaiaaikdaaaaa aa@4D1B@  и оценку (27), получаем:

1 2 ξ h 2 (t)+ 0 t [ ξ h ] 2 d t 1 4 ϵ 1 0 t [ ξ h ] 2 d t + ϵ 1 0 t [u v h ] 2 d t + u (0) v h (0) 2 + 1 4 ϵ 2 ξ h (t) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaae bbfv3ySLgzGueE0jxyaGabaiab=vIiqjabe67a4naaBaaaleaacaWG Obaabeaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0b GaaGykaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaaiUfacqaH+oaEdaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgsMiJoaalaaa baGaaGymaaqaaiaaisdatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab+v=aYpaaBaaaleaacaaIXaaabeaaaaGcdaWdXbqa bSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaS baaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaa dsgaceWG0bGbauaacqGHRaWkcqGF1pG8daWgaaWcbaGaaGymaaqaba GcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGa amyDaiabgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaGccaaIDbWaaW baaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgUcaRiab=vIi qjaadwhadaWgaaWcbaGaaGikaiaaicdacaaIPaaabeaakiabgkHiTi aadAhadaWgaaWcbaGaamiAaaqabaGccaaIOaGaaGimaiaaiMcacqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaae aacaaI0aGae4x9di=aaSbaaSqaaiaaikdaaeqaaaaakiab=vIiqjab e67a4naaBaaaleaacaWGObaabeaakiaaiIcacaWG0bGaaGykaiab=v IiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRaaa@9589@

+ ϵ 2 u v h 2 (t)+ c 4 ϵ 3 0 t [ ξ h ] 2 d t + ϵ 3 0 t u t v h t 2 d t + 1 2 u (0) v h (0) 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIYaaabeaa rqqr1ngBPrgifHhDYfgaiuaakiab+vIiqjaadwhacqGHsislcaWG2b WaaSbaaSqaaiaadIgaaeqaaOGae4xjIa1aaWbaaSqabeaacaaIYaaa aOGaaGikaiaadshacaaIPaGaey4kaSYaaSaaaeaacaWGJbaabaGaaG inaiab=v=aYpaaBaaaleaacaaIZaaabeaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaSbaaSqaai aadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaadsgaceWG 0bGbauaacqGHRaWkcqWF1pG8daWgaaWcbaGaaG4maaqabaGcdaWdXb qabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaqbdaqaamaalaaa baGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaeyOeI0YaaSaaae aacqGHciITcaWG2bWaaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRa amiDaaaaaiaawMa7caGLkWoadaahaaWcbeqaaiaaikdaaaGccaWGKb GabmiDayaafaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacqGF LicucaWG1bWaaSbaaSqaaiaaiIcacaaIWaGaaGykaaqabaGccqGHsi slcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGikaiaaicdacaaIPaGa e4xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdacaaIPaGaaG Olaaaa@8A6B@

1 2 1 4 ϵ 2 ξ h 2 (t)+ 1 1 4 ϵ 1 c 4 ϵ 3 0 t [ ξ h ] 2 d t ϵ 2 u v h 2 (t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaaGymaaqaai aaikdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9di=aaSbaaSqaai aaikdaaeqaaaaaaOGaayjkaiaawMcaaebbfv3ySLgzGueE0jxyaGqb aiab+vIiqjabe67a4naaBaaaleaacaWGObaabeaakiab+vIiqnaaCa aaleqabaGaaGOmaaaakiaaiIcacaWG0bGaaGykaiabgUcaRmaabmaa baGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaaisdacqWF1pG8da WgaaWcbaGaaGymaaqabaaaaOGaeyOeI0YaaSaaaeaacaWGJbaabaGa aGinaiab=v=aYpaaBaaaleaacaaIZaaabeaaaaaakiaawIcacaGLPa aadaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGa eqOVdG3aaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaG OmaaaakiaadsgaceWG0bGbauaacqGHKjYOcqWF1pG8daWgaaWcbaGa aGOmaaqabaGccqGFLicucaWG1bGaeyOeI0IaamODamaaBaaaleaaca WGObaabeaakiab+vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 0bGaaGykaiabgUcaRaaa@7B77@

+ ϵ 1 0 t [u v h ] 2 d t + ϵ 3 0 t u t v h t 2 d t + 3 2 u (0) v h (0) 2 (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWktuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIXaaabeaa kmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaaiUfaca WG1bGaeyOeI0IaamODamaaBaaaleaacaWGObaabeaakiaai2fadaah aaWcbeqaaiaaikdaaaGccaWGKbGabmiDayaafaGaey4kaSIae8x9di =aaSbaaSqaaiaaiodaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiD aaqdcqGHRiI8aOWaauWaaeaadaWcaaqaaiabgkGi2kaadwhaaeaacq GHciITcaWG0baaaiabgkHiTmaalaaabaGaeyOaIyRaamODamaaBaaa leaacaWGObaabeaaaOqaaiabgkGi2kaadshaaaaacaGLjWUaayPcSd WaaWbaaSqabeaacaaIYaaaaOGaamizaiqadshagaqbaiabgUcaRmaa laaabaGaaG4maaqaaiaaikdaaaqeeuuDJXwAKbsr4rNCHbacfaGae4 xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMcaaeqaaOGaeyOe I0IaamODamaaBaaaleaacaWGObaabeaakiaaiIcacaaIWaGaaGykai ab+vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGykaiaa i6caaaa@7C05@  (28)

Пусть [b] ϵ 2 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIYaaabeaakiaai2da caaIXaaaaa@402B@ , ϵ 1 =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIXaaabeaakiaai2da caaIXaaaaa@402A@ , 1 2 1 4 ϵ 2 =1 1 4 ϵ 1 c 4 ϵ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaai abgkHiTmaalaaabaGaaGymaaqaaiaaisdatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIYaaabe aaaaGccaaI9aGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaaisda cqWF1pG8daWgaaWcbaGaaGymaaqabaaaaOGaeyOeI0YaaSaaaeaaca WGJbaabaGaaGinaiab=v=aYpaaBaaaleaacaaIZaaabeaaaaaaaa@4FF9@ ; тогда ϵ 3 = c 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYpaaBaaaleaacaaIZaaabeaakiaai2da daWcaaqaaiaadogaaeaacaaIYaaaaaaa@4125@ . C учетом введенных значений перепишем (28):

ξ h 2 (t)+ 0 t [ ξ h ] 2 d t 4u v h 2 (t)+4 0 t [u v h ] 2 d t +2c 0 t u t v h t 2 d t +6 ξ h 2 (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaH+oaEdaWgaaWcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqa aiaaikdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkdaWdXbqabSqaai aaicdaaeaacaWG0baaniabgUIiYdGccaaIBbGaeqOVdG3aaSbaaSqa aiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaadsgace WG0bGbauaacqGHKjYOcaaI0aGae8xjIaLaamyDaiabgkHiTiaadAha daWgaaWcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaa GccaaIOaGaamiDaiaaiMcacqGHRaWkcaaI0aWaa8qCaeqaleaacaaI WaaabaGaamiDaaqdcqGHRiI8aOGaaG4waiaadwhacqGHsislcaWG2b WaaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaa kiaadsgaceWG0bGbauaacqGHRaWkcaaIYaGaam4yamaapehabeWcba GaaGimaaqaaiaadshaa0Gaey4kIipakmaafmaabaWaaSaaaeaacqGH ciITcaWG1baabaGaeyOaIyRaamiDaaaacqGHsisldaWcaaqaaiabgk Gi2kaadAhadaWgaaWcbaGaamiAaaqabaaakeaacqGHciITcaWG0baa aaGaayzcSlaawQa7amaaCaaaleqabaGaaGOmaaaakiaadsgaceWG0b GbauaacqGHRaWkcaaI2aGae8xjIaLaeqOVdG3aaSbaaSqaaiaadIga aeqaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGikaiaaicdaca aIPaGaeyizImkaaa@89C8@

4u v h 2 (t)+ c ^ 0 t [u v h ] 2 d t + 0 t u t v h t 2 d t + u (0) v h (0) 2 (0) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaI0aqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamyDaiabgkHiTiaadAhadaWgaaWcbaGaamiA aaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaqiaaqaaiaadogaaiaawkWaamaabmaabaWaa8qC aeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaaG4waiaadwhacq GHsislcaWG2bWaaSbaaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqa baGaaGOmaaaakiaadsgaceWG0bGbauaacqGHRaWkdaWdXbqabSqaai aaicdaaeaacaWG0baaniabgUIiYdGcdaqbdaqaamaalaaabaGaeyOa IyRaamyDaaqaaiabgkGi2kaadshaaaGaeyOeI0YaaSaaaeaacqGHci ITcaWG2bWaaSbaaSqaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaa aiaawMa7caGLkWoadaahaaWcbeqaaiaaikdaaaGccaWGKbGabmiDay aafaGaey4kaSIae8xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaa iMcaaeqaaOGaeyOeI0IaamODamaaBaaaleaacaWGObaabeaakiaaiI cacaaIWaGaaGykaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiIca caaIWaGaaGykaaGaayjkaiaawMcaaiaaiYcaaaa@7962@

max t(0,T) ξ h 2 (t)+ 0 T [ ξ h ] 2 d t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHiiIZca aIOaGaaGimaiaaiYcacaWGubGaaGykaaqabOqaaiGac2gacaGGHbGa aiiEaaaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqaH+oaEdaWgaa WcbaGaamiAaaqabaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaI OaGaamiDaiaaiMcacqGHRaWkdaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaaIBbGaeqOVdG3aaSbaaSqaaiaadIgaaeqaaOGa aGyxamaaCaaaleqabaGaaGOmaaaakiaadsgaceWG0bGbauaacqGHKj YOaaa@567B@

4 max t(0,T) u v h 2 (t)+ c ^ 0 T [u v h ] 2 d t + 0 T u t v h t 2 d t + u (0) v h (0) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaI0aWaaybuaeqaleaaca WG0bGaeyicI4SaaGikaiaaicdacaaISaGaamivaiaaiMcaaeqakeaa ciGGTbGaaiyyaiaacIhaaaqeeuuDJXwAKbsr4rNCHbaceaGae8xjIa LaamyDaiabgkHiTiaadAhadaWgaaWcbaGaamiAaaqabaGccqWFLicu daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkda qiaaqaaiaadogaaiaawkWaamaabmaabaWaa8qCaeqaleaacaaIWaaa baGaamivaaqdcqGHRiI8aOGaaG4waiaadwhacqGHsislcaWG2bWaaS baaSqaaiaadIgaaeqaaOGaaGyxamaaCaaaleqabaGaaGOmaaaakiaa dsgaceWG0bGbauaacqGHRaWkdaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcdaqbdaqaamaalaaabaGaeyOaIyRaamyDaaqaaiab gkGi2kaadshaaaGaeyOeI0YaaSaaaeaacqGHciITcaWG2bWaaSbaaS qaaiaadIgaaeqaaaGcbaGaeyOaIyRaamiDaaaaaiaawMa7caGLkWoa daahaaWcbeqaaiaaikdaaaGccaWGKbGabmiDayaafaGaey4kaSIae8 xjIaLaamyDamaaBaaaleaacaaIOaGaaGimaiaaiMcaaeqaaOGaeyOe I0IaamODamaaBaaaleaacaWGObaabeaakiaaiIcacaaIWaGaaGykai ab=vIiqnaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaai6ca aaa@8088@  (29)

Пусть теперь v h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadIgaaeqaaa aa@33D1@  имеет коэффициенты b i =u( x i ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadwhacaaIOaGaamiEamaaBaaaleaacaWGPbaabeaakiaa iYcacaWG0bGaaGykaaaa@3ABE@ . Из (29), учитывая свойства базисных функций, получаем сходимость u h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIgaaeqaaa aa@33D0@  к u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  при h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObGaeyOKH4QaaGimaaaa@3551@ :

max t(0,T) u u h 2 (t)+ 0 T [u u h ] 2 d t 0,h0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadshacqGHiiIZca aIOaGaaGimaiaaiYcacaWGubGaaGykaaqabOqaaiGac2gacaGGHbGa aiiEaaaarqqr1ngBPrgifHhDYfgaiqaacqWFLicucaaMe8UaamyDai abgkHiTiaadwhadaWgaaWcbaGaamiAaaqabaGccqWFLicudaahaaWc beqaaiaaikdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkdaWdXbqabS qaaiaaicdaaeaacaWGubaaniabgUIiYdGccaaIBbGaamyDaiabgkHi TiaadwhadaWgaaWcbaGaamiAaaqabaGccaaIDbWaaWbaaSqabeaaca aIYaaaaOGaamizaiqadshagaqbaiabgkziUkaaicdacaaISaGaaGzb VlaadIgacqGHsgIRcaaIWaGaaGOlaaaa@61C6@

6. Заключение. Рассмотренная в работе форма применения проекционно-сеточного метода для нестационарной задачи объединяет преимущества разностных и проекционных методов. При решении начально-краевых задач целесообразно вводить сетку по оси времени, а затем, после приближения производной по времени, применять схему аппроксимации по пространственной переменной на каждом временном слое. Использование метода Бубнова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Галеркина для аппроксимации по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  с финитными базисными функциями приводит к простой вычислительной схеме с достаточно хорошей точностью. Для приближения по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  ипользовалась неявная схема с первым порядком аппроксимации.

×

Об авторах

Ольга Павловна Барабаш

Воронежский государственный университет

Автор, ответственный за переписку.
Email: navyS9@yandex.ru
Россия, Воронеж

Список литературы

  1. Барабаш О. П. Некоторые особенности реализации метода конечных элементов для сингулярного дифференциального уравнения// Вестн. Воронеж. гос. ун-та. Сер. Физ. Мат. — 2023. — № 2. — С. 27–35.
  2. Виноградова Г. А. О решении сингулярной задачи вариационным методом// Вестн. факта ПММ. —2015. — № 10. — С. 39–42.
  3. Гусман Ю. А. Оценки сходимости конечно-разностных схем для вырожденных эллиптических уравнений// Ж. вычисл. мат. мат. физ. — 1965. — № 2. — С. 351–357.
  4. Емельянов В. Н. Введение в теорию разностных схем. — СПб., 2006.
  5. Житомирский Я. И. Задача Коши для систем линейных уравнений в частных произодных с дифференциальными операторами типа Бесселя// Мат. сб. — 1955. — 36 (78), № 2. — С. 299–310.
  6. Катрахов В. В. Метод конечных элементов для некоторых вырождающихся эллиптических краевых задач// Докл. АН СССР. — 1984. — 279, № 4. — С. 799–802.
  7. Киприянов И. А. Краевые задачи сингулярных эллиптических операторов в частных производных//Докл. АН СССР. — 1970. — 195, № 1. — С. 32–35.
  8. Марчук Г. И. Методы вычислительной математики. — М.: Наука, 1977.
  9. Михлин С. Г. Численная реализация вариационных методов. — М.: Наука, 1966.
  10. Михлин С. Г. Некоторые вопросы сеточной аппроксимации и их приложения к вариационно-сеточному методу// в кн.: Вариационно-разностные методы в математической физике (Михлин С. Г., ред.). —Новосибирск: ВЦ СО АН СССР, 1973.
  11. Самарский А. А. Введение в теорию разностных схем. — М.: Наука, 1971.
  12. Ситник С. М. Метод операторов преобразования для дифференциальных уравнений с операторами Бесселя. — М.: Физматлит, 2019.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Барабаш О.П., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).