О задачах граничного управления и оптимального управления распределенной неоднородной колебательной системой с заданными промежуточными условиями на функции состояния

Обложка

Цитировать

Полный текст

Аннотация

В работе исследуется распределенная неоднородная колебательная система, у которой заданы различные состояния в промежуточные моменты времени. Рассматриваются задачи граничного управления и оптимального граничного управления такой системой. Динамика указанного объекта моделируется одномерным волновым уравнением с кусочно постоянными характеристиками, при этом колебания распространяются в однородных участках за одинаковое время. Критерий качества для задач оптимального граничного управления задан на всем интервале времени. Предложен конструктивный подход построения функции граничного управления и оптимального управления одномерными колебательными неоднородными процессами. Подход исследования базируется на методах разделения переменных, теории управления и оптимального управления конечномерными системами с многоточечными промежуточными условиями. Под действием построенного закона управления волновые колебания из заданного начального состояния переходят в заданное конечное состояние через многоточечные промежуточные состояния.

Полный текст

1. Введение. Волновые уравнения, возникающие в задачах управления распределенными колебательными процессами, имеют неизменный теоретический интерес и существенное практическое значение (см. [1–5, 7–9, 11–18, 21, 22]). В задачах математического моделирования часто возникает необходимость генерации желаемой формы колебания или стабилизации колебания. Решение данной проблемы реализуется исследователями, как правило, с помощью задач граничного управления (см. [2, 4, 5, 7–9, 11–18, 21, 22]). Благодаря многочисленным приложениям многоточечные краевые задачи управления и оптимального управления динамикой являются активно развиваемым направлением в современной теории управления. В этих задачах, наряду с классическими краевыми условиями (начальными и конечными), дополнительно заданы многоточечные условия в промежуточные фиксированные моменты времени.

Задачам управления (в том числе и оптимального) динамикой разнородных составных систем посвящены, в частности, работы [1, 2, 4, 5, 7, 8, 11–18, 26]. Применительно к распределенной колебательной системе, включающей два кусочно однородных участка, эта задача была впервые сформулирована А. Г. Бутковским и исследована в [12]. Серия работ академика В. А. Ильина (см., например, [7, 8]) и работы [4, 5, 11, 13–16, 26] посвящены проблемам граничного управления (оптимального управления) процессами, которые моделируются одномерным волновым уравнением, состоящим из двух участков с разными физическими свойствами. Длины таких участков выбирались исходя из предположения, что время прохождения колебаний по каждому из них является одинаковым. Авторами указанных работ были изучены и выведены формулы типа Даламбера, при этом задачи исследовались методом бегущих волн.

В данной статье рассматривается серия задач граничного управления и оптимального граничного управления динамикой распределенной неоднородной колебательной системы, причем в промежуточные моменты времени известны различные состояния колебательного процесса, который состоит из двух кусочно однородных участков. Считаем, что физические характеристики этих участков удовлетворяют сделанным выше предположениям. Будем осуществлять управление и оптимальное управление за счет смещения одного конца (при закрепленном противоположном конце), а также за счет одновременного смещения обоих концов с заданными условиями: в начальный и конечный моменты времени, а также в разные определенные промежуточные моменты времени. Критерий качества в задачах оптимального граничного управления задан на всем интервале времени.

Сформулированные в данной работе задачи отличаются от существующих постановок тем, что помимо стандартных краевых условий заданы дополнительно многоточечные условия в промежуточные моменты времени, а именно: на функции колебания (прогиба), на их производную (функции скоростей точек), а также одновременно на функции колебания и производную функции колебания. При исследовании этих задач используется метод разделения переменных (метод Фурье).

Цель данной работы состоит в создании аналитического подхода и разработке алгоритма построения функции граничного управления и оптимального управления одномерными колебательными системами, обладающими неоднородными свойствами, динамика которых (под действием сформированного закона управления) за конечный отрезок времени переходит из определенного начального состояния через многоточечные промежуточные состояния в известное (желаемое) конечное состояние.

2. Постановка задачи. Пусть кусочно однородная среда состоит из двух участков с соответствующими длинами l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaa aa@3395@  и l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbaaaa@32AE@  (т.е. l 1 x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdaaaa@39AD@ , 0xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiEaiabgsMiJk aadYgaaaa@37CF@  ), a i = k i / ρ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaakaaabaGaam4AamaaBaaaleaacaWGPbaabeaakiaai+ca cqaHbpGCdaWgaaWcbaGaamyAaaqabaaabeaaaaa@3A45@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скорость прохождения волны по i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  -му участку, где ρ i =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCdaWgaaWcbaGaamyAaaqaba GccaaI9aGaam4yaiaad+gacaWGUbGaam4Caiaadshaaaa@3A28@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  линейная плотность, k i =const MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0baaaa@3958@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  модуль Юнга, i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ . При этом имеет место равенство

l 1 a 1 = l a 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadYgadaWgaaWcbaGaaG ymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaaakiaai2da daWcaaqaaiaadYgaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaki aaiYcaaaa@39DC@  (2.1)

так что время прохождения волны по участкам разной длины совпадает. Пусть состояние неоднородной распределенной системы описывается функцией Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A4@ , l 1 xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaadYgaaaa@39E4@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , а отклонения от состояния равновесия можно представить в виде волнового уравнения следующего вида:

2 Q(x,t) t 2 = a 1 2 2 Q(x,t) x 2 , l 1 x0, 0 tT, a 2 2 2 Q(x,t) x 2 , 0 xl, 0 tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadgfacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaaGypamaace aabaqbaeaabiGbaaaabaaabaGaamyyamaaDaaaleaacaaIXaaabaGa aGOmaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaam yuaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiE amaaCaaaleqabaGaaGOmaaaaaaGccaaISaaabaGaaGzbVlabgkHiTi aadYgadaWgaaWcbaGaaGymaaqabaaakeaacqGHKjYOcaWG4bGaeyiz ImQaaGimaiaaiYcaaeaacaaMf8UaaGimaaqaaiabgsMiJkaadshacq GHKjYOcaWGubGaaGilaaqaaaqaaiaadggadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaaki aadgfacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaa dIhadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaqaaiaaywW7caaIWa aabaGaeyizImQaamiEaiabgsMiJkaadYgacaaISaaabaGaaGzbVlaa icdaaeaacqGHKjYOcaWG0bGaeyizImQaamivaiaaiYcaaaaacaGL7b aaaaa@7D3A@  (2.2)

с граничными условиями двух видов:

1.  Q( l 1 ,t)=μ(t),Q(l,t)=0,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabgkHiTiaadYgada WgaaWcbaGaaGymaaqabaGccaaISaGaamiDaiaaiMcacaaI9aGaeqiV d0MaaGikaiaadshacaaIPaGaaGilaiaaywW7caWGrbGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaaGim aiabgsMiJkaadshacqGHKjYOcaWGubGaaGilaaaa@4EE1@  (2.3)

<p >2.  Q( l 1 ,t)=μ(t),Q(l,t)=ν(t),0tT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabgkHiTiaadYgada WgaaWcbaGaaGymaaqabaGccaaISaGaamiDaiaaiMcacaaI9aGaeqiV d0MaaGikaiaadshacaaIPaGaaGilaiaaywW7caWGrbGaaGikaiaadY gacaaISaGaamiDaiaaiMcacaaI9aGaeqyVd4MaaGikaiaadshacaaI PaGaaGilaiaaywW7caaIWaGaeyizImQaamiDaiabgsMiJkaadsfaca aIUaaaaa@523F@  (2.4)

 

Функции μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  управляющие воздействия (граничные управления) с условиями сопряжения в точке x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  соединения участков

Q(00,t)=Q(0+0,t), a 1 2 ρ 1 Q(x,t) x | x=00 = a 2 2 ρ 2 Q(x,t) x | x=0+0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaaicdacqGHsislca aIWaGaaGilaiaadshacaaIPaGaaGypaiaadgfacaaIOaGaaGimaiab gUcaRiaaicdacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaadggada qhaaWcbaGaaGymaaqaaiaaikdaaaGccqaHbpGCdaWgaaWcbaGaaGym aaqabaGcdaWcaaqaaiabgkGi2kaadgfacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaqaaiabgkGi2kaadIhaaaGaaGiFamaaBaaaleaacaWG 4bGaaGypaiaaicdacqGHsislcaaIWaaabeaakiaai2dacaWGHbWaa0 baaSqaaiaaikdaaeaacaaIYaaaaOGaeqyWdi3aaSbaaSqaaiaaikda aeqaaOWaaSaaaeaacqGHciITcaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaeaacqGHciITcaWG4baaaiaaiYhadaWgaaWcbaGaamiE aiaai2dacaaIWaGaey4kaSIaaGimaaqabaGccaaIUaaaaa@6995@  (2.5)

Распределенный кусочно однородный процесс (2.2) можно охарактеризовать как динамическую систему переменной структуры (см. [19]). Уравнение (2.2) характеризует математическая модель продольных (либо поперечных) колебаний стержня (струны) соответственно, где ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCaaa@337D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  плотность, k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  модуль упругости (натяжение струны).

Пусть классические условия (начальные и конечные) имеют вид

3Q(x,0)= φ 0 (x), Q(x,t) t | t=0 = ψ 0 (x), l 1 xl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamyuaiaaiIcacaWG4bGaaG ilaiaaicdacaaIPaGaaGypaiabeA8aQnaaBaaaleaacaaIWaaabeaa kiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8+aaSaaaeaacqGHciITca WGrbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG 0baaaiaaiYhadaWgaaWcbaGaamiDaiaai2dacaaIWaaabeaakiaai2 dacqaHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiEaiaaiMca caaISaGaaGzbVlabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaGccq GHKjYOcaWG4bGaeyizImQaamiBaiaaiYcaaaa@5CB6@  (2.6)

Q(x,T)= φ T (x)= φ m+1 (x), Q t | t=T = ψ T (x)= ψ m+1 (x), l 1 xl. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam ivaiaaiMcacaaI9aGaeqOXdO2aaSbaaSqaaiaadsfaaeqaaOGaaGik aiaadIhacaaIPaGaaGypaiabeA8aQnaaBaaaleaacaWGTbGaey4kaS IaaGymaaqabaGccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVpaalaaa baGaeyOaIyRaamyuaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaale aacaWG0bGaaGypaiaadsfaaeqaaOGaaGypaiabeI8a5naaBaaaleaa caWGubaabeaakiaaiIcacaWG4bGaaGykaiaai2dacqaHipqEdaWgaa WcbaGaamyBaiabgUcaRiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGa aGilaiaaywW7cqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaey izImQaamiEaiabgsMiJkaadYgacaaIUaaaaa@67CD@  (2.7)

Пусть также в некоторые определенные моменты времени t k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadUgaaeqaaa aa@33D2@   (k=1,,m) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4Aaiaai2dacaaIXaGaaG ilaiablAciljaaiYcacaWGTbGaaGykaaaa@3914@ :

0= t 0 < t 1 << t m < t m+1 =T, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGypaiaadshadaWgaaWcba GaaGimaaqabaGccaaI8aGaamiDamaaBaaaleaacaaIXaaabeaakiaa iYdacqWIMaYscaaI8aGaamiDamaaBaaaleaacaWGTbaabeaakiaaiY dacaWG0bWaaSbaaSqaaiaad2gacqGHRaWkcaaIXaaabeaakiaai2da caWGubGaaGilaaaa@4380@

известны промежуточные значения функции колебания (прогиба) и значения ее производной (скоростей точек системы) в следующем виде:

A.Q(x, t i )= φ i (x), l 1 xl,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaqGbbGaaeOlaiaaywW7caWGrbGaaG ikaiaadIhacaaISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMca caaI9aGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadIhaca aIPaGaaGilaiaaywW7cqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqa aOGaeyizImQaamiEaiabgsMiJkaadYgacaaISaGaaGzbVlaadMgaca aI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaaiYcaaaa@542A@  (2.8)

B. Q t | t= t j = ψ j (x), l 1 xl,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaqGcbGaaeOlaiaaywW7daWcaaqaai abgkGi2kaadgfaaeaacqGHciITcaWG0baaaiaaiYhadaWgaaWcbaGa amiDaiaai2dacaWG0bWaaSbaaeaacaWGQbaabeaaaeqaaOGaaGypai abeI8a5naaBaaaleaacaWGQbaabeaakiaaiIcacaWG4bGaaGykaiaa iYcacaaMf8UaeyOeI0IaamiBamaaBaaaleaacaaIXaaabeaakiabgs MiJkaadIhacqGHKjYOcaWGSbGaaGilaiaaywW7caWGQbGaaGypaiaa igdacaaISaGaeSOjGSKaaGilaiaad2gacaaISaaaaa@57E3@  (2.9)

C.Q(x, t i )= φ i (x), l 1 xl,i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaqGdbGaaeOlaiaaywW7caWGrbGaaG ikaiaadIhacaaISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMca caaI9aGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadIhaca aIPaGaaGilaiaaywW7cqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqa aOGaeyizImQaamiEaiabgsMiJkaadYgacaaISaGaaGzbVlaadMgaca aI9aGaaGOmaiabeg7aHjabgkHiTiaaigdacaaISaGaaGzbVlabeg7a Hjaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVpaala aabaGaamyBaaqaaiaaikdaaaGaaGilaaaa@60BF@  (2.10)

Q t | t= t j = ψ j (x), l 1 xl,j=2α,α=1,, m 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadgfaaeaacq GHciITcaWG0baaaiaaiYhadaWgaaWcbaGaamiDaiaai2dacaWG0bWa aSbaaeaacaWGQbaabeaaaeqaaOGaaGypaiabeI8a5naaBaaaleaaca WGQbaabeaakiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UaeyOeI0Ia amiBamaaBaaaleaacaaIXaaabeaakiabgsMiJkaadIhacqGHKjYOca WGSbGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXoqycaaISaGa aGzbVlabeg7aHjaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISa GaaGjbVpaalaaabaGaamyBaaqaaiaaikdaaaGaaGOlaaaa@5FCC@

В промежуточных условиях (2.10) предполагается, что m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  четное число.

Замечание 1. Промежуточные значения функции колебания и значения производной функции колебания в условиях (2.10) можно задавать в любой очередности.

Для задач управления с граничными условиями (2.3) будем рассматривать функционал вида

0 T μ 2 (t)dt 1/2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaamaapehabeWcbaGaaGimaa qaaiaadsfaa0Gaey4kIipakiabeY7aTnaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG0bGaaGykaiaadsgacaWG0baacaGLBbGaayzxaaWaaW baaSqabeaacaaIXaGaaG4laiaaikdaaaGccaaISaaaaa@41BC@  (2.11)

а для задач управления с граничными условиями (2.4) будем рассматривать функционал вида

0 T μ 2 (t)+ ν 2 (t) dt 1/2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaamaapehabeWcbaGaaGimaa qaaiaadsfaa0Gaey4kIipakmaabmaabaGaeqiVd02aaWbaaSqabeaa caaIYaaaaOGaaGikaiaadshacaaIPaGaey4kaSIaeqyVd42aaWbaaS qabeaacaaIYaaaaOGaaGikaiaadshacaaIPaaacaGLOaGaayzkaaGa amizaiaadshaaiaawUfacaGLDbaadaahaaWcbeqaaiaaigdacaaIVa GaaGOmaaaakiaai6caaaa@4932@  (2.12)

Предполагается, что функция Q(x,t) C 2 ( Ω T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGaaGik aiabfM6axnaaBaaaleaacaWGubaabeaakiaaiMcaaaa@3DE5@ , где Ω T ={(x,t):x[ l 1 ,l],t[0,T]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaaqaba GccaaI9aGaaG4EaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGOo aiaadIhacqGHiiIZcaaIBbGaeyOeI0IaamiBamaaBaaaleaacaaIXa aabeaakiaaiYcacaWGSbGaaGyxaiaaiYcacaaMe8UaamiDaiabgIGi olaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGyFaaaa@4D9A@ , а функции удовлетворяют условиям φ i (x) C 2 [ l 1 ,l] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiEaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaI YaaaaOGaaG4waiabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaGcca aISaGaamiBaiaai2faaaa@4081@  и ψ j (x) C 1 [ l 1 ,l] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOAaaqaba GccaaIOaGaamiEaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaI XaaaaOGaaG4waiabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaGcca aISaGaamiBaiaai2faaaa@4092@ . Кроме того, полагаем, что выполнены условия согласования

μ(0) = φ 0 ( l 1 ), μ ˙ (0) = ψ 0 ( l 1 ), ν(0) = φ 0 (l), ν ˙ (0) = ψ 0 (l), μ( t i ) = φ i ( l 1 ), μ ˙ ( t j ) = ψ j ( l 1 ), ν( t i ) = φ i (l), ν ˙ ( t j ) = ψ j (l), μ(T) = φ T ( l 1 ), μ ˙ (T) = ψ T ( l 1 ), ν(T) = φ T (l), ν ˙ (T) = ψ T (l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeWaiaaaaaqaaiabeY7aTjaaiI cacaaIWaGaaGykaaqaaiaai2dacqaHgpGAdaWgaaWcbaGaaGimaaqa baGccaaIOaGaeyOeI0IaamiBamaaBaaaleaacaaIXaaabeaakiaaiM cacaaISaaabaGaaGzbVlqbeY7aTzaacaGaaGikaiaaicdacaaIPaaa baGaaGypaiabeI8a5naaBaaaleaacaaIWaaabeaakiaaiIcacqGHsi slcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYcaaeaacaaM f8UaeqyVd4MaaGikaiaaicdacaaIPaaabaGaaGypaiabeA8aQnaaBa aaleaacaaIWaaabeaakiaaiIcacaWGSbGaaGykaiaaiYcaaeaacaaM f8UafqyVd4MbaiaacaaIOaGaaGimaiaaiMcaaeaacaaI9aGaeqiYdK 3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadYgacaaIPaGaaGilaaqa aiabeY7aTjaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaa qaaiaai2dacqaHgpGAdaWgaaWcbaGaamyAaaqabaGccaaIOaGaeyOe I0IaamiBamaaBaaaleaacaaIXaaabeaakiaaiMcacaaISaaabaGaaG zbVlqbeY7aTzaacaGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGc caaIPaaabaGaaGypaiabeI8a5naaBaaaleaacaWGQbaabeaakiaaiI cacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYca aeaacaaMf8UaeqyVd4MaaGikaiaadshadaWgaaWcbaGaamyAaaqaba GccaaIPaaabaGaaGypaiabeA8aQnaaBaaaleaacaWGPbaabeaakiaa iIcacaWGSbGaaGykaiaaiYcaaeaacaaMf8UafqyVd4MbaiaacaaIOa GaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcaaeaacaaI9aGaeqiY dK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadYgacaaIPaGaaGilaa qaaiabeY7aTjaaiIcacaWGubGaaGykaaqaaiaai2dacqaHgpGAdaWg aaWcbaGaamivaaqabaGccaaIOaGaeyOeI0IaamiBamaaBaaaleaaca aIXaaabeaakiaaiMcacaaISaaabaGaaGzbVlqbeY7aTzaacaGaaGik aiaadsfacaaIPaaabaGaaGypaiabeI8a5naaBaaaleaacaWGubaabe aakiaaiIcacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGyk aiaaiYcaaeaacaaMf8UaeqyVd4MaaGikaiaadsfacaaIPaaabaGaaG ypaiabeA8aQnaaBaaaleaacaWGubaabeaakiaaiIcacaWGSbGaaGyk aiaaiYcaaeaacaaMf8UafqyVd4MbaiaacaaIOaGaamivaiaaiMcaae aacaaI9aGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGaaGikaiaadYga caaIPaGaaGilaaaaaaa@CF15@  (2.13)

где i=2α1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdacqaHXoqycq GHsislcaaIXaaaaa@3775@ , j=2α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaikdacqaHXoqyaa a@35CE@ , α=1,,m/2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI9aGaaGymaiaaiYcacq WIMaYscaaISaGaamyBaiaai+cacaaIYaaaaa@39D3@ .

Для уравнения (2.2) с условиями (2.6) и (2.7) на отрезке [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  сформулированы шесть задач граничного управления с граничными условиями (2.3) и (2.4), с заданными различными условиями (2.8) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.10) на функцию колебания и ее производную в фиксированные промежуточные значения.

Номером 1 обозначим задачи, в которых управление реализуется за счет перемещения только одного конца (для определенности, левого) при закрепленном другом конце.

Задача 1A. Граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8).

Задача 1B. Граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9).

Задача 1С. Граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10).

Сформулируем перечисленные задачи управления 1A, 1B, 1C с указанными граничными условиями (2.3).

Требуется найти такое граничное управление μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , (см. (2.3)), под влиянием которого колебания системы (2.2) с условиями сопряжения (2.5) из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходят в состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая выполнение следующих значений: 

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  (см. (2.8));

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.9));

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Номером 2 обозначим далее задачи, в которых управление реализуется за счет перемещения обоих концов системы.

Задача 2A. Граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8).

Задача 2B. Граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9).

Задача 2C. Граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10).

Сформулируем перечисленные задачи управления 2A, 2B, 2C с указанными граничными условиями (2.4).

Требуется найти такие граничные управления μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@  (см. (2.4)), под влиянием которых колебания системы (2.2) с условиями сопряжения (2.5) из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходят в состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая выполнение следующих значений: 

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  (см. (2.8));

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.9));

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Для уравнения (2.2) с начальными (2.6) и конечными (2.7) условиями на отрезке времени [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  и функционалами (2.11), (2.12) сформулированы шесть задач оптимального граничного управления с граничными условиями (2.3) и (2.4), с заданными различными условиями (2.8) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.10) на функцию колебания и ее производную в определенные промежуточные значения из временного интервала. Сохраняя принятую выше нумерацию задач, отметим задачи оптимального граничного управления дополнительно верхним индексом <<0>>.

Задача 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ A. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8) и минимизирующие функционал (2.11).

Задача 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ B. Оптимальное граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9) и минимизирующие функционал (2.11).

Задача 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ C. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10) и минимизирующие функционал (2.11).

Сформулируем перечисленные задачи 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  A, 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  B, 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  C оптимального граничного управления с условиями (2.3).

Требуется найти оптимальное граничного управление μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@  (см. (2.3)) под воздействием которого колебания системы (2.2) с условиями сопряжения (2.5) из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходят в состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая минимум функционала (2.11) и выполнение следующих заданных значений: 

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  (см. (2.8));

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@ (см. (2.9));

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Задача 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ A. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания в выделенные промежуточные моменты времени (2.8) и минимизирующие функционал (2.12).

Задача 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ B. Оптимальное граничное управление колебательным процессом с заданными значениями производной функции колебания в выделенные промежуточные моменты времени (2.9) и минимизирующие функционал (2.12).

Задача 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@ C. Оптимальное граничное управление колебательным процессом с заданными значениями функции колебания и ее производной в выделенные разные промежуточные моменты времени (2.10) и минимизирующие функционал (2.12).

Сформулируем перечисленные задачи 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  A, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  B, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  C оптимального граничного управления с условиями (2.4).

Требуется найти такие оптимальные граничные управления μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@  и ν 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C4@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@  (см. (2.4)), под воздействием которых колебания системы (2.2) с условиями сопряжения (2.5) и граничными условиями из известного состояния (2.6) в начале отрезка t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  переходит в известное состояние (2.7) в конце отрезка t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@ , обеспечивая минимум функционала (2.12) и выполнение следующих заданных значений:

A. функции колебания в фиксированные промежуточные значения времени t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@ (см. (2.8)); 

B. производной функции колебания в фиксированные промежуточные значения времени t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@ (см. (2.9)); 

C. функции колебания и ее производной в фиксированные промежуточные значения t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@  и t j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaa aa@33D1@  (см. (2.10)).

Замечание 2 .Так как во всех задачах управления и оптимального управления в отдельные промежуточные моменты времени t k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadUgaaeqaaa aa@33D2@  ( k=1,,m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaad2gaaaa@37AF@  ) заданы или только значения функции колебания, или только значения производной функции колебания (значения скоростей точек), то использовать подход поэтапного исследования задач нецелесообразно.

В данной работе для всех перечисленных задач по единой схеме предлагается конструктивный подход решения, в котором учитывается специфика промежуточных условий.

Схема построения решений сформулированных задач включает следующие шаги:

Шаг 1. Задачи сводятся к задачам управления с распределенными воздействиями с нулевыми граничными условиями.

Шаг 2. При помощи метода разделения переменных полученные задачи сводятся к задачам управления и оптимального управления для обыкновенных дифференциальных уравнений с заданными начальными, конечными и многоточечными промежуточными условиями.

Шаг 3. При помощи методов теории управления и оптимального управления конечномерными системами с многоточечными промежуточными условиями для произвольного числа первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник строятся граничные управления и оптимальные граничные управления, которые представляются в явном аналитическом виде.

3. Сведение исходных задач к задачам с нулевыми граничными условиями. Для выполнения шага 1 из схемы построения решения перейдем к новой переменной:

ξ= a 2 a 1 x, l 1 x0, x, 0 xl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aWaaiqaaeaafaqaae GaeaaaaeaaaeaadaWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdaaeqaaaaakiaadIhacaaISaaaba GaaGzbVlabgkHiTiaadYgadaWgaaWcbaGaaGymaaqabaaakeaacqGH KjYOcaWG4bGaeyizImQaaGimaiaaiYcaaeaaaeaacaWG4bGaaGilaa qaaiaaywW7caaIWaaabaGaeyizImQaamiEaiabgsMiJkaadYgacaaI SaaaaaGaay5Eaaaaaa@4F25@  (3.1)

что позволит реализовать растяжение или сжатие отрезка l 1 x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdaaaa@39AD@  относительно точки x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ . При этом с учетом (2.1) вместо отрезка l 1 x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdaaaa@39AD@  будем иметь отрезок lξ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbGaeyizImQaeqOVdG NaeyizImQaaGimaaaa@3982@ .

Для функции Q(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376A@  получим на отрезках одинаковой длины одинаковое уравнение

2 Q(ξ,t) t 2 = a 2 2 2 Q(ξ,t) ξ 2 , l ξ0,0tT, a 2 2 2 Q(ξ,t) ξ 2 , 0 ξl,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadgfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aWaai qaaeaafaqaaeGaeaaaaeaaaeaacaWGHbWaa0baaSqaaiaaikdaaeaa caaIYaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGcca WGrbGaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaqaaiabgkGi2kab e67a4naaCaaaleqabaGaaGOmaaaaaaGccaaISaaabaGaaGzbVlabgk HiTiaadYgaaeaacqGHKjYOcqaH+oaEcqGHKjYOcaaIWaGaaGilaiaa ywW7caaIWaGaeyizImQaamiDaiabgsMiJkaadsfacaaISaaabaaaba GaamyyamaaDaaaleaacaaIYaaabaGaaGOmaaaakmaalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaamyuaiaaiIcacqaH+oaEcaaISa GaamiDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaikda aaaaaOGaaGilaaqaaiaaywW7caaIWaaabaGaeyizImQaeqOVdGNaey izImQaamiBaiaaiYcacaaMf8UaaGimaiabgsMiJkaadshacqGHKjYO caWGubGaaGilaaaaaiaawUhaaaaa@81AE@

или

2 Q(ξ,t) t 2 = a 2 2 2 Q(ξ,t) ξ 2 ,lξl,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadgfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aGaam yyamaaDaaaleaacaaIYaaabaGaaGOmaaaakmaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaamyuaiaaiIcacqaH+oaEcaaISaGaam iDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaikdaaaaa aOGaaGilaiaaywW7cqGHsislcaWGSbGaeyizImQaeqOVdGNaeyizIm QaamiBaiaaiYcacaaMf8UaaGimaiabgsMiJkaadshacqGHKjYOcaWG ubGaaGilaaaa@5FE3@  (3.2)

с граничными условиями

3Q(l,t)=μ(t),Q(l,t)=0,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamyuaiaaiIcacqGHsislca WGSbGaaGilaiaadshacaaIPaGaaGypaiabeY7aTjaaiIcacaWG0bGa aGykaiaaiYcacaaMf8UaamyuaiaaiIcacaWGSbGaaGilaiaadshaca aIPaGaaGypaiaaicdacaaISaGaaGzbVlaaicdacqGHKjYOcaWG0bGa eyizImQaamivaiaaiYcaaaa@4EAD@  (3.3)

Q(l,t)=μ(t),Q(l,t)=ν(t),0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabgkHiTiaadYgaca aISaGaamiDaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGa aGilaiaaywW7caWGrbGaaGikaiaadYgacaaISaGaamiDaiaaiMcaca aI9aGaeqyVd4MaaGikaiaadshacaaIPaGaaGilaiaaywW7caaIWaGa eyizImQaamiDaiabgsMiJkaadsfacaaISaaaaa@514C@  (3.4)

начальными условиями

Q(ξ,0)= φ 0 (ξ), Q(ξ,t) t | t=0 = ψ 0 (ξ),lxl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca aIWaGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaI OaGaeqOVdGNaaGykaiaaiYcacaaMf8+aaSaaaeaacqGHciITcaWGrb GaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaadsha aaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaaicdaaeqaaOGaaGypai abeI8a5naaBaaaleaacaaIWaaabeaakiaaiIcacqaH+oaEcaaIPaGa aGilaiaaywW7cqGHsislcaWGSbGaeyizImQaamiEaiabgsMiJkaadY gacaaISaaaaa@5E20@  (3.5)

промежуточными условиями

4Q(ξ, t i )= φ i (ξ),lξl,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaamyuaiaaiIcacqaH+oaEca aISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaeqOX dO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabe67a4jaaiMcacaaISa GaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+oaEcqGHKjYOcaWGSbGa aGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilai aad2gacaaISaaaaa@5346@  (3.6)

Q(ξ,t) t | t= t j = ψ j (x),lξl,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadgfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa amiEaiaaiMcacaaISaGaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+o aEcqGHKjYOcaWGSbGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaI SaGaeSOjGSKaaGilaiaad2gacaaISaaaaa@598A@  (3.7)

Q(ξ, t i )= φ i (ξ),lξl,i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacqaHgpGAdaWg aaWcbaGaamyAaaqabaGccaaIOaGaeqOVdGNaaGykaiaaiYcacaaMf8 UaeyOeI0IaamiBaiabgsMiJkabe67a4jabgsMiJkaadYgacaaISaGa aGzbVlaadMgacaaI9aGaaGOmaiabeg7aHjabgkHiTiaaigdacaaISa GaaGzbVlabeg7aHjaai2dacaaIXaGaaGilaiablAciljaaiYcadaWc aaqaaiaad2gaaeaacaaIYaaaaiaaiYcaaaa@5C01@  (3.8)

Q(ξ,t) t | t= t j = ψ j (x),lξl,j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadgfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa amiEaiaaiMcacaaISaGaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+o aEcqGHKjYOcaWGSbGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaH XoqycaaISaGaaGzbVlabeg7aHjaai2dacaaIXaGaaGilaiablAcilj aaiYcadaWcaaqaaiaad2gaaeaacaaIYaaaaiaaiYcaaaa@615C@

конечными условиями

Q(ξ,T)= φ T (ξ), Q(ξ,t) t | t=T = ψ T (ξ),lξl, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WGubGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaI OaGaeqOVdGNaaGykaiaaiYcacaaMf8+aaSaaaeaacqGHciITcaWGrb GaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaqaaiabgkGi2kaadsha aaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfaaeqaaOGaaGypai abeI8a5naaBaaaleaacaWGubaabeaakiaaiIcacqaH+oaEcaaIPaGa aGilaiaaywW7cqGHsislcaWGSbGaeyizImQaeqOVdGNaeyizImQaam iBaiaaiYcaaaa@5F62@  (3.9)

и с условиями сопряжения в точке ξ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaaGimaaaa@3501@  соединения участков:

Q(00,t)=Q(0+0,t), a 1 ρ 1 Q(ξ,t) ξ | ξ=00 = a 2 ρ 2 Q(ξ,t) ξ | ξ=0+0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaaicdacqGHsislca aIWaGaaGilaiaadshacaaIPaGaaGypaiaadgfacaaIOaGaaGimaiab gUcaRiaaicdacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaadggada WgaaWcbaGaaGymaaqabaGccqaHbpGCdaWgaaWcbaGaaGymaaqabaGc daWcaaqaaiabgkGi2kaadgfacaaIOaGaeqOVdGNaaGilaiaadshaca aIPaaabaGaeyOaIyRaeqOVdGhaaiaaiYhadaWgaaWcbaGaeqOVdGNa aGypaiaaicdacqGHsislcaaIWaaabeaakiaai2dacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeqyWdi3aaSbaaSqaaiaaikdaaeqaaOWaaSaa aeaacqGHciITcaWGrbGaaGikaiabe67a4jaaiYcacaWG0bGaaGykaa qaaiabgkGi2kabe67a4baacaaI8bWaaSbaaSqaaiabe67a4jaai2da caaIWaGaey4kaSIaaGimaaqabaGccaaIUaaaaa@6CBF@  (3.10)

Отметим, что для простоты и удобства после замены переменной (3.1) все обозначения функций сохранены.

3.1. Сведение неоднородных граничных условий к нулевым граничным условиям. Поскольку граничные условия (3.3), (3.4) неоднородны, будем строить решение уравнения (3.2) в следующем виде:

Q(ξ,t)=V(ξ,t)+W(ξ,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dacaWGwbGaaGikaiabe67a4jaaiYcacaWG0bGa aGykaiabgUcaRiaadEfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPa GaaGilaaaa@452E@  (3.11)

где V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  требующая определения функция с однородными граничными условиями

V(l,t)=V(l,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabgkHiTiaadYgaca aISaGaamiDaiaaiMcacaaI9aGaamOvaiaaiIcacaWGSbGaaGilaiaa dshacaaIPaGaaGypaiaaicdacaaISaaaaa@3F68@  (3.12)

а W(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@3770@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  решение уравнения (3.2) с неоднородными граничными условиями

2W(l,t)=μ(t),W(l,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaam4vaiaaiIcacqGHsislca WGSbGaaGilaiaadshacaaIPaGaaGypaiabeY7aTjaaiIcacaWG0bGa aGykaiaaiYcacaaMf8Uaam4vaiaaiIcacaWGSbGaaGilaiaadshaca aIPaGaaGypaiaaicdacaaISaaaaa@467E@  (3.13)

W(l,t)=μ(t),W(l,t)=ν(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabgkHiTiaadYgaca aISaGaamiDaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGa aGilaiaaywW7caWGxbGaaGikaiaadYgacaaISaGaamiDaiaaiMcaca aI9aGaeqyVd4MaaGikaiaadshacaaIPaGaaGOlaaaa@4920@  (3.14)

Функция W(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@3770@  для условий (3.3) и (3.4) представляется в виде

W(ξ,t)= 1 2l (lξ)μ(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa caaIOaGaamiBaiabgkHiTiabe67a4jaaiMcacqaH8oqBcaaIOaGaam iDaiaaiMcacaaISaaaaa@447F@  (3.15)

W(ξ,t)= 1 2l (lξ)μ(t)+(l+ξ)ν(t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeY7aTj aaiIcacaWG0bGaaGykaiabgUcaRiaaiIcacaWGSbGaey4kaSIaeqOV dGNaaGykaiabe27aUjaaiIcacaWG0bGaaGykaaGaay5waiaaw2faai aai6caaaa@5066@  (3.16)

Подстановка (3.11) в (3.2) и учет (3.15), (3.16) дают следующее уравнение для V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@ :

2 V(ξ,t) t 2 = a 2 2 2 V(ξ,t) ξ 2 +F(ξ,t),lξl,0tT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadAfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aGaam yyamaaDaaaleaacaaIYaaabaGaaGOmaaaakmaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaamOvaiaaiIcacqaH+oaEcaaISaGaam iDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaikdaaaaa aOGaey4kaSIaamOraiaaiIcacqaH+oaEcaaISaGaamiDaiaaiMcaca aISaGaaGzbVlabgkHiTiaadYgacqGHKjYOcqaH+oaEcqGHKjYOcaWG SbGaaGilaiaaywW7caaIWaGaeyizImQaamiDaiabgsMiJkaadsfaca aISaaaaa@6671@  (3.17)

где

F(ξ,t)= 1 2l (ξl) μ ¨ (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa caaIOaGaeqOVdGNaeyOeI0IaamiBaiaaiMcacuaH8oqBgaWaaiaaiI cacaWG0bGaaGykaiaaiYcaaaa@4478@  (3.18)

F(ξ,t)= 1 2l (ξl) μ ¨ (t)(ξ+l) ν ¨ (t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacqaH+oaEcqGHsislcaWGSbGaaGykaiqbeY7aTz aadaGaaGikaiaadshacaaIPaGaeyOeI0IaaGikaiabe67a4jabgUca RiaadYgacaaIPaGafqyVd4MbamaacaaIOaGaamiDaiaaiMcaaiaawU facaGLDbaacaaIUaaaaa@5074@  (3.19)

Функция V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  удовлетворяет условию (3.10) в точке ξ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaaGimaaaa@3501@ . Следует отметить, что согласно (3.1) имеем

φ 0 ( l 1 ) = φ 0 (l), φ i ( l 1 ) = φ i (l), ψ 0 ( l 1 ) = ψ 0 (l), ψ j ( l 1 ) = ψ j (l), φ T ( l 1 ) = φ T (l), ψ T ( l 1 ) = ψ T (l). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGagaaaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBamaaBaaaleaacaaI XaaabeaakiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqaaiaaicdaae qaaOGaaGikaiabgkHiTiaadYgacaaIPaGaaGilaaqaaiaaywW7cqaH gpGAdaWgaaWcbaGaamyAaaqabaGccaaIOaGaeyOeI0IaamiBamaaBa aaleaacaaIXaaabeaakiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqa aiaadMgaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPaGaaGilaaqaai aaywW7cqaHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyOeI0Ia amiBamaaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaaI9aGaeqiYdK 3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPaGa aGilaaqaaiabeI8a5naaBaaaleaacaWGQbaabeaakiaaiIcacqGHsi slcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaai2dacqaH ipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiM cacaaISaaabaGaaGzbVlabeA8aQnaaBaaaleaacaWGubaabeaakiaa iIcacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaai aai2dacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaeyOeI0Ia amiBaiaaiMcacaaISaaabaGaaGzbVlabeI8a5naaBaaaleaacaWGub aabeaakiaaiIcacqGHsislcaWGSbWaaSbaaSqaaiaaigdaaeqaaOGa aGykaaqaaiaai2dacqaHipqEdaWgaaWcbaGaamivaaqabaGccaaIOa GaeyOeI0IaamiBaiaaiMcacaaIUaaaaaaa@8F9A@  (3.20)

3.2. Сведение начальных, промежуточных и конечных условий к соответствующим условиям для неоднородного уравнения. Учитывая выражения (3.15), (3.16) для функции W(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@3770@  и условия согласования (3.20), из известных начальных (3.5), промежуточных (3.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.8) и конечных условий (3.9) получим соответствующие условия для функции V(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A9@ . Для задач граничного управления колебаниями смещением левого конца при закрепленном правом конце, т.е. для функции V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@ , получим следующие условия: начальные

V(ξ,0)= φ 0 (ξ) 1 2l (lξ) φ 0 (l), V(ξ,t) t | t=0 = ψ 0 (ξ) 1 2l (lξ) ψ 0 (l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca aIWaGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaI OaGaeqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaca WGSbaaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeA8aQnaa BaaaleaacaaIWaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiY cacaaMf8+aaSaaaeaacqGHciITcaWGwbGaaGikaiabe67a4jaaiYca caWG0bGaaGykaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaaleaaca WG0bGaaGypaiaaicdaaeqaaOGaaGypaiabeI8a5naaBaaaleaacaaI WaaabeaakiaaiIcacqaH+oaEcaaIPaGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaiaadYgaaaGaaGikaiaadYgacqGHsislcqaH+oaEcaaI PaGaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgkHiTiaadY gacaaIPaGaaGilaaaa@7177@  (3.21)

промежуточные

3V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l),i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamOvaiaaiIcacqaH+oaEca aISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaeqOX dO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaacaaIOaGaamiBaiab gkHiTiabe67a4jaaiMcacqaHgpGAdaWgaaWcbaGaamyAaaqabaGcca aIOaGaeyOeI0IaamiBaiaaiMcacaaISaGaaGzbVlaadMgacaaI9aGa aGymaiaaiYcacqWIMaYscaaISaGaamyBaiaaiYcaaaa@5799@  (3.22)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l),j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5naaBaaa leaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYcaca aMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGTbGa aGilaaaa@5EB7@  (3.23)

V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l),i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacqaHgpGAdaWg aaWcbaGaamyAaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTmaala aabaGaaGymaaqaaiaaikdacaWGSbaaaiaaiIcacaWGSbGaeyOeI0Ia eqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGPbaabeaakiaaiIcacq GHsislcaWGSbGaaGykaiaaiYcacaaMf8UaamyAaiaai2dacaaIYaGa eqySdeMaeyOeI0IaaGymaiaaiYcacaaMf8UaeqySdeMaaGypaiaaig dacaaISaGaeSOjGSKaaGilamaalaaabaGaamyBaaqaaiaaikdaaaGa aGilaaaa@6055@  (3.24)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l),j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5naaBaaa leaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYcaca aMf8UaamOAaiaai2dacaaIYaGaeqySdeMaaGilaiaaywW7cqaHXoqy caaI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaaba GaaGOmaaaacaaISaaaaa@6688@

конечные

V(ξ,T)= φ T (ξ) 1 2l (lξ) φ T (l), V(ξ,t) t | t=T = ψ T (ξ) 1 2l (lξ) ψ T (l). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WGubGaaGykaiaai2dacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaI OaGaeqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaca WGSbaaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeA8aQnaa BaaaleaacaWGubaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiY cacaaMf8+aaSaaaeaacqGHciITcaWGwbGaaGikaiabe67a4jaaiYca caWG0bGaaGykaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaaleaaca WG0bGaaGypaiaadsfaaeqaaOGaaGypaiabeI8a5naaBaaaleaacaWG ubaabeaakiaaiIcacqaH+oaEcaaIPaGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaiaadYgaaaGaaGikaiaadYgacqGHsislcqaH+oaEcaaI PaGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGaaGikaiabgkHiTiaadY gacaaIPaGaaGOlaaaa@7233@  (3.25)

Для задач граничного управления колебаниями смещением двух концов для функции V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  получим следующие условия: начальные

V(ξ,0) = φ 0 (ξ) 1 2l (lξ) φ 0 (l)+(l+ξ) φ 0 (l) , V(ξ,t) t | t=0 = ψ 0 (ξ) 1 2l (lξ) ψ 0 (l)+(l+ξ) ψ 0 (l) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaGaamOvaiaaiIcacq aH+oaEcaaISaGaaGimaiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqa aiaaicdaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsisldaWcaaqaai aaigdaaeaacaaIYaGaamiBaaaadaWadaqaaiaaiIcacaWGSbGaeyOe I0IaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiI cacqGHsislcaWGSbGaaGykaiabgUcaRiaaiIcacaWGSbGaey4kaSIa eqOVdGNaaGykaiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIcaca WGSbGaaGykaaGaay5waiaaw2faaiaaiYcaaeaadaWcaaqaaiabgkGi 2kaadAfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIy RaamiDaaaacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaaa keaacaaI9aGaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabe6 7a4jaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5n aaBaaaleaacaaIWaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiab gUcaRiaaiIcacaWGSbGaey4kaSIaeqOVdGNaaGykaiabeI8a5naaBa aaleaacaaIWaaabeaakiaaiIcacaWGSbGaaGykaaGaay5waiaaw2fa aiaaiYcaaaaaaa@89AD@  (3.26)

промежуточные

3V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l)+(l+ξ) φ i (l) ,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIZaGaamOvaiaaiIcacqaH+oaEca aISaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaI9aGaeqOX dO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaadaWadaqaaiaaiIca caWGSbGaeyOeI0IaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGPb aabeaakiaaiIcacqGHsislcaWGSbGaaGykaiabgUcaRiaaiIcacaWG SbGaey4kaSIaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGPbaabe aakiaaiIcacaWGSbGaaGykaaGaay5waiaaw2faaiaaiYcacaaMf8Ua amyAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGTbGaaGilaa aa@649F@  (3.27)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l)+(l+ξ) ψ j (l) ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaamaadmaabaGaaGikaiaadYgacqGHsislcqaH+oaEcaaIPaGaeqiY dK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPa Gaey4kaSIaaGikaiaadYgacqGHRaWkcqaH+oaEcaaIPaGaeqiYdK3a aSbaaSqaaiaadQgaaeqaaOGaaGikaiaadYgacaaIPaaacaGLBbGaay zxaaGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGSKa aGilaiaad2gacaaISaaaaa@6BCF@  (3.28)

V(ξ, t i )= φ i (ξ) 1 2l (lξ) φ i (l)+(l+ξ) φ i (l) ,i=2α1,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaai2dacqaHgpGAdaWg aaWcbaGaamyAaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTmaala aabaGaaGymaaqaaiaaikdacaWGSbaaamaadmaabaGaaGikaiaadYga cqGHsislcqaH+oaEcaaIPaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaO GaaGikaiabgkHiTiaadYgacaaIPaGaey4kaSIaaGikaiaadYgacqGH RaWkcqaH+oaEcaaIPaGaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaG ikaiaadYgacaaIPaaacaGLBbGaayzxaaGaaGilaiaaywW7caWGPbGa aGypaiaaikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXo qycaaI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaa baGaaGOmaaaacaaISaaaaa@6D5B@  (3.29)

V(ξ,t) t | t= t j = ψ j (ξ) 1 2l (lξ) ψ j (l)+(l+ξ) ψ j (l) ,j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 8bWaaSbaaSqaaiaadshacaaI9aGaamiDamaaBaaabaGaamOAaaqaba aabeaakiaai2dacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaIOaGa eqOVdGNaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGSb aaamaadmaabaGaaGikaiaadYgacqGHsislcqaH+oaEcaaIPaGaeqiY dK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPa Gaey4kaSIaaGikaiaadYgacqGHRaWkcqaH+oaEcaaIPaGaeqiYdK3a aSbaaSqaaiaadQgaaeqaaOGaaGikaiaadYgacaaIPaaacaGLBbGaay zxaaGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXoqycaaISaGa aGzbVlabeg7aHjaai2dacaaIXaGaaGilaiablAciljaaiYcadaWcaa qaaiaad2gaaeaacaaIYaaaaiaaiYcaaaa@73A0@

конечные

V(ξ,T) = φ T (ξ) 1 2l (lξ) φ T (l)+(l+ξ) φ T (l) , V(ξ,t) t | t=T = ψ T (ξ) 1 2l (lξ) ψ T (l)+(l+ξ) ψ T (l) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaGaamOvaiaaiIcacq aH+oaEcaaISaGaamivaiaaiMcaaeaacaaI9aGaeqOXdO2aaSbaaSqa aiaadsfaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsisldaWcaaqaai aaigdaaeaacaaIYaGaamiBaaaadaWadaqaaiaaiIcacaWGSbGaeyOe I0IaeqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGubaabeaakiaaiI cacqGHsislcaWGSbGaaGykaiabgUcaRiaaiIcacaWGSbGaey4kaSIa eqOVdGNaaGykaiabeA8aQnaaBaaaleaacaWGubaabeaakiaaiIcaca WGSbGaaGykaaGaay5waiaaw2faaiaaiYcaaeaadaWcaaqaaiabgkGi 2kaadAfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIy RaamiDaaaacaaI8bWaaSbaaSqaaiaadshacaaI9aGaamivaaqabaaa keaacaaI9aGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGaaGikaiabe6 7a4jaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaamiBaaaa daWadaqaaiaaiIcacaWGSbGaeyOeI0IaeqOVdGNaaGykaiabeI8a5n aaBaaaleaacaWGubaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiab gUcaRiaaiIcacaWGSbGaey4kaSIaeqOVdGNaaGykaiabeI8a5naaBa aaleaacaWGubaabeaakiaaiIcacaWGSbGaaGykaaGaay5waiaaw2fa aiaai6caaaaaaa@8AA7@  (3.30)

Итак, приходим к задачам управления колебаниями, моделируемыми уравнением (3.17) с однородными граничными условиями (3.12), которые формулируются следующим образом:

Задачи управления с нулевыми граничными условиями.

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@ . Смещение левого конца при закрепленном правом конце. Требуется найти такое граничное управление μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которое переводит колебание системы, описываемое уравнением (3.17), (3.18) с граничными условиями (3.12), из известного начального состояния (3.21) в конечное состояние (3.25), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.22); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.23); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.24).

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaaaaa@3279@ . Смещение двух концов. Требуется найти такие граничные управления μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которые переводят колебание системы, описываемое уравнением (3.17), (3.19) с граничными условиями (3.12), из известного начального состояния (3.26) в конечное состояние (3.30), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.27); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.28); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.29).

Задачи оптимального управления с нулевыми граничными условиями.

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@ . Смещение левого конца при закрепленном правом конце. Требуется найти такое оптимальное граничное управление μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которое переводит колебание системы, описываемое уравнением (3.17), (3.18) с граничными условиями (3.12), из известного начального состояния (3.21) в конечное состояние (3.25), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.22); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.23); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.24), и которое минимизирует функционал (2.11).

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaaaaa@3279@ . Смещение двух концов. Требуется найти такие оптимальные граничные управления μ 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C2@  и ν 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaaaa@36C4@ , 0tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfaaaa@37B3@ , которые переводят колебание системы, описываемое уравнением (3.17), (3.19) с граничными условиями (3.12), из известного начального состояния (3.26) в конечное состояние (3.30), обеспечивая выполнение следующих промежуточных условий: A MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.27); B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.28); C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (3.29), и которые минимизируют функционал (2.12).

4. Решение задачи. Применение метода разделения переменных. Перейдем к выполнению шагов 2 и 3. Будем искать решение уравнения (3.17) в виде

V(ξ,t)= k=1 V k (t)sin πk l ξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOGaamOvamaaBaaaleaacaWGRbaabeaaki aaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiW daNaam4AaaqaaiaadYgaaaGaeqOVdGNaaGOlaaaa@4BC6@  (4.1)

Функции F(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@375F@ , φ i (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37C6@  и ψ j (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37D8@  представим в виде рядов Фурье в базисе {sin(πkξ)/l} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaci4CaiaacMgacaGGUbGaaG ikaiabec8aWjaadUgacqaH+oaEcaaIPaGaaG4laiaadYgacaaI9baa aa@3E20@ , k=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYsaaa@3779@ . Подставим далее их значения вместе с функцией V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  в уравнения (3.17) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.19) и в условия (3.21) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.30). В результате получим

V ¨ k (t)+ λ k 2 V k (t)= F k (t), λ k 2 = a 2 πk l 2 ,k=1,2,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbamaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcqaH7oaBdaqhaaWcbaGa am4AaaqaaiaaikdaaaGccaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaaG ikaiaadshacaaIPaGaaGypaiaadAeadaWgaaWcbaGaam4AaaqabaGc caaIOaGaamiDaiaaiMcacaaISaGaaGzbVlabeU7aSnaaDaaaleaaca WGRbaabaGaaGOmaaaakiaai2dadaqadaqaamaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaakiabec8aWjaadUgaaeaacaWGSbaaaaGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8Uaam4A aiaai2dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@5B6E@  (4.2)

F k (t)= a 2 λ k l μ ¨ (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiabgkHiTmaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadYgaaaGafqiVd0MbamaacaaIOaGaamiDaiaaiMcacaaISaaa aa@4247@  (4.3)

F k (t)= a 2 λ k l ν ¨ (t) 2( 1) k 1 μ ¨ (t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypamaalaaabaGaamyyamaaBaaaleaa caaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadY gaaaWaamWaaeaacuaH9oGBgaWaaiaaiIcacaWG0bGaaGykamaabmaa baGaaGOmaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam 4AaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHsislcuaH8oqB gaWaaiaaiIcacaWG0bGaaGykaaGaay5waiaaw2faaiaai6caaaa@507C@  (4.4)

Для задач под номером 1 (смещение одного конца при закрепленном другом конце) начальные, промежуточные и конечные условия запишутся в виде

2 V k (0)= φ k (0) a 2 λ k l φ 0 (l), V ˙ k (0)= ψ k (0) a 2 λ k l ψ 0 (l), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamOvamaaBaaaleaacaWGRb aabeaakiaaiIcacaaIWaGaaGykaiaai2dacqaHgpGAdaqhaaWcbaGa am4AaaqaaiaaiIcacaaIWaGaaGykaaaakiabgkHiTmaalaaabaGaam yyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadYgaaaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaG ikaiabgkHiTiaadYgacaaIPaGaaGilaiaaywW7ceWGwbGbaiaadaWg aaWcbaGaam4AaaqabaGccaaIOaGaaGimaiaaiMcacaaI9aGaeqiYdK 3aa0baaSqaaiaadUgaaeaacaaIOaGaaGimaiaaiMcaaaGccqGHsisl daWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacqaH7oaBda WgaaWcbaGaam4AaaqabaGccaWGSbaaaiabeI8a5naaBaaaleaacaaI WaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYcaaaa@6292@  (4.5)

V k ( t i )= φ k (i) a 2 λ k l φ i (l),i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiab eA8aQnaaDaaaleaacaWGRbaabaGaaGikaiaadMgacaaIPaaaaOGaey OeI0YaaSaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaamiBaaaacqaHgpGAdaWgaaWcba GaamyAaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacaaISaGaaGzb VlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaaiY caaaa@52EC@  (4.6)

V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l),j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaiaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacaaI 9aGaeqiYdK3aa0baaSqaaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaa GccqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa cqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGSbaaaiabeI8a5naaBa aaleaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiaaiYca caaMf8UaamOAaiaai2dacaaIXaGaaGilaiablAciljaaiYcacaWGTb GaaGilaaaa@531B@  (4.7)

V k ( t i )= φ k (i) a 2 λ k l φ i (l),i=2α1,α=1,, m 2 , V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l),j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiaai2dacqaHgpGAdaqhaaWcbaGaam4AaaqaaiaaiIcaca WGPbGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaaBaaaleaacaaI YaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadYgaaa GaeqOXdO2aaSbaaSqaaiaadMgaaeqaaOGaaGikaiabgkHiTiaadYga caaIPaGaaGilaiaaywW7caWGPbGaaGypaiaaikdacqaHXoqycqGHsi slcaaIXaGaaGilaiaaywW7cqaHXoqycaaI9aGaaGymaiaaiYcacqWI MaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaabaaaba GabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWg aaWcbaGaamOAaaqabaGccaaIPaGaaGypaiabeI8a5naaDaaaleaaca WGRbaabaGaaGikaiaadQgacaaIPaaaaOGaeyOeI0YaaSaaaeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaadU gaaeqaaOGaamiBaaaacqaHipqEdaWgaaWcbaGaamOAaaqabaGccaaI OaGaeyOeI0IaamiBaiaaiMcacaaISaGaaGzbVlaadQgacaaI9aGaaG Omaiabeg7aHjaaiYcacaaMf8UaeqySdeMaaGypaiaaigdacaaISaGa eSOjGSKaaGilamaalaaabaGaamyBaaqaaiaaikdaaaGaaGilaaaaaa a@85A3@  (4.8)

V k (T)= φ k (T) a 2 λ k l φ T (l), V ˙ k (T)= ψ k (T) a 2 λ k l ψ T (l). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadsfacaaIPaGaaGypaiabeA8aQnaaDaaaleaacaWGRbaa baGaaGikaiaadsfacaaIPaaaaOGaeyOeI0YaaSaaaeaacaWGHbWaaS baaSqaaiaaikdaaeqaaaGcbaGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaamiBaaaacqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaey OeI0IaamiBaiaaiMcacaaISaGaaGzbVlqadAfagaGaamaaBaaaleaa caWGRbaabeaakiaaiIcacaWGubGaaGykaiaai2dacqaHipqEdaqhaa WcbaGaam4AaaqaaiaaiIcacaWGubGaaGykaaaakiabgkHiTmaalaaa baGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaale aacaWGRbaabeaakiaadYgaaaGaeqiYdK3aaSbaaSqaaiaadsfaaeqa aOGaaGikaiabgkHiTiaadYgacaaIPaGaaGOlaaaa@6292@  (4.9)

Здесь F k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@360C@ , φ k (i) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaqhaaWcbaGaam4Aaaqaai aaiIcacaWGPbGaaGykaaaaaaa@36EA@  и ψ k (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaqhaaWcbaGaam4Aaaqaai aaiIcacaWGQbGaaGykaaaaaaa@36FC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коэффициенты Фурье, соответствующие функциям F(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@375F@ , φ i (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37C6@  и ψ j (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamOAaaqaba GccaaIOaGaeqOVdGNaaGykaaaa@37D8@ .

Для задач под номером 2 (смещение обоих концов) начальные, промежуточные и конечные условия запишутся в виде

V k (0)= φ k (0) a 2 λ k l φ 0 (l) φ 0 (l) 2( 1) k 1 , V ˙ k (0)= ψ k (0) a 2 λ k l ψ 0 (l) ψ 0 (l) 2( 1) k 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiaai2dacqaHgpGA daqhaaWcbaGaam4AaaqaaiaaiIcacaaIWaGaaGykaaaakiabgkHiTm aalaaabaGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaa BaaaleaacaWGRbaabeaakiaadYgaaaWaamWaaeaacqaHgpGAdaWgaa WcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacqGHsisl cqaHgpGAdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiBaiaaiMcada qadaqaaiaaikdacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqa aiaadUgaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLBbGaay zxaaGaaGilaaqaaaqaaiqadAfagaGaamaaBaaaleaacaWGRbaabeaa kiaaiIcacaaIWaGaaGykaiaai2dacqaHipqEdaqhaaWcbaGaam4Aaa qaaiaaiIcacaaIWaGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadYgaaaWaamWaaeaacqaHipqEdaWgaaWcbaGaaGimaaqabaGc caaIOaGaeyOeI0IaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcba GaaGimaaqabaGccaaIOaGaamiBaiaaiMcadaqadaqaaiaaikdacaaI OaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccqGHsi slcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaGilaaaaaaa@806E@  (4.10)

V k ( t i )= φ k (i) a 2 λ k l φ i (l) φ i (l) 2( 1) k 1 ,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaIPaGaaGypaiab eA8aQnaaDaaaleaacaWGRbaabaGaaGikaiaadMgacaaIPaaaaOGaey OeI0YaaSaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaamiBaaaadaWadaqaaiabeA8aQn aaBaaaleaacaWGPbaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiab gkHiTiabeA8aQnaaBaaaleaacaWGPbaabeaakiaaiIcacaWGSbGaaG ykamaabmaabaGaaGOmaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaa leqabaGaam4AaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaiaawU facaGLDbaacaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacqWI MaYscaaISaGaamyBaiaaiYcaaaa@6323@  (4.11)

V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l) ψ j (l) 2( 1) k 1 ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaiaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacaaI 9aGaeqiYdK3aa0baaSqaaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaa GccqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa cqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGSbaaamaadmaabaGaeq iYdK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaI PaGaeyOeI0IaeqiYdK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiaadY gacaaIPaWaaeWaaeaacaaIYaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGRbaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaa Gaay5waiaaw2faaiaaiYcacaaMf8UaamOAaiaai2dacaaIXaGaaGil aiablAciljaaiYcacaWGTbGaaGilaaaa@6364@  (4.12)

V k ( t i )= φ k (i) a 2 λ k l φ i (l) φ i (l) 2( 1) k 1 ,i=2α1,α=1,, m 2 , V ˙ k ( t j )= ψ k (j) a 2 λ k l ψ j (l) ψ j (l) 2( 1) k 1 ,j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqa aOGaaGykaiaai2dacqaHgpGAdaqhaaWcbaGaam4AaaqaaiaaiIcaca WGPbGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaaBaaaleaacaaI YaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadYgaaa WaamWaaeaacqaHgpGAdaWgaaWcbaGaamyAaaqabaGccaaIOaGaeyOe I0IaamiBaiaaiMcacqGHsislcqaHgpGAdaWgaaWcbaGaamyAaaqaba GccaaIOaGaamiBaiaaiMcadaqadaqaaiaaikdacaaIOaGaeyOeI0Ia aGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccqGHsislcaaIXaaaca GLOaGaayzkaaaacaGLBbGaayzxaaGaaGilaiaaywW7caWGPbGaaGyp aiaaikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXoqyca aI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaabaGa aGOmaaaacaaISaaabaaabaGabmOvayaacaWaaSbaaSqaaiaadUgaae qaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPaGaaGyp aiabeI8a5naaDaaaleaacaWGRbaabaGaaGikaiaadQgacaaIPaaaaO GaeyOeI0YaaSaaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaGcbaGa eq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiBaaaadaWadaqaaiabeI 8a5naaBaaaleaacaWGQbaabeaakiaaiIcacqGHsislcaWGSbGaaGyk aiabgkHiTiabeI8a5naaBaaaleaacaWGQbaabeaakiaaiIcacaWGSb GaaGykamaabmaabaGaaGOmaiaaiIcacqGHsislcaaIXaGaaGykamaa CaaaleqabaGaam4AaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaai aawUfacaGLDbaacaaISaGaaGzbVlaadQgacaaI9aGaaGOmaiabeg7a HjaaiYcacaaMf8UaeqySdeMaaGypaiaaigdacaaISaGaeSOjGSKaaG ilamaalaaabaGaamyBaaqaaiaaikdaaaGaaGilaaaaaaa@A623@  (4.13)

V k (T)= φ k (T) a 2 λ k l φ T (l) φ T (l) 2( 1) k 1 , V ˙ k (T)= ψ k (T) a 2 λ k l ψ T (l) ψ T (l) 2( 1) k 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGaamOvamaaBa aaleaacaWGRbaabeaakiaaiIcacaWGubGaaGykaiaai2dacqaHgpGA daqhaaWcbaGaam4AaaqaaiaaiIcacaWGubGaaGykaaaakiabgkHiTm aalaaabaGaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaa BaaaleaacaWGRbaabeaakiaadYgaaaWaamWaaeaacqaHgpGAdaWgaa WcbaGaamivaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacqGHsisl cqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaamiBaiaaiMcada qadaqaaiaaikdacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqa aiaadUgaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLBbGaay zxaaGaaGilaaqaaaqaaiqadAfagaGaamaaBaaaleaacaWGRbaabeaa kiaaiIcacaWGubGaaGykaiaai2dacqaHipqEdaqhaaWcbaGaam4Aaa qaaiaaiIcacaWGubGaaGykaaaakiabgkHiTmaalaaabaGaamyyamaa BaaaleaacaaIYaaabeaaaOqaaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadYgaaaWaamWaaeaacqaHipqEdaWgaaWcbaGaamivaaqabaGc caaIOaGaeyOeI0IaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcba GaamivaaqabaGccaaIOaGaamiBaiaaiMcadaqadaqaaiaaikdacaaI OaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccqGHsi slcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaGOlaaaaaaa@8168@  (4.14)

Общее решение уравнения (4.2) имеет вид

V k (t)= V k (0)cos λ k t+ 1 λ k V ˙ k (0)sin λ k t+ 1 λ k 0 t F k (τ)sin λ k (tτ)dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadAfadaWgaaWcbaGaam4Aaaqa baGccaaIOaGaaGimaiaaiMcaciGGJbGaai4BaiaacohacqaH7oaBda WgaaWcbaGaam4AaaqabaGccaWG0bGaey4kaSYaaSaaaeaacaaIXaaa baGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaaaakiqadAfagaGaamaaBa aaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiGacohacaGGPbGa aiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadshacqGHRaWkda WcaaqaaiaaigdaaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaaaaOWa a8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamOramaaBa aaleaacaWGRbaabeaakiaaiIcacqaHepaDcaaIPaGaci4CaiaacMga caGGUbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshacq GHsislcqaHepaDcaaIPaGaamizaiabes8a0jaai6caaaa@6CF5@  (4.15)

Учитывая начальные (4.5) (или (4.10)), промежуточные (4.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.8) (или (4.11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.13)) и конечные (4.9) (или (4.14)) условия, из (4.15) получим, что функции F k (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@36D8@  для каждого k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  должны удовлетворять интегральным соотношениям в виде

0 T F k (τ)sin λ k (Tτ)dτ= C ˜ 1k (T), 0 T F k (τ)cos λ k (Tτ)dτ= C ˜ 2k (T), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGgbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiab es8a0jaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam 4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0jaaiMcacaWGKbGa eqiXdqNaaGypaiqadoeagaacamaaBaaaleaacaaIXaGaam4Aaaqaba GccaaIOaGaamivaiaaiMcacaaISaGaaGzbVpaapehabeWcbaGaaGim aaqaaiaadsfaa0Gaey4kIipakiaadAeadaWgaaWcbaGaam4Aaaqaba GccaaIOaGaeqiXdqNaaGykaiGacogacaGGVbGaai4CaiabeU7aSnaa BaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiXdqNaaG ykaiaadsgacqaHepaDcaaI9aGabm4qayaaiaWaaSbaaSqaaiaaikda caWGRbaabeaakiaaiIcacaWGubGaaGykaiaaiYcaaaa@6D11@  (4.16)

0 t i F k (τ)sin λ k ( t i τ)dτ= C ˜ 1k ( t i ),i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b WaaSbaaeaacaWGPbaabeaaa0Gaey4kIipakiaadAeadaWgaaWcbaGa am4AaaqabaGccaaIOaGaeqiXdqNaaGykaiGacohacaGGPbGaaiOBai abeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqa aiaadMgaaeqaaOGaeyOeI0IaeqiXdqNaaGykaiaayIW7caWGKbGaeq iXdqNaaGypaiqadoeagaacamaaBaaaleaacaaIXaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaWGPbaabeaakiaaiMcacaaISaGaaG zbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaa iYcaaaa@5C1E@  (4.17)

0 t j F k (τ)sin λ k ( t j τ)dτ= C ˜ 2k ( t j ),j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b WaaSbaaeaacaWGQbaabeaaa0Gaey4kIipakiaadAeadaWgaaWcbaGa am4AaaqabaGccaaIOaGaeqiXdqNaaGykaiGacohacaGGPbGaaiOBai abeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqa aiaadQgaaeqaaOGaeyOeI0IaeqiXdqNaaGykaiaayIW7caWGKbGaeq iXdqNaaGypaiqadoeagaacamaaBaaaleaacaaIYaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiaaiMcacaaISaGaaG zbVlaadQgacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaamyBaiaa iYcaaaa@5C23@  (4.18)

0 t i F k (τ)sin λ k ( t i τ)dτ= C ˜ 1k ( t i ),i=2α1,α=1,, m 2 , 0 t j F k (τ)sin λ k ( t j τ)dτ= C ˜ 2k ( t j ),j=2α,α=1,., m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaWaa8qCaeqaleaaca aIWaaabaGaamiDamaaBaaabaGaamyAaaqabaaaniabgUIiYdGccaWG gbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiabes8a0jaaiMcaciGGZb GaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGPbaabeaakiabgkHiTiabes8a0jaaiMcaca aMi8Uaamizaiabes8a0jaai2daceWGdbGbaGaadaWgaaWcbaGaaGym aiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGcca aIPaGaaGilaiaaywW7caWGPbGaaGypaiaaikdacqaHXoqycqGHsisl caaIXaGaaGilaiaaywW7cqaHXoqycaaI9aGaaGymaiaaiYcacqWIMa YscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaabaWaa8qC aeqaleaacaaIWaaabaGaamiDamaaBaaabaGaamOAaaqabaaaniabgU IiYdGccaWGgbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiabes8a0jaa iMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamiDamaaBaaaleaacaWGQbaabeaakiabgkHiTiabes8a 0jaaiMcacaaMi8Uaamizaiabes8a0jaai2daceWGdbGbaGaadaWgaa WcbaGaaGOmaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOA aaqabaGccaaIPaGaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXo qycaaISaGaaGzbVlabeg7aHjaai2dacaaIXaGaaGilaiaai6cacqWI MaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaaaaaa@9893@  (4.19)

где приняты обозначения

C ˜ 1k (T)= λ k V k (T) λ k V k (0)cos λ k T V ˙ k (0)sin λ k T, C ˜ 2k (T)= V ˙ k (T)+ λ k V k (0)sin λ k T V ˙ k (0)cos λ k T, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGabm4qayaaiaWaaS baaSqaaiaaigdacaWGRbaabeaakiaaiIcacaWGubGaaGykaiaai2da cqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGwbWaaSbaaSqaaiaadU gaaeqaaOGaaGikaiaadsfacaaIPaGaeyOeI0Iaeq4UdW2aaSbaaSqa aiaadUgaaeqaaOGaamOvamaaBaaaleaacaWGRbaabeaakiaaiIcaca aIWaGaaGykaiGacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadsfacqGHsislceWGwbGbaiaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaaGimaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaWGubGaaGilaaqaaiqadoeagaacam aaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamivaiaaiMcacaaI 9aGabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsfaca aIPaGaey4kaSIaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamOvamaa BaaaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiGacohacaGGPb GaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadsfacqGHsisl ceWGwbGbaiaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaaGimaiaaiM caciGGJbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4AaaqabaGc caWGubGaaGilaaaaaaa@7E23@  (4.20)

C ˜ 1k ( t i )= λ k V k ( t i ) λ k V k (0)cos λ k t i V ˙ k (0)sin λ k t i ,i=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGymai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaI PaGaaGypaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadAfadaWgaa WcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaWGPbaabeaa kiaaiMcacqGHsislcqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGwb WaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaIPaGaci4yaiaa c+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiDamaaBa aaleaacaWGPbaabeaakiabgkHiTiqadAfagaGaamaaBaaaleaacaWG RbaabeaakiaaiIcacaaIWaGaaGykaiGacohacaGGPbGaaiOBaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWcbaGaamyAaaqa baGccaaISaGaaGzbVlaadMgacaaI9aGaaGymaiaaiYcacqWIMaYsca aISaGaamyBaiaaiYcaaaa@669B@  (4.21)

C ˜ 2k ( t j )= V ˙ k ( t j )+ λ k V k (0)sin λ k t j V ˙ k (0)cos λ k t j ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGOmai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaI PaGaaGypaiqadAfagaGaamaaBaaaleaacaWGRbaabeaakiaaiIcaca WG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiabgUcaRiabeU7aSnaa BaaaleaacaWGRbaabeaakiaadAfadaWgaaWcbaGaam4AaaqabaGcca aIOaGaaGimaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWc baGaam4AaaqabaGccaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaeyOeI0 IabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaI PaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaO GaamiDamaaBaaaleaacaWGQbaabeaakiaaiYcacaaMf8UaamOAaiaa i2dacaaIXaGaaGilaiablAciljaaiYcacaWGTbGaaGilaaaa@63C5@  (4.22)

C ˜ 1k ( t i )= λ k V k ( t i ) λ k V k (0)cos λ k t i V ˙ k (0)sin λ k t i ,i=2α1,α=1,, m 2 , C ˜ 2k ( t j )= V ˙ k ( t j )+ λ k V k (0)sin λ k t j V ˙ k (0)cos λ k t j ,j=2α,α=1,., m 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGabm4qayaaiaWaaS baaSqaaiaaigdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaa dMgaaeqaaOGaaGykaiaai2dacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWc baGaamyAaaqabaGccaaIPaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaadU gaaeqaaOGaamOvamaaBaaaleaacaWGRbaabeaakiaaiIcacaaIWaGa aGykaiGacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWGRbaabe aakiaadshadaWgaaWcbaGaamyAaaqabaGccqGHsislceWGwbGbaiaa daWgaaWcbaGaam4AaaqabaGccaaIOaGaaGimaiaaiMcaciGGZbGaai yAaiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWG0bWaaSba aSqaaiaadMgaaeqaaOGaaGilaiaaywW7caWGPbGaaGypaiaaikdacq aHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXoqycaaI9aGaaGym aiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaaca aISaaabaGabm4qayaaiaWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa iIcacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaai2daceWGwb GbaiaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaa caWGQbaabeaakiaaiMcacqGHRaWkcqaH7oaBdaWgaaWcbaGaam4Aaa qabaGccaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaI PaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaO GaamiDamaaBaaaleaacaWGQbaabeaakiabgkHiTiqadAfagaGaamaa BaaaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykaiGacogacaGGVb Gaai4CaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWc baGaamOAaaqabaGccaaISaGaaGzbVlaadQgacaaI9aGaaGOmaiabeg 7aHjaaiYcacaaMf8UaeqySdeMaaGypaiaaigdacaaISaGaaGOlaiab lAciljaaiYcadaWcaaqaaiaad2gaaeaacaaIYaaaaiaai6caaaaaaa@AAB4@  (4.23)

Отметим, что задачам управления и оптимального управления с условиями A соответствуют интегральные соотношения (4.16), (4.17), задачам с условиями B MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  соотношения (4.16), (4.18), а задачам с условиями C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  соотношения (4.16), (4.19). Приведем дальнейшее построение решения (шаг 3 схемы) для задач граничного управления колебаниями, выделяя построение смещением левого конца при закрепленном правом конце и смещением двух концов.

4.1. Построение решения задач граничного управления колебаниями смещением левого конца при закрепленном правом конце. Подставляя выражение функции F k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@360C@  из (4.3) в соотношения (4.16) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.19) и интегрируя по частям с учетом условий согласования (2.13), получим из (4.16) следующие соотношения:

0 T μ(τ)sin λ k (Tτ)dτ= C 1k (T), 0 T μ(τ)cos λ k (Tτ)dτ= C 2k (T), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiGacohacaGG PbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGub GaeyOeI0IaeqiXdqNaaGykaiaadsgacqaHepaDcaaI9aGaam4qamaa BaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaamivaiaaiMcacaaISa GaaGzbVpaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiab eY7aTjaaiIcacqaHepaDcaaIPaGaci4yaiaac+gacaGGZbGaeq4UdW 2aaSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaD caaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaaiaaikdaca WGRbaabeaakiaaiIcacaWGubGaaGykaiaaiYcaaaa@6C7D@  (4.24)

а из (4.17), (4.18) и (4.19) получим следующие соотношения:

0 T μ(τ) h 1k (1) (τ)dτ= C 1k ( t 1 ), 0 T μ(τ) h 1k (m) (τ)dτ= C 1k ( t m ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadIgadaqh aaWcbaGaaGymaiaadUgaaeaacaaIOaGaaGymaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaiaadsgacqaHepaDcaaI9aGaam4qamaaBaaaleaa caaIXaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiMcacaaISaGaaGzbVpaapehabeWcbaGaaGimaaqaaiaadsfa a0Gaey4kIipakiabeY7aTjaaiIcacqaHepaDcaaIPaGaamiAamaaDa aaleaacaaIXaGaam4AaaqaaiaaiIcacaWGTbGaaGykaaaakiaaiIca cqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaai aaigdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaad2gaaeqa aOGaaGykaiaaiYcaaaa@69FF@  (4.25)

0 T μ(τ) h 2k (1) (τ)dτ= C 2k ( t 1 ), 0 T μ(τ) h 2k (m) (τ)dτ= C 2k ( t m ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadIgadaqh aaWcbaGaaGOmaiaadUgaaeaacaaIOaGaaGymaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaiaadsgacqaHepaDcaaI9aGaam4qamaaBaaaleaa caaIYaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiMcacaaISaGaaGzbVpaapehabeWcbaGaaGimaaqaaiaadsfa a0Gaey4kIipakiabeY7aTjaaiIcacqaHepaDcaaIPaGaamiAamaaDa aaleaacaaIYaGaam4AaaqaaiaaiIcacaWGTbGaaGykaaaakiaaiIca cqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaai aaikdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaad2gaaeqa aOGaaGykaiaaiYcaaaa@6A03@  (4.26)

0 T μ(τ) h 1k (i) (τ)dτ= C 1k ( t i ),i=2α1,α=1,, m 2 , 0 T μ(τ) h 2k (j) (τ)dτ= C 2k ( t j ),j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOGaeqiVd0MaaGikaiabes8a0jaa iMcacaWGObWaa0baaSqaaiaaigdacaWGRbaabaGaaGikaiaadMgaca aIPaaaaOGaaGikaiabes8a0jaaiMcacaWGKbGaeqiXdqNaaGypaiaa doeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadshadaWgaa WcbaGaamyAaaqabaGccaaIPaGaaGilaiaaywW7caWGPbGaaGypaiaa ikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cqaHXoqycaaI9a GaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOm aaaacaaISaaabaWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRi I8aOGaeqiVd0MaaGikaiabes8a0jaaiMcacaWGObWaa0baaSqaaiaa ikdacaWGRbaabaGaaGikaiaadQgacaaIPaaaaOGaaGikaiabes8a0j aaiMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGaaGOmaiaa dUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPa GaaGilaiaaywW7caWGQbGaaGypaiaaikdacqaHXoqycaaISaGaaGzb Vlabeg7aHjaai2dacaaIXaGaaGilaiablAciljaaiYcadaWcaaqaai aad2gaaeaacaaIYaaaaiaaiYcaaaaaaa@8A93@  (4.27)

где

C 1k (T)= 1 λ k 2 λ k l a 2 C ˜ 1k (T)+ X 1k , C 2k (T)= 1 λ k 2 λ k l a 2 C ˜ 2k (T)+ X 2k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdacaWGRb aabeaakiaaiIcacaWGubGaaGykaiaai2dadaWcaaqaaiaaigdaaeaa cqaH7oaBdaqhaaWcbaGaam4AaaqaaiaaikdaaaaaaOWaamWaaeaada WcaaqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadYgaaeaacaWG HbWaaSbaaSqaaiaaikdaaeqaaaaakiqadoeagaacamaaBaaaleaaca aIXaGaam4AaaqabaGccaaIOaGaamivaiaaiMcacqGHRaWkcaWGybWa aSbaaSqaaiaaigdacaWGRbaabeaaaOGaay5waiaaw2faaiaaiYcaca aMf8Uaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamiv aiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaeq4UdW2aa0baaSqaai aadUgaaeaacaaIYaaaaaaakmaadmaabaWaaSaaaeaacqaH7oaBdaWg aaWcbaGaam4AaaqabaGccaWGSbaabaGaamyyamaaBaaaleaacaaIYa aabeaaaaGcceWGdbGbaGaadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGa aGikaiaadsfacaaIPaGaey4kaSIaamiwamaaBaaaleaacaaIYaGaam 4AaaqabaaakiaawUfacaGLDbaacaaISaaaaa@6950@

C 1k ( t i )= 1 λ k 2 λ k l a 2 C ˜ 1k ( t i )+ X 1k (i) ,i=1,,m; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdacaWGRb aabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGykaiaa i2dadaWcaaqaaiaaigdaaeaacqaH7oaBdaqhaaWcbaGaam4Aaaqaai aaikdaaaaaaOWaamWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadYgaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaki qadoeagaacamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaamiD amaaBaaaleaacaWGPbaabeaakiaaiMcacqGHRaWkcaWGybWaa0baaS qaaiaaigdacaWGRbaabaGaaGikaiaadMgacaaIPaaaaaGccaGLBbGa ayzxaaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaeSOjGS KaaGilaiaad2gacaaI7aaaaa@59DD@

C 2k ( t j )= 1 λ k 2 λ k l a 2 C ˜ 2k ( t j )+ X 2k (j) ,j=1,,m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdacaWGRb aabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaiaa i2dadaWcaaqaaiaaigdaaeaacqaH7oaBdaqhaaWcbaGaam4Aaaqaai aaikdaaaaaaOWaamWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWG RbaabeaakiaadYgaaeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaki qadoeagaacamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamiD amaaBaaaleaacaWGQbaabeaakiaaiMcacqGHRaWkcaWGybWaa0baaS qaaiaaikdacaWGRbaabaGaaGikaiaadQgacaaIPaaaaaGccaGLBbGa ayzxaaGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaeSOjGS KaaGilaiaad2gacaaISaaaaa@59D5@

а также

X 1k = λ k φ T (l) ψ 0 (l)sin λ k T λ k φ 0 (l)cos λ k T, X 2k = ψ T (l) ψ 0 (l)cos λ k T+ λ k φ 0 (l)sin λ k T, X 1k (i) = λ k φ i (l) ψ 0 (l)sin λ k t i λ k φ 0 (l)cos λ k t i , X 2k (j) = ψ j (l) ψ 0 (l)cos λ k t j + λ k φ 0 (l)sin λ k t j , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeabcaaaaeaacaWGybWaaSbaaS qaaiaaigdacaWGRbaabeaaaOqaaiaai2dacqaH7oaBdaWgaaWcbaGa am4AaaqabaGccqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaey OeI0IaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcbaGaaGimaaqa baGccaaIOaGaeyOeI0IaamiBaiaaiMcaciGGZbGaaiyAaiaac6gacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaWGubGaeyOeI0Iaeq4UdW2a aSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaO GaaGikaiabgkHiTiaadYgacaaIPaGaci4yaiaac+gacaGGZbGaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaamivaiaaiYcaaeaacaWGybWaaS baaSqaaiaaikdacaWGRbaabeaaaOqaaiaai2dacqaHipqEdaWgaaWc baGaamivaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcacqGHsislcq aHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBaiaa iMcaciGGJbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaWGubGaey4kaSIaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaeqOX dO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgkHiTiaadYgacaaIPa Gaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGa amivaiaaiYcaaeaacaWGybWaa0baaSqaaiaaigdacaWGRbaabaGaaG ikaiaadMgacaaIPaaaaaGcbaGaaGypaiabeU7aSnaaBaaaleaacaWG RbaabeaakiabeA8aQnaaBaaaleaacaWGPbaabeaakiaaiIcacqGHsi slcaWGSbGaaGykaiabgkHiTiabeI8a5naaBaaaleaacaaIWaaabeaa kiaaiIcacqGHsislcaWGSbGaaGykaiGacohacaGGPbGaaiOBaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWcbaGaamyAaaqa baGccqGHsislcqaH7oaBdaWgaaWcbaGaam4AaaqabaGccqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaIOaGaeyOeI0IaamiBaiaaiMcaciGG JbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWG0b WaaSbaaSqaaiaadMgaaeqaaOGaaGilaaqaaiaadIfadaqhaaWcbaGa aGOmaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaaaakeaacaaI9aGaeq iYdK3aaSbaaSqaaiaadQgaaeqaaOGaaGikaiabgkHiTiaadYgacaaI PaGaeyOeI0IaeqiYdK3aaSbaaSqaaiaaicdaaeqaaOGaaGikaiabgk HiTiaadYgacaaIPaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqa aiaadUgaaeqaaOGaamiDamaaBaaaleaacaWGQbaabeaakiabgUcaRi abeU7aSnaaBaaaleaacaWGRbaabeaakiabeA8aQnaaBaaaleaacaaI WaaabeaakiaaiIcacqGHsislcaWGSbGaaGykaiGacohacaGGPbGaai OBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadshadaWgaaWcbaGa amOAaaqabaGccaaISaaaaaaa@E17A@  (4.28)

h 1k (i) (τ)= sin λ k ( t i τ), 0τ t i , 0, t i <τT, h 2k (j) (τ)= cos λ k ( t j τ), 0τ t j , 0, t j <τT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaa0baaSqaaiaaigdacaWGRb aabaGaaGikaiaadMgacaaIPaaaaOGaaGikaiabes8a0jaaiMcacaaI 9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaaciGGZbGaaiyAaiaac6gacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaa caWGPbaabeaakiabgkHiTiabes8a0jaaiMcacaaISaaabaGaaGzbVd qaaiaaicdacqGHKjYOcqaHepaDcqGHKjYOcaWG0bWaaSbaaSqaaiaa dMgaaeqaaOGaaGilaaqaaaqaaiaaicdacaaISaaabaGaaGzbVdqaai aadshadaWgaaWcbaGaamyAaaqabaGccaaI8aGaeqiXdqNaeyizImQa amivaiaaiYcaaaaacaGL7baacaaMf8UaaGzbVlaaywW7caaMf8Uaam iAamaaDaaaleaacaaIYaGaam4AaaqaaiaaiIcacaWGQbGaaGykaaaa kiaaiIcacqaHepaDcaaIPaGaaGypamaaceaabaqbaeaabiabaaaaba aabaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccqGHsislcqaHep aDcaaIPaGaaGilaaqaaiaaywW7aeaacaaIWaGaeyizImQaeqiXdqNa eyizImQaamiDamaaBaaaleaacaWGQbaabeaakiaaiYcaaeaaaeaaca aIWaGaaGilaaqaaiaaywW7aeaacaWG0bWaaSbaaSqaaiaadQgaaeqa aOGaaGipaiabes8a0jabgsMiJkaadsfacaaIUaaaaaGaay5Eaaaaaa@901B@ (4.29)

Введем следующие обозначения:

H ¯ k (a) (τ)= sin λ k (Tτ) cos λ k (Tτ) h 1k (1) (τ) h 1k (m) (τ) T , C k (a) = C 1k (T) C 2k (T) C 1k ( t 1 ) C 1k ( t m ) T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGabmisayaara Waa0baaSqaaiaadUgaaeaacaaIOaGaamyyaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqabuaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiGacogacaGGVbGaai4CaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiX dqNaaGykaaqaaiaadIgadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOa GaaGymaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiablAcilbqa aiaadIgadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOaGaamyBaiaaiM caaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaadsfaaaGccaaISaaabaaabaGaam4qamaaDaaaleaacaWGRb aabaGaaGikaiaadggacaaIPaaaaOGaaGypamaabmaabaqbaeqabeqb aaaabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaam ivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa iIcacaWGubGaaGykaaqaaiaadoeadaWgaaWcbaGaaGymaiaadUgaae qaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGa eSOjGSeabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOa GaamiDamaaBaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGubaaaOGaaGilaaaaaaa@83BB@  (4.30)

H ¯ k (b) (τ)= sin λ k (Tτ) cos λ k (Tτ) h 2k (1) (τ) h 2k (m) (τ) T , C k (b) = C 1k (T) C 2k (T) C 2k ( t 1 ) C 2k ( t m ) T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGabmisayaara Waa0baaSqaaiaadUgaaeaacaaIOaGaamOyaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqabuaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiGacogacaGGVbGaai4CaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiX dqNaaGykaaqaaiaadIgadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIOa GaaGymaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiablAcilbqa aiaadIgadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIOaGaamyBaiaaiM caaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaadsfaaaGccaaISaaabaaabaGaam4qamaaDaaaleaacaWGRb aabaGaaGikaiaadkgacaaIPaaaaOGaaGypamaabmaabaqbaeqabeqb aaaabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGaam ivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa iIcacaWGubGaaGykaaqaaiaadoeadaWgaaWcbaGaaGOmaiaadUgaae qaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaIPaaabaGa eSOjGSeabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOa GaamiDamaaBaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaWGubaaaOGaaGilaaaaaaa@83C1@  (4.31)

H ¯ k (c) (τ)= sin λ k (Tτ) cos λ k (Tτ) h 1k (1) (τ) h 2k (2) (τ) h 1k (m1) (τ) h 2k (m) (τ) T , C k (c) = C 1k (T) C 2k (T) C 1k ( t 1 ) C 2k ( t 2 ) C 1k ( t m1 ) C 2k ( t m ) T . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaaabaGabmisayaara Waa0baaSqaaiaadUgaaeaacaaIOaGaam4yaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqabCaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiGacogacaGGVbGaai4CaiabeU 7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWGubGaeyOeI0IaeqiX dqNaaGykaaqaaiaadIgadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOa GaaGymaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaadIgadaqh aaWcbaGaaGOmaiaadUgaaeaacaaIOaGaaGOmaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaaqaaiablAcilbqaaiaadIgadaqhaaWcbaGaaGym aiaadUgaaeaacaaIOaGaamyBaiabgkHiTiaaigdacaaIPaaaaOGaaG ikaiabes8a0jaaiMcaaeaacaWGObWaa0baaSqaaiaaikdacaWGRbaa baGaaGikaiaad2gacaaIPaaaaOGaaGikaiabes8a0jaaiMcaaaaaca GLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaOGaaGilaaqaaaqaaiaa doeadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGJbGaaGykaaaakiaai2 dadaqadaqaauaabeqabCaaaaqaaiaadoeadaWgaaWcbaGaaGymaiaa dUgaaeqaaOGaaGikaiaadsfacaaIPaaabaGaam4qamaaBaaaleaaca aIYaGaam4AaaqabaGccaaIOaGaamivaiaaiMcaaeaacaWGdbWaaSba aSqaaiaaigdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaig daaeqaaOGaaGykaaqaaiaadoeadaWgaaWcbaGaaGOmaiaadUgaaeqa aOGaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaaabaGaeS OjGSeabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGTbGaeyOeI0IaaGymaaqabaGccaaIPaaaba Gaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamiDamaa BaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOaGaayzkaaWaaWbaaS qabeaacaWGubaaaOGaaGOlaaaaaaa@A3AF@  (4.32)

Тогда, с учетом введенных обозначений (4.30) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.32), соотношения (4.24) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.27) запишутся следующим образом:

0 T H ¯ k (δ) (τ) μ (δ) (τ)dτ= C k (δ) ,δ=a,b,c;k=1,2,. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcceWGibGbaebadaqhaaWcbaGaam4AaaqaaiaaiIca cqaH0oazcaaIPaaaaOGaaGikaiabes8a0jaaiMcacqaH8oqBdaahaa WcbeqaaiaaiIcacqaH0oazcaaIPaaaaOGaaGikaiabes8a0jaaiMca caWGKbGaeqiXdqNaaGypaiaadoeadaqhaaWcbaGaam4AaaqaaiaaiI cacqaH0oazcaaIPaaaaOGaaGilaiaaywW7cqaH0oazcaaI9aGaamyy aiaaiYcacaWGIbGaaGilaiaadogacaaI7aGaaGzbVlaadUgacaaI9a GaaGymaiaaiYcacaaIYaGaaGilaiablAciljaai6caaaa@602B@  (4.33)

Здесь в верхнем индексе δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@  обозначения соответствуют задачам со смещением левого конца при закрепленном правом конце с условиями A, B и C.

На практике, как правило, выбираются несколько первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник колебаний и решается задача синтеза управлений, используя методы теории управления конечномерными системами. Поэтому

H n (δ) (τ)= H ¯ 1 (δ) (τ) H ¯ 2 (δ) (τ) H ¯ n (δ) (τ) T , η n (δ) = C 1 (δ) C 2 (δ) C n (δ) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaaGypamaa bmaabaqbaeqabeabaaaabaGabmisayaaraWaa0baaSqaaiaaigdaae aacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaabaGa bmisayaaraWaa0baaSqaaiaaikdaaeaacaaIOaGaeqiTdqMaaGykaa aakiaaiIcacqaHepaDcaaIPaaabaGaeSOjGSeabaGabmisayaaraWa a0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacq aHepaDcaaIPaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaa kiaaiYcacaaMf8Uaeq4TdG2aa0baaSqaaiaad6gaaeaacaaIOaGaeq iTdqMaaGykaaaakiaai2dadaqadaqaauaabeqabqaaaaqaaiaadoea daqhaaWcbaGaaGymaaqaaiaaiIcacqaH0oazcaaIPaaaaaGcbaGaam 4qamaaDaaaleaacaaIYaaabaGaaGikaiabes7aKjaaiMcaaaaakeaa cqWIMaYsaeaacaWGdbWaa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdq MaaGykaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadsfaaaaa aa@7207@  (4.34)

с размерностями H n (δ) (τ)(n(m+2)×1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaeyOeI0Ia aGikaiaad6gacaaIOaGaamyBaiabgUcaRiaaikdacaaIPaGaey41aq RaaGymaiaaiMcaaaa@43F4@ , η n (δ) (n(m+2)×1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaeyOeI0IaaGikaiaad6gacaaIOaGa amyBaiabgUcaRiaaikdacaaIPaGaey41aqRaaGymaiaaiMcaaaa@41A9@  при всех δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ .

Для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник соотношение (4.33), с учетом (4.34), запишется в виде

0 T H n (δ) (τ) μ n (δ) (τ)dτ= η n (δ) ,δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaeqiT dqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaaGjcVlabeY7aTnaaDa aaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGccaaIOaGaeqiX dqNaaGykaiaadsgacqaHepaDcaaI9aGaeq4TdG2aa0baaSqaaiaad6 gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiYcacaaMf8UaeqiTdqMa aGypaiaadggacaaISaGaamOyaiaaiYcacaWGJbGaaGOlaaaa@5B72@  (4.35)

Из (4.35) вытекает справедливость следующего утверждения.

Теорема 1. Первые n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник системы (4.2), (4.3) с условиями (4.5) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4.9) вполне управляемы тогда и только тогда, когда для любого вектора η n (δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaaaa@3793@  (4.34) можно найти управление μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , удовлетворяющее условию (4.35).

Для произвольного числа первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник управляющее воздействие μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@ , удовлетворяющее интегральному соотношению (4.35), имеет вид (см. [6, 20])

μ n (δ) (t)= H n (δ) (t) T S n (δ) 1 η n (δ) + f n (δ) (t),δ=a,b,c, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaaGypamaa bmaabaGaamisamaaDaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiM caaaGccaaIOaGaamiDaiaaiMcaaiaawIcacaGLPaaadaahaaWcbeqa aiaadsfaaaGcdaqadaqaaiaadofadaqhaaWcbaGaamOBaaqaaiaaiI cacqaH0oazcaaIPaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaeq4TdG2aa0baaSqaaiaad6gaaeaacaaIOaGaeq iTdqMaaGykaaaakiabgUcaRiaadAgadaqhaaWcbaGaamOBaaqaaiaa iIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaaGilaiaayw W7cqaH0oazcaaI9aGaamyyaiaaiYcacaWGIbGaaGilaiaadogacaaI Saaaaa@64FE@  (4.36)

где H n (δ) (t) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaadIeadaqhaaWcbaGaam OBaaqaaiaaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaa caGLOaGaayzkaaWaaWbaaSqabeaacaWGubaaaaaa@3BAB@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  транспонированная матрица, f n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@393A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  такая вектор-функция, что

0 T H n (δ) (t) f n (δ) (t)dt=0, S n (δ) = 0 T H n (δ) (t) H n (δ) (t) T dt,δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaeqiT dqMaaGykaaaakiaaiIcacaWG0bGaaGykaiaadAgadaqhaaWcbaGaam OBaaqaaiaaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGa amizaiaadshacaaI9aGaaGimaiaaiYcacaaMf8Uaam4uamaaDaaale aacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGccaaI9aWaa8qCaeqa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaamisamaaDaaaleaaca WGUbaabaGaaGikaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMca daqadaqaaiaadIeadaqhaaWcbaGaamOBaaqaaiaaiIcacqaH0oazca aIPaaaaOGaaGikaiaadshacaaIPaaacaGLOaGaayzkaaWaaWbaaSqa beaacaWGubaaaOGaamizaiaadshacaaISaGaaGzbVlabes7aKjaai2 dacaWGHbGaaGilaiaadkgacaaISaGaam4yaiaai6caaaa@70E3@

Здесь S n (δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaaaaa@36BF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  известная матрица размерностью n m+2 ×n m+2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaamOBamaabmaa baGaamyBaiabgUcaRiaaikdaaiaawIcacaGLPaaaaiaawIcacaGLPa aaaaa@3F75@ , det S n (δ) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGKbGaaiyzaiaacshacaWGtbWaa0 baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiabgcMi5kaa icdaaaa@3C15@  при δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ .

Из формулы (4.36) следует, что существует множество управляющих функций, решающих задачи граничных управлений.

Учитывая обозначения (4.29), функции управления μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@  представляются в виде

μ n (δ) (t)= μ n (δ)1 (t), 0t t 1 , μ n (δ)2 (t), t 1 <t t 2 , μ n (δ)m (t), t m1 <t t m , μ n (δ)m+1 (t), t m <tT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaaGypamaa ceaabaqbaeaabuabaaaaaeaaaeaacqaH8oqBdaqhaaWcbaGaamOBaa qaaiaaiIcacqaH0oazcaaIPaGaaGymaaaakiaaiIcacaWG0bGaaGyk aiaaiYcaaeaacaaMf8oabaGaaGimaiabgsMiJkaadshacqGHKjYOca WG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaaqaaaqaaiabeY7aTnaa DaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcacaaIYaaaaOGaaG ikaiaadshacaaIPaGaaGilaaqaaiaaywW7aeaacaWG0bWaaSbaaSqa aiaaigdaaeqaaOGaaGipaiaadshacqGHKjYOcaWG0bWaaSbaaSqaai aaikdaaeqaaOGaaGilaaqaaaqaaiaaywW7cqWIUlstaeaaaeaaaeaa aeaacqaH8oqBdaqhaaWcbaGaamOBaaqaaiaaiIcacqaH0oazcaaIPa GaamyBaaaakiaaiIcacaWG0bGaaGykaiaaiYcaaeaacaaMf8oabaGa amiDamaaBaaaleaacaWGTbGaeyOeI0IaaGymaaqabaGccaaI8aGaam iDaiabgsMiJkaadshadaWgaaWcbaGaamyBaaqabaGccaaISaaabaaa baGaeqiVd02aa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykai aad2gacqGHRaWkcaaIXaaaaOGaaGikaiaadshacaaIPaGaaGilaaqa aiaaywW7aeaacaWG0bWaaSbaaSqaaiaad2gaaeqaaOGaaGipaiaads hacqGHKjYOcaWGubGaaGOlaaaaaiaawUhaaaaa@8FA4@  (4.37)

Подставляя из (4.36) (или из (4.37)) управление μ n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaaaaa@3A05@  в (4.3), а найденное для F k (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiaadUgaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3917@  выражение MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  в (4.15), получим функцию V k (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3927@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ . Далее, из формулы (4.1) будем иметь

V n (δ) (ξ,t)= k=1 n V k (δ) (t)sin πk l ξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaH+oaEcaaISaGaamiDaiaa iMcacaaI9aWaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGUb aaniabggHiLdGccaWGwbWaa0baaSqaaiaadUgaaeaacaaIOaGaeqiT dqMaaGykaaaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBam aalaaabaGaeqiWdaNaam4AaaqaaiaadYgaaaGaeqOVdGNaaGilaaaa @5285@

где

V k (δ) (t)= V k (0)cos λ k t+ 1 λ k V ˙ k (0)sin λ k t+ 1 λ k 0 t F k (δ) (τ)sin λ k (tτ)dτ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaiaai2dacaWG wbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaaicdacaaIPaGaci4yai aac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiDaiab gUcaRmaalaaabaGaaGymaaqaaiabeU7aSnaaBaaaleaacaWGRbaabe aaaaGcceWGwbGbaiaadaWgaaWcbaGaam4AaaqabaGccaaIOaGaaGim aiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4Aaa qabaGccaWG0bGaey4kaSYaaSaaaeaacaaIXaaabaGaeq4UdW2aaSba aSqaaiaadUgaaeqaaaaakmaapehabeWcbaGaaGimaaqaaiaadshaa0 Gaey4kIipakiaadAeadaqhaaWcbaGaam4AaaqaaiaaiIcacqaH0oaz caaIPaaaaOGaaGikaiabes8a0jaaiMcaciGGZbGaaiyAaiaac6gacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDaiabgkHiTiab es8a0jaaiMcacaWGKbGaeqiXdqNaaGilaaaa@7309@  (4.38)

а функция колебания Q n (δ) (ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaH+oaEcaaISaGaamiDaiaa iMcaaaa@3B9E@ , lξl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbGaeyizImQaeqOVdG NaeyizImQaamiBaaaa@39B9@ , для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник запишется в виде

Q n (δ) (ξ,t)= V n (δ) (ξ,t)+ W n (δ) (ξ,t), W n (δ) (ξ,t)= 1 2l (lξ) μ n (δ) (t),δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacqaH+oaEcaaISaGaamiDaiaa iMcacaaI9aGaamOvamaaDaaaleaacaWGUbaabaGaaGikaiabes7aKj aaiMcaaaGccaaIOaGaeqOVdGNaaGilaiaadshacaaIPaGaey4kaSIa am4vamaaDaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGcca aIOaGaeqOVdGNaaGilaiaadshacaaIPaGaaGilaiaaywW7caWGxbWa a0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacq aH+oaEcaaISaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGa aGOmaiaadYgaaaGaaGikaiaadYgacqGHsislcqaH+oaEcaaIPaGaeq iVd02aa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaa iIcacaWG0bGaaGykaiaaiYcacaaMf8UaeqiTdqMaaGypaiaadggaca aISaGaamOyaiaaiYcacaWGJbGaaGOlaaaa@7755@  (4.39)

Учитывая обозначения (3.1), функция Q n (δ) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@3AD8@  при l 1 xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaadYgaaaa@39E4@  представляется в виде:

Q n (δ) (x,t)= k=1 n V k (δ) (t)sin πk l 1 x+ 1 2 1 x l 1 μ n (δ) (t), l 1 x0,0tT, k=1 n V k (δ) (t)sin πk l x+ 1 2 1 x l μ n (δ) (t), 0 xl,0tT, δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGypamaaceaabaqbaeaabiabaaaabaaabaWaaabCaeqaleaaca WGRbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGwbWaa0ba aSqaaiaadUgaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0b GaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdaNaam4Aaaqa aiaadYgadaWgaaWcbaGaaGymaaqabaaaaOGaamiEaiabgUcaRmaala aabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaaIXaGaeyOeI0YaaSaa aeaacaWG4baabaGaamiBamaaBaaaleaacaaIXaaabeaaaaaakiaawI cacaGLPaaacqaH8oqBdaqhaaWcbaGaamOBaaqaaiaaiIcacqaH0oaz caaIPaaaaOGaaGikaiaadshacaaIPaGaaGilaaqaaiaaysW7cqGHsi slcaWGSbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaeyizImQaamiEaiab gsMiJkaaicdacaaISaGaaGjbVlaaicdacqGHKjYOcaWG0bGaeyizIm QaamivaiaaiYcaaeaaaeaadaaeWbqabSqaaiaadUgacaaI9aGaaGym aaqaaiaad6gaa0GaeyyeIuoakiaadAfadaqhaaWcbaGaam4Aaaqaai aaiIcacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaci4Caiaa cMgacaGGUbWaaSaaaeaacqaHapaCcaWGRbaabaGaamiBaaaacaWG4b Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiaaigda cqGHsisldaWcaaqaaiaadIhaaeaacaWGSbaaaaGaayjkaiaawMcaai abeY7aTnaaDaaaleaacaWGUbaabaGaaGikaiabes7aKjaaiMcaaaGc caaIOaGaamiDaiaaiMcacaaISaaabaGaaGjbVlaaicdaaeaacqGHKj YOcaWG4bGaeyizImQaamiBaiaaiYcacaaMe8UaaGimaiabgsMiJkaa dshacqGHKjYOcaWGubGaaGilaaaaaiaawUhaaiaaywW7cqaH0oazca aI9aGaamyyaiaaiYcacaWGIbGaaGilaiaadogacaaIUaaaaa@B4E7@  (4.40)

4.2. Построение решения задач граничного управления колебаниями смещением двух концов.Подставим значение функции F k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@360C@  в виде (4.4) в соотношения (4.16) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.19). Интегрируя их по частям с учетом условий согласования (2.11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.13), из (4.16) получим, что функции μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  и ν(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBcaaIOaGaamiDaiaaiMcaaa a@35D3@  для каждого k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  должны удовлетворять интегральным соотношениям в виде

0 T μ(τ)sin λ k (Tτ)dτ 0 T ν(τ)( 1) k sin λ k (Tτ)dτ= C 1k (T), 0 T μ(τ)cos λ k (Tτ)dτ 0 T ν(τ)( 1) k cos λ k (Tτ)dτ= C 2k (T), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaWaa8qCaeqaleaaca aIWaaabaGaamivaaqdcqGHRiI8aOGaeqiVd0MaaGikaiabes8a0jaa iMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaaIOaGaamivaiabgkHiTiabes8a0jaaiMcacaWGKbGaeqiXdqNa eyOeI0Yaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaeq yVd4MaaGikaiabes8a0jaaiMcacaaIOaGaeyOeI0IaaGymaiaaiMca daahaaWcbeqaaiaadUgaaaGcciGGZbGaaiyAaiaac6gacqaH7oaBda WgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0jaa iMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGaaGymaiaadU gaaeqaaOGaaGikaiaadsfacaaIPaGaaGilaaqaamaapehabeWcbaGa aGimaaqaaiaadsfaa0Gaey4kIipakiabeY7aTjaaiIcacqaHepaDca aIPaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaaGikaiaadsfacqGHsislcqaHepaDcaaIPaGaamizaiabes8a0j abgkHiTmaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiab e27aUjaaiIcacqaHepaDcaaIPaGaaGikaiabgkHiTiaaigdacaaIPa WaaWbaaSqabeaacaWGRbaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2a aSbaaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDca aIPaGaamizaiabes8a0jaai2dacaWGdbWaaSbaaSqaaiaaikdacaWG RbaabeaakiaaiIcacaWGubGaaGykaiaaiYcaaaaaaa@A1AB@  (4.41)

а из (4.17), (4.18) и (4.19) получим следующие интегральные соотношения:

0 T μ(τ) h k (i) (τ)dτ 0 T ν(τ)( 1) k h k (i) (τ)dτ= C 1k ( t i ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadIgadaqh aaWcbaGaam4AaaqaaiaaiIcacaWGPbGaaGykaaaakiaaiIcacqaHep aDcaaIPaGaamizaiabes8a0jabgkHiTmaapehabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakiabe27aUjaaiIcacqaHepaDcaaIPaGaaG ikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamiA amaaDaaaleaacaWGRbaabaGaaGikaiaadMgacaaIPaaaaOGaaGikai abes8a0jaaiMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGa aGymaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqaba GccaaIPaGaaGilaaaa@64D4@  (4.42)

0 T μ(τ) g k (j) (τ)dτ 0 T ν(τ)( 1) k g k (j) (τ)dτ= C 2k ( t j ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccqaH8oqBcaaIOaGaeqiXdqNaaGykaiaadEgadaqh aaWcbaGaam4AaaqaaiaaiIcacaWGQbGaaGykaaaakiaaiIcacqaHep aDcaaIPaGaamizaiabes8a0jabgkHiTmaapehabeWcbaGaaGimaaqa aiaadsfaa0Gaey4kIipakiabe27aUjaaiIcacqaHepaDcaaIPaGaaG ikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaam4z amaaDaaaleaacaWGRbaabaGaaGikaiaadQgacaaIPaaaaOGaaGikai abes8a0jaaiMcacaWGKbGaeqiXdqNaaGypaiaadoeadaWgaaWcbaGa aGOmaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqaba GccaaIPaGaaGilaaaa@64D6@  (4.43)

0 T μ(τ) h k (i) (τ)dτ 0 T ν(τ)( 1) k h k (i) (τ)dτ= C 1k ( t i ), i=2α1,α=1,, m 2 , 0 T μ(τ) g k (j) (τ)dτ 0 T ν(τ)( 1) k g k (j) (τ)dτ= C 2k ( t j ), j=2α,α=1,, m 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaadaWdXbqabS qaaiaaicdaaeaacaWGubaaniabgUIiYdGccqaH8oqBcaaIOaGaeqiX dqNaaGykaiaadIgadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGPbGaaG ykaaaakiaaiIcacqaHepaDcaaIPaGaamizaiabes8a0jabgkHiTmaa pehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiabe27aUjaaiI cacqaHepaDcaaIPaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqa beaacaWGRbaaaOGaamiAamaaDaaaleaacaWGRbaabaGaaGikaiaadM gacaaIPaaaaOGaaGikaiabes8a0jaaiMcacaWGKbGaeqiXdqNaaGyp aiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadshada WgaaWcbaGaamyAaaqabaGccaaIPaGaaGilaaqaaiaaywW7aeaacaWG PbGaaGypaiaaikdacqaHXoqycqGHsislcaaIXaGaaGilaiaaywW7cq aHXoqycaaI9aGaaGymaiaaiYcacqWIMaYscaaISaWaaSaaaeaacaWG TbaabaGaaGOmaaaacaaISaaabaaabaWaa8qCaeqaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOGaeqiVd0MaaGikaiabes8a0jaaiMcacaWG NbWaa0baaSqaaiaadUgaaeaacaaIOaGaamOAaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaiaadsgacqaHepaDcqGHsisldaWdXbqabSqaaiaa icdaaeaacaWGubaaniabgUIiYdGccqaH9oGBcaaIOaGaeqiXdqNaaG ykaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4Aaaaa kiaadEgadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGQbGaaGykaaaaki aaiIcacqaHepaDcaaIPaGaamizaiabes8a0jaai2dacaWGdbWaaSba aSqaaiaaikdacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadQ gaaeqaaOGaaGykaiaaiYcaaeaacaaMf8oabaGaamOAaiaai2dacaaI YaGaeqySdeMaaGilaiaaywW7cqaHXoqycaaI9aGaaGymaiaaiYcacq WIMaYscaaISaWaaSaaaeaacaWGTbaabaGaaGOmaaaacaaISaaaaaaa @B9B5@  (4.44)

где

C 1k (T) = 1 λ k 2 λ k l 2a C ˜ 1k (T)+ X 1k (1) k Y 1k , C 2k (T) = 1 λ k 2 λ k l 2a C ˜ 2k (T)+ X 2k (1) k Y 2k , C 1k ( t i ) = 1 λ k 2 λ k l 2a C ˜ 1k ( t i )+ X 1k (i) (1) k Y 1k (i) , C 2k ( t j ) = 1 λ k 2 λ k l 2a C ˜ 2k ( t j )+ X 2k (j) (1) k Y 2k (j) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWGdbWaaSbaaS qaaiaaigdacaWGRbaabeaakiaaiIcacaWGubGaaGykaaqaaiaai2da daWcaaqaaiaaigdaaeaacqaH7oaBdaqhaaWcbaGaam4Aaaqaaiaaik daaaaaaOWaamWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWGRbaa beaakiaadYgaaeaacaaIYaGaamyyaaaaceWGdbGbaGaadaWgaaWcba GaaGymaiaadUgaaeqaaOGaaGikaiaadsfacaaIPaGaey4kaSIaamiw amaaBaaaleaacaaIXaGaam4AaaqabaGccqGHsislcaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccaWGzbWaaSbaaSqa aiaaigdacaWGRbaabeaaaOGaay5waiaaw2faaiaaiYcaaeaacaaMf8 Uaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamivaiaa iMcaaeaacaaI9aWaaSaaaeaacaaIXaaabaGaeq4UdW2aa0baaSqaai aadUgaaeaacaaIYaaaaaaakmaadmaabaWaaSaaaeaacqaH7oaBdaWg aaWcbaGaam4AaaqabaGccaWGSbaabaGaaGOmaiaadggaaaGabm4qay aaiaWaaSbaaSqaaiaaikdacaWGRbaabeaakiaaiIcacaWGubGaaGyk aiabgUcaRiaadIfadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGaeyOeI0 IaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGa amywamaaBaaaleaacaaIYaGaam4AaaqabaaakiaawUfacaGLDbaaca aISaaabaGaam4qamaaBaaaleaacaaIXaGaam4AaaqabaGccaaIOaGa amiDamaaBaaaleaacaWGPbaabeaakiaaiMcaaeaacaaI9aWaaSaaae aacaaIXaaabaGaeq4UdW2aa0baaSqaaiaadUgaaeaacaaIYaaaaaaa kmaadmaabaWaaSaaaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaGcca WGSbaabaGaaGOmaiaadggaaaGabm4qayaaiaWaaSbaaSqaaiaaigda caWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaG ykaiabgUcaRiaadIfadaqhaaWcbaGaaGymaiaadUgaaeaacaaIOaGa amyAaiaaiMcaaaGccqGHsislcaaIOaGaeyOeI0IaaGymaiaaiMcada ahaaWcbeqaaiaadUgaaaGccaWGzbWaa0baaSqaaiaaigdacaWGRbaa baGaaGikaiaadMgacaaIPaaaaaGccaGLBbGaayzxaaGaaGilaaqaai aaywW7caWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaaiIcacaWG 0bWaaSbaaSqaaiaadQgaaeqaaOGaaGykaaqaaiaai2dadaWcaaqaai aaigdaaeaacqaH7oaBdaqhaaWcbaGaam4AaaqaaiaaikdaaaaaaOWa amWaaeaadaWcaaqaaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaadY gaaeaacaaIYaGaamyyaaaaceWGdbGbaGaadaWgaaWcbaGaaGOmaiaa dUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaIPa Gaey4kaSIaamiwamaaDaaaleaacaaIYaGaam4AaaqaaiaaiIcacaWG QbGaaGykaaaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaam4AaaaakiaadMfadaqhaaWcbaGaaGOmaiaadUgaaeaa caaIOaGaamOAaiaaiMcaaaaakiaawUfacaGLDbaacaaISaaaaaaa@CE06@

h k (i) (τ)= sin λ k ( t i τ), 0τ t i , 0, t i <τT, g k (j) (τ)= cos λ k ( t j τ), 0τ t j , 0, t j <τT, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaa0baaSqaaiaadUgaaeaaca aIOaGaamyAaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiaai2dadaGa baqaauaabaqacqaaaaqaaaqaaiGacohacaGGPbGaaiOBaiabeU7aSn aaBaaaleaacaWGRbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaadMga aeqaaOGaeyOeI0IaeqiXdqNaaGykaiaaiYcaaeaacaaMf8oabaGaaG imaiabgsMiJkabes8a0jabgsMiJkaadshadaWgaaWcbaGaamyAaaqa baGccaaISaaabaaabaGaaGimaiaaiYcaaeaacaaMf8oabaGaamiDam aaBaaaleaacaWGPbaabeaakiaaiYdacqaHepaDcqGHKjYOcaWGubGa aGilaaaaaiaawUhaaiaaywW7caaMf8Uaam4zamaaDaaaleaacaWGRb aabaGaaGikaiaadQgacaaIPaaaaOGaaGikaiabes8a0jaaiMcacaaI 9aWaaiqaaeaafaqaaeGaeaaaaeaaaeaaciGGJbGaai4Baiaacohacq aH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaaBaaaleaa caWGQbaabeaakiabgkHiTiabes8a0jaaiMcacaaISaaabaGaaGzbVd qaaiaaicdacqGHKjYOcqaHepaDcqGHKjYOcaWG0bWaaSbaaSqaaiaa dQgaaeqaaOGaaGilaaqaaaqaaiaaicdacaaISaaabaGaaGzbVdqaai aadshadaWgaaWcbaGaamOAaaqabaGccaaI8aGaeqiXdqNaeyizImQa amivaiaaiYcaaaaacaGL7baaaaa@8B85@  (4.45)

Y 1k = λ k φ T (l) ψ 0 (l)sin λ k T λ k φ 0 (l)cos λ k T, Y 2k = ψ T (l) ψ 0 (l)cos λ k T+ λ k φ 0 (l)sin λ k T, Y 1k (i) = λ k φ i (l) ψ 0 (l)sin λ k t i λ k φ 0 (l)cos λ k t i , Y 2k (j) = ψ j (l) ψ 0 (l)cos λ k t j + λ k φ 0 (l)sin λ k t j . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWGzbWaaSbaaS qaaiaaigdacaWGRbaabeaaaOqaaiaai2dacqaH7oaBdaWgaaWcbaGa am4AaaqabaGccqaHgpGAdaWgaaWcbaGaamivaaqabaGccaaIOaGaam iBaiaaiMcacqGHsislcqaHipqEdaWgaaWcbaGaaGimaaqabaGccaaI OaGaamiBaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaBdaWgaaWcba Gaam4AaaqabaGccaWGubGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaadUga aeqaaOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadYgaca aIPaGaci4yaiaac+gacaGGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqa aOGaamivaiaaiYcaaeaacaaMf8UaamywamaaBaaaleaacaaIYaGaam 4AaaqabaaakeaacaaI9aGaeqiYdK3aaSbaaSqaaiaadsfaaeqaaOGa aGikaiaadYgacaaIPaGaeyOeI0IaeqiYdK3aaSbaaSqaaiaaicdaae qaaOGaaGikaiaadYgacaaIPaGaci4yaiaac+gacaGGZbGaeq4UdW2a aSbaaSqaaiaadUgaaeqaaOGaamivaiabgUcaRiabeU7aSnaaBaaale aacaWGRbaabeaakiabeA8aQnaaBaaaleaacaaIWaaabeaakiaaiIca caWGSbGaaGykaiGacohacaGGPbGaaiOBaiabeU7aSnaaBaaaleaaca WGRbaabeaakiaadsfacaaISaaabaGaamywamaaDaaaleaacaaIXaGa am4AaaqaaiaaiIcacaWGPbGaaGykaaaaaOqaaiaai2dacqaH7oaBda WgaaWcbaGaam4AaaqabaGccqaHgpGAdaWgaaWcbaGaamyAaaqabaGc caaIOaGaamiBaiaaiMcacqGHsislcqaHipqEdaWgaaWcbaGaaGimaa qabaGccaaIOaGaamiBaiaaiMcaciGGZbGaaiyAaiaac6gacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaWG0bWaaSbaaSqaaiaadMgaaeqaaO GaeyOeI0Iaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaeqOXdO2aaSba aSqaaiaaicdaaeqaaOGaaGikaiaadYgacaaIPaGaci4yaiaac+gaca GGZbGaeq4UdW2aaSbaaSqaaiaadUgaaeqaaOGaamiDamaaBaaaleaa caWGPbaabeaakiaaiYcaaeaacaaMf8UaamywamaaDaaaleaacaaIYa Gaam4AaaqaaiaaiIcacaWGQbGaaGykaaaaaOqaaiaai2dacqaHipqE daWgaaWcbaGaamOAaaqabaGccaaIOaGaamiBaiaaiMcacqGHsislcq aHipqEdaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiBaiaaiMcaciGG JbGaai4BaiaacohacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaWG0b WaaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadY gacaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaaiaadUga aeqaaOGaamiDamaaBaaaleaacaWGQbaabeaakiaai6caaaaaaa@D980@

Отметим, что выражения для C ˜ 1k (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGymai aadUgaaeqaaOGaaGikaiaadsfacaaIPaaaaa@36B3@ , C ˜ 2k (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGOmai aadUgaaeqaaOGaaGikaiaadsfacaaIPaaaaa@36B4@ , C ˜ 1k ( t i ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGymai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaI Paaaaa@37F7@ , C ˜ 2k ( t j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGdbGbaGaadaWgaaWcbaGaaGOmai aadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaamOAaaqabaGccaaI Paaaaa@37F9@  совпадают с приведенными в формулах (4.20) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.23), а выражения для X 1k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaaigdacaWGRb aabeaaaaa@3471@ , X 2k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaaikdacaWGRb aabeaaaaa@3472@ , X 1k (i) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaa0baaSqaaiaaigdacaWGRb aabaGaaGikaiaadMgacaaIPaaaaaaa@36C5@ , X 2k (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaa0baaSqaaiaaikdacaWGRb aabaGaaGikaiaadQgacaaIPaaaaaaa@36C7@  приведены в (4.28).

Введем следующие обозначения:

H ¯ k 2a (τ)= sin λ k (Tτ) (1) k+1 sin λ k (Tτ) cos λ k (Tτ) (1) k+1 cos λ k (Tτ) h k (1) (τ) (1) k+1 h k (1) (τ) h k (m) (τ) (1) k+1 h k (m) (τ) , C k 2a ( t 1 ,, t m ,T)= C 1k (T) C 2k (T) C 1k ( t 1 ) C 1k ( t m1 ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaqhaaWcbaGaam4Aaa qaamaabmaabaGaaGOmaiaadggaaiaawIcacaGLPaaaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqafiaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcciGGZbGaaiyA aiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamivai abgkHiTiabes8a0jaaiMcaaeaaciGGJbGaai4BaiaacohacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0j aaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDcaaI PaaabaGaamiAamaaDaaaleaacaWGRbaabaGaaGikaiaaigdacaaIPa aaaOGaaGikaiabes8a0jaaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaamiAamaaDa aaleaacaWGRbaabaGaaGikaiaaigdacaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaacqWIVlctaeaaaeaacaWGObWaa0baaSqaaiaadUgaae aacaaIOaGaamyBaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaa iIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRi aaigdaaaGccaWGObWaa0baaSqaaiaadUgaaeaacaaIOaGaamyBaiaa iMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaacaaISa GaaGzbVlaadoeadaqhaaWcbaGaam4AaaqaamaabmaabaGaaGOmaiaa dggaaiaawIcacaGLPaaaaaGccaaIOaGaamiDamaaBaaaleaacaaIXa aabeaakiaaiYcacqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaa beaakiaaiYcacaWGubGaaGykaiaai2dadaqadaqaauaabeqafeaaaa qaaiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadsfa caaIPaaabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOa GaamivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaigdacaWGRbaabeaa kiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiabl6 UinbqaaiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaa dshadaWgaaWcbaGaamyBaiabgkHiTiaaigdaaeqaaOGaaGykaaaaai aawIcacaGLPaaacaaISaaaaa@CBAD@  (4.46)

H ¯ k 2b (τ)= sin λ k (Tτ) (1) k+1 sin λ k (Tτ) cos λ k (Tτ) (1) k+1 cos λ k (Tτ) g k (1) (τ) (1) k+1 g k (1) (τ) g k (m) (τ) (1) k+1 g k (m) (τ) , C k 2b ( t 1 ,, t m ,T)= C 1k (T) C 2k (T) C 2k ( t 1 ) C 2k ( t m ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaqhaaWcbaGaam4Aaa qaamaabmaabaGaaGOmaiaadkgaaiaawIcacaGLPaaaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqafiaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcciGGZbGaaiyA aiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamivai abgkHiTiabes8a0jaaiMcaaeaaciGGJbGaai4BaiaacohacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0j aaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDcaaI PaaabaGaam4zamaaDaaaleaacaWGRbaabaGaaGikaiaaigdacaaIPa aaaOGaaGikaiabes8a0jaaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaam4zamaaDa aaleaacaWGRbaabaGaaGikaiaaigdacaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaacqWIVlctaeaaaeaacaWGNbWaa0baaSqaaiaadUgaae aacaaIOaGaamyBaiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaa iIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRi aaigdaaaGccaWGNbWaa0baaSqaaiaadUgaaeaacaaIOaGaamyBaiaa iMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGLPaaacaaISa GaaGzbVlaadoeadaqhaaWcbaGaam4AaaqaamaabmaabaGaaGOmaiaa dkgaaiaawIcacaGLPaaaaaGccaaIOaGaamiDamaaBaaaleaacaaIXa aabeaakiaaiYcacqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaa beaakiaaiYcacaWGubGaaGykaiaai2dadaqadaqaauaabeqafeaaaa qaaiaadoeadaWgaaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadsfa caaIPaaabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOa GaamivaiaaiMcaaeaacaWGdbWaaSbaaSqaaiaaikdacaWGRbaabeaa kiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiabl6 UinbqaaiaadoeadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGaaGikaiaa dshadaWgaaWcbaGaamyBaaqabaGccaaIPaaaaaGaayjkaiaawMcaai aaiYcaaaa@CA05@  (4.47)

H ¯ k 2c (τ)= sin λ k (Tτ) (1) k+1 sin λ k (Tτ) cos λ k (Tτ) (1) k+1 cos λ k (Tτ) h k (1) (τ) (1) k+1 h k (1) (τ) g k (2) (τ) (1) k+1 g k (2) (τ) h k (m1) (τ) (1) k+1 h k (m1) (τ) g k (m) (τ) (1) k+1 g k (m) (τ) , C k 2c ( t 1 ,, t m ,T)= C 1k (T) C 2k (T) C 1k ( t 1 ) C 2k ( t 2 ) C 1k ( t m1 ) C 2k ( t m ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGibGbaebadaqhaaWcbaGaam4Aaa qaamaabmaabaGaaGOmaiaadogaaiaawIcacaGLPaaaaaGccaaIOaGa eqiXdqNaaGykaiaai2dadaqadaqaauaabeqahiaaaaqaaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG ubGaeyOeI0IaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcciGGZbGaaiyA aiaac6gacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaIOaGaamivai abgkHiTiabes8a0jaaiMcaaeaaciGGJbGaai4BaiaacohacqaH7oaB daWgaaWcbaGaam4AaaqabaGccaaIOaGaamivaiabgkHiTiabes8a0j aaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaOGaci4yaiaac+gacaGGZbGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGikaiaadsfacqGHsislcqaHepaDcaaI PaaabaGaamiAamaaDaaaleaacaWGRbaabaGaaGikaiaaigdacaaIPa aaaOGaaGikaiabes8a0jaaiMcaaeaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaamiAamaaDa aaleaacaWGRbaabaGaaGikaiaaigdacaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaacaWGNbWaa0baaSqaaiaadUgaaeaacaaIOaGaaGOmai aaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWGNb Waa0baaSqaaiaadUgaaeaacaaIOaGaaGOmaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaaqaaiabl+UimbqaaaqaaiaadIgadaqhaaWcbaGaam 4AaaqaaiaaiIcacaWGTbGaeyOeI0IaaGymaiaaiMcaaaGccaaIOaGa eqiXdqNaaGykaaqaaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaale qabaGaam4AaiabgUcaRiaaigdaaaGccaWGObWaa0baaSqaaiaadUga aeaacaaIOaGaamyBaiabgkHiTiaaigdacaaIPaaaaOGaaGikaiabes 8a0jaaiMcaaeaacaWGNbWaa0baaSqaaiaadUgaaeaacaaIOaGaamyB aiaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaqaaiaaiIcacqGHsislca aIXaGaaGykamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWG NbWaa0baaSqaaiaadUgaaeaacaaIOaGaamyBaiaaiMcaaaGccaaIOa GaeqiXdqNaaGykaaaaaiaawIcacaGLPaaacaaISaGaaGzbVlaadoea daqhaaWcbaGaam4AaaqaamaabmaabaGaaGOmaiaadogaaiaawIcaca GLPaaaaaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYca cqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaabeaakiaaiYcaca WGubGaaGykaiaai2dadaqadaqaauaabeqaheaaaaqaaiaadoeadaWg aaWcbaGaaGymaiaadUgaaeqaaOGaaGikaiaadsfacaaIPaaabaGaam 4qamaaBaaaleaacaaIYaGaam4AaaqabaGccaaIOaGaamivaiaaiMca aeaacaWGdbWaaSbaaSqaaiaaigdacaWGRbaabeaakiaaiIcacaWG0b WaaSbaaSqaaiaaigdaaeqaaOGaaGykaaqaaiaadoeadaWgaaWcbaGa aGOmaiaadUgaaeqaaOGaaGikaiaadshadaWgaaWcbaGaaGOmaaqaba GccaaIPaaabaGaeSO7I0eabaGaam4qamaaBaaaleaacaaIXaGaam4A aaqabaGccaaIOaGaamiDamaaBaaaleaacaWGTbGaeyOeI0IaaGymaa qabaGccaaIPaaabaGaam4qamaaBaaaleaacaaIYaGaam4AaaqabaGc caaIOaGaamiDamaaBaaaleaacaWGTbaabeaakiaaiMcaaaaacaGLOa GaayzkaaGaaGilaaaa@04BB@  (4.48)

U (δ) (τ)= μ (δ) (τ) ν (δ) (τ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaWbaaSqabeaacaaIOaGaeq iTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaaGypamaabmaabaqb aeqabiqaaaqaaiabeY7aTnaaCaaaleqabaGaaGikaiabes7aKjaaiM caaaGccaaIOaGaeqiXdqNaaGykaaqaaiabe27aUnaaCaaaleqabaGa aGikaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawI cacaGLPaaacaaIUaaaaa@4C5B@

Тогда с учетом введенных обозначений (4.46) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.48) соотношения (4.41) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.44) запишутся следующим образом:

0 T H ¯ k (2δ) (τ) U (δ) (τ)dτ= C k (2δ) ( t 1 ,, t m ,T),δ=a,b,c;k=1,2,. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGcceWGibGbaebadaqhaaWcbaGaam4AaaqaaiaaiIca caaIYaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaGaamyvam aaCaaaleqabaGaaGikaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNa aGykaiaadsgacqaHepaDcaaI9aGaam4qamaaDaaaleaacaWGRbaaba GaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiaadshadaWgaaWc baGaaGymaaqabaGccaaISaGaeSOjGSKaaGilaiaadshadaWgaaWcba GaamyBaaqabaGccaaISaGaaGjcVlaadsfacaaIPaGaaGilaiaaywW7 cqaH0oazcaaI9aGaamyyaiaaiYcacaWGIbGaaGilaiaadogacaaI7a GaaGzbVlaadUgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAci ljaai6caaaa@6BE5@  (4.49)

Здесь через U (δ) (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaWbaaSqabeaacaaIOaGaeq iTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaaaa@3902@ , δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ , обозначены вектор-функции управления и оптимального управления для задач смещением двух концов, т.е. для задач 2A, 2B, 2C и 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  A, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  B, 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaahaaWcbeqaaiaaicdaaaaaaa@32A4@  C соответственно.

Таким образом, для поиска функции U (δ) (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaWbaaSqabeaacaaIOaGaeq iTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaaaa@3902@ , τ[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIBbGaaGimai aaiYcacaWGubGaaGyxaaaa@391B@ , для всех перечисленных задач получили бесконечные интегральные соотношения, которые представлены в единой записи (4.49). Введем для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник следующие обозначения блочных матриц:

H n (2δ) (τ)= H ¯ 1 (2δ) (τ) H ¯ 2 (2δ) (τ) H ¯ n (2δ) (τ) , η n (2δ) = C 1 (2δ) ( t 1 ,, t m ,T) C 2 (2δ) ( t 1 ,, t m ,T) C n (2δ) ( t 1 ,, t m ,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiaa i2dadaqadaqaauaabeqaeeaaaaqaaiqadIeagaqeamaaDaaaleaaca aIXaaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiabes8a 0jaaiMcaaeaaceWGibGbaebadaqhaaWcbaGaaGOmaaqaaiaaiIcaca aIYaGaeqiTdqMaaGykaaaakiaaiIcacqaHepaDcaaIPaaabaGaeSO7 I0eabaGabmisayaaraWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOmai abes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaaaaaiaawIcacaGL PaaacaaISaGaaGzbVlabeE7aOnaaDaaaleaacaWGUbaabaGaaGikai aaikdacqaH0oazcaaIPaaaaOGaaGypamaabmaabaqbaeqabqqaaaaa baGaam4qamaaDaaaleaacaaIXaaabaGaaGikaiaaikdacqaH0oazca aIPaaaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaISaGa eSOjGSKaaGilaiaadshadaWgaaWcbaGaamyBaaqabaGccaaISaGaam ivaiaaiMcaaeaacaWGdbWaa0baaSqaaiaaikdaaeaacaaIOaGaaGOm aiabes7aKjaaiMcaaaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiYcacqWIMaYscaaISaGaamiDamaaBaaaleaacaWGTbaabeaa kiaaiYcacaWGubGaaGykaaqaaiabl6UinbqaaiaadoeadaqhaaWcba GaamOBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG 0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiablAciljaaiYcacaWG0b WaaSbaaSqaaiaad2gaaeqaaOGaaGilaiaadsfacaaIPaaaaaGaayjk aiaawMcaaaaa@9410@  (4.50)

размерностей n m+2 ×2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaaGOmaaGaayjk aiaawMcaaaaa@3B25@  и n m+2 ×1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaaGymaaGaayjk aiaawMcaaaaa@3B24@  соответственно. Для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник с учетом (4.50) соотношение (4.49) запишется в виде

0 T H n (2δ) (τ) U n (δ) (τ)dτ= η n (2δ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOm aiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiaayIW7caWGvb Waa0baaSqaaiaad6gaaeaacaaIOaGaeqiTdqMaaGykaaaakiaaiIca cqaHepaDcaaIPaGaamizaiabes8a0jaai2dacqaH3oaAdaqhaaWcba GaamOBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaai6caaaa@533D@  (4.51)

Из (4.51) следует утверждение, аналогичное теореме 1: первые n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник системы (4.2), (4.4) с условиями (4.10) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4.14) вполне управляемы тогда и только тогда, когда для любого вектора η n (2δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaqhaaWcbaGaamOBaaqaai aaiIcacaaIYaGaeqiTdqMaaGykaaaaaaa@384F@  из (4.50) можно найти управление U n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3929@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , удовлетворяющее условию (4.51).

Для произвольного числа первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник управляющее воздействие U n (δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa@3929@ , удовлетворяющее интегральному соотношению (4.51), имеет вид (см. [6, 20])

U n (δ) (t)= H n (2δ) (t) T S n (2δ) 1 η n (2δ) + f n (2δ) (t),δ=a,b,c, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaa0baaSqaaiaad6gaaeaaca aIOaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaiaai2dadaqa daqaaiaadIeadaqhaaWcbaGaamOBaaqaaiaaiIcacaaIYaGaeqiTdq MaaGykaaaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaamaaCaaa leqabaGaamivaaaakmaabmaabaGaam4uamaaDaaaleaacaWGUbaaba GaaGikaiaaikdacqaH0oazcaaIPaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacqGHsislcaaIXaaaaOGaeq4TdG2aa0baaSqaaiaad6gaae aacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccqGHRaWkcaWGMbWaa0ba aSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOa GaamiDaiaaiMcacaaISaGaaGzbVlabes7aKjaai2dacaWGHbGaaGil aiaadkgacaaISaGaam4yaiaaiYcaaaa@6712@  (4.52)

где H n (2δ) (t) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaadIeadaqhaaWcbaGaam OBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGa aGykaaGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaaaaa@3C67@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  транспонированная матрица, f n (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@39F6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  такая вектор-функция, что

0 T H n (2δ) (t) f n (2δ) (t)dt=0, S n (2δ) = 0 T H n (2δ) (t) H n (2δ) (t) T dt,δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGibWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOm aiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcacaWGMbWaa0baaS qaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGa amiDaiaaiMcacaWGKbGaamiDaiaai2dacaaIWaGaaGilaiaaywW7ca WGtbWaa0baaSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMca aaGccaaI9aWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aO GaamisamaaDaaaleaacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaI PaaaaOGaaGikaiaadshacaaIPaWaaeWaaeaacaWGibWaa0baaSqaai aad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiD aiaaiMcaaiaawIcacaGLPaaadaahaaWcbeqaaiaadsfaaaGccaWGKb GaamiDaiaaiYcacaaMf8UaeqiTdqMaaGypaiaadggacaaISaGaamOy aiaaiYcacaWGJbGaaGOlaaaa@748F@  (4.53)

Здесь H n (2δ) (t) H n (2δ) (t) T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcadaqa daqaaiaadIeadaqhaaWcbaGaamOBaaqaaiaaiIcacaaIYaGaeqiTdq MaaGykaaaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaamaaCaaa leqabaGaamivaaaaaaa@4482@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  внешнее произведение, S n (2δ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaaaaa@377B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  известная матрица размерности n m+2 ×n m+2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaaiaad6gadaqadaqaaiaad2 gacqGHRaWkcaaIYaaacaGLOaGaayzkaaGaey41aqRaamOBamaabmaa baGaamyBaiabgUcaRiaaikdaaiaawIcacaGLPaaaaiaawIcacaGLPa aaaaa@3F75@ , для которой предполагается, что det S n (2δ) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGKbGaaiyzaiaacshacaWGtbWaa0 baaSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccqGH GjsUcaaIWaaaaa@3CD1@ , при δ=a,b,c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaamyyaiaaiYcaca WGIbGaaGilaiaadogaaaa@384A@ .

Здесь также из формулы (4.52) следует, что для задач 2A, 2B, 2C существует множество управляющих функций, решающих задачи граничных управлений.

Подставляя из (4.52) величины μ n (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaamOBaaqaai aaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa @3AC1@  и ν n (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH9oGBdaqhaaWcbaGaamOBaaqaai aaiIcacaaIYaGaeqiTdqMaaGykaaaakiaaiIcacaWG0bGaaGykaaaa @3AC3@  в (4.4), а найденное для F k (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaa0baaSqaaiaadUgaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@39D3@  выражение MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  в (4.15), получим функцию V k (2δ) (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaaa@39E3@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ . Далее, из формулы (4.1) будем иметь

V n (2δ) (ξ,t)= k=1 n V k (2δ) (t)sin πk l ξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqOVdGNaaGilaiaa dshacaaIPaGaaGypamaaqahabeWcbaGaam4Aaiaai2dacaaIXaaaba GaamOBaaqdcqGHris5aOGaamOvamaaDaaaleaacaWGRbaabaGaaGik aiaaikdacqaH0oazcaaIPaaaaOGaaGikaiaadshacaaIPaGaci4Cai aacMgacaGGUbWaaSaaaeaacqaHapaCcaWGRbaabaGaamiBaaaacqaH +oaEcaaISaaaaa@53FD@

где

V k (2δ) (t)= V k (0)cos λ k t+ 1 λ k V ˙ k (0)sin λ k t+ 1 λ k 0 t F k (2δ) (τ)sin λ k (tτ)dτ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcacaaI 9aGaamOvamaaBaaaleaacaWGRbaabeaakiaaiIcacaaIWaGaaGykai GacogacaGGVbGaai4CaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaa dshacqGHRaWkdaWcaaqaaiaaigdaaeaacqaH7oaBdaWgaaWcbaGaam 4AaaqabaaaaOGabmOvayaacaWaaSbaaSqaaiaadUgaaeqaaOGaaGik aiaaicdacaaIPaGaci4CaiaacMgacaGGUbGaeq4UdW2aaSbaaSqaai aadUgaaeqaaOGaamiDaiabgUcaRmaalaaabaGaaGymaaqaaiabeU7a SnaaBaaaleaacaWGRbaabeaaaaGcdaWdXbqabSqaaiaaicdaaeaaca WG0baaniabgUIiYdGccaWGgbWaa0baaSqaaiaadUgaaeaacaaIOaGa aGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqiXdqNaaGykaiGacohaca GGPbGaaiOBaiabeU7aSnaaBaaaleaacaWGRbaabeaakiaaiIcacaWG 0bGaeyOeI0IaeqiXdqNaaGykaiaadsgacqaHepaDcaaISaaaaa@7481@  (4.54)

а функция колебания Q n (2δ) (ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqOVdGNaaGilaiaa dshacaaIPaaaaa@3C5A@ , lξl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbGaeyizImQaeqOVdG NaeyizImQaamiBaaaa@39B9@  для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник запишется в виде

Q n (2δ) (ξ,t) = V n (2δ) (ξ,t)+ W n (2δ) (ξ,t), W n (2δ) (ξ,t) = ν n (2δ) (t) μ n (2δ) (t) ξ l + μ n (2δ) (t), δ=a,b,c. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeqadaaabaGaamyuamaaDaaale aacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiab e67a4jaaiYcacaWG0bGaaGykaaqaaiaai2dacaWGwbWaa0baaSqaai aad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaeqOV dGNaaGilaiaadshacaaIPaGaey4kaSIaam4vamaaDaaaleaacaWGUb aabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiabe67a4jaa iYcacaWG0bGaaGykaiaaiYcacaaMf8Uaam4vamaaDaaaleaacaWGUb aabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiabe67a4jaa iYcacaWG0bGaaGykaaqaaiaai2dadaWadaqaaiabe27aUnaaDaaale aacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaOGaaGikaiaa dshacaaIPaGaeyOeI0IaeqiVd02aa0baaSqaaiaad6gaaeaacaaIOa GaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDaiaaiMcaaiaawUfa caGLDbaadaWcaaqaaiabe67a4bqaaiaadYgaaaGaey4kaSIaeqiVd0 2aa0baaSqaaiaad6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGc caaIOaGaamiDaiaaiMcacaaISaaaaiaaywW7caaMf8UaeqiTdqMaaG ypaiaadggacaaISaGaamOyaiaaiYcacaWGJbGaaGOlaaaa@8DAE@  (4.55)

Учитывая обозначения (3.1), представим функцию колебания Q n (2δ) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaaaa@3B94@  при l 1 xl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGSbWaaSbaaSqaaiaaig daaeqaaOGaeyizImQaamiEaiabgsMiJkaadYgaaaa@39E4@  в следующем виде:

Q n (2δ) (x,t)= k=1 n V k (2δ) (t)sin πk l 1 x+ 1 2 1 x l 1 μ n (2δ) (t)+ 1+ x l 1 ν n (2δ) (t) , 8cm l 1 x0,0tT, k=1 n V k (2δ) (t)sin πk l x+ 1 2 1 x l μ n (2δ) (t)+ 1+ x l ν n (2δ) (t) , 8cm0xl,0tT. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaa0baaSqaaiaad6gaaeaaca aIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai2dadaGabaqaauaabaqaeiaaaaqaaaqaamaaqahabe WcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaamOv amaaDaaaleaacaWGRbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaO GaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaH apaCcaWGRbaabaGaamiBamaaBaaaleaacaaIXaaabeaaaaGccaWG4b Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaWadaqaamaabmaa baGaaGymaiabgkHiTmaalaaabaGaamiEaaqaaiaadYgadaWgaaWcba GaaGymaaqabaaaaaGccaGLOaGaayzkaaGaeqiVd02aa0baaSqaaiaa d6gaaeaacaaIOaGaaGOmaiabes7aKjaaiMcaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadIha aeaacaWGSbWaaSbaaSqaaiaaigdaaeqaaaaaaOGaayjkaiaawMcaai abe27aUnaaDaaaleaacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaI PaaaaOGaaGikaiaadshacaaIPaaacaGLBbGaayzxaaGaaGilaaqaaa qaaiaaywW7caaI4aGaam4yaiaad2gacqGHsislcaWGSbWaaSbaaSqa aiaaigdaaeqaaOGaeyizImQaamiEaiabgsMiJkaaicdacaaISaGaaG zbVlaaicdacqGHKjYOcaWG0bGaeyizImQaamivaiaaiYcaaeaaaeaa daaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIu oakiaadAfadaqhaaWcbaGaam4AaaqaaiaaiIcacaaIYaGaeqiTdqMa aGykaaaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBamaala aabaGaeqiWdaNaam4AaaqaaiaadYgaaaGaamiEaiabgUcaRmaalaaa baGaaGymaaqaaiaaikdaaaWaamWaaeaadaqadaqaaiaaigdacqGHsi sldaWcaaqaaiaadIhaaeaacaWGSbaaaaGaayjkaiaawMcaaiabeY7a TnaaDaaaleaacaWGUbaabaGaaGikaiaaikdacqaH0oazcaaIPaaaaO GaaGikaiaadshacaaIPaGaey4kaSYaaeWaaeaacaaIXaGaey4kaSYa aSaaaeaacaWG4baabaGaamiBaaaaaiaawIcacaGLPaaacqaH9oGBda qhaaWcbaGaamOBaaqaaiaaiIcacaaIYaGaeqiTdqMaaGykaaaakiaa iIcacaWG0bGaaGykaaGaay5waiaaw2faaiaaiYcaaeaaaeaacaaMf8 UaaGioaiaadogacaWGTbGaeyOeI0IaeyOeI0IaaGimaiabgsMiJkaa dIhacqGHKjYOcaWGSbGaaGilaiaaywW7caaIWaGaeyizImQaamiDai abgsMiJkaadsfacaaIUaaaaaGaay5Eaaaaaa@D9C5@  (4.56)

4.3. О дальнейшем построении решения задач оптимального граничного управления колебаниями. В ходе построения решения задач оптимального граничного управления колебаниями, для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник в случае управления смещением левого конца при закрепленном правом конце получено интегральные соотношения в виде (4.35), а в случае управления смещением двух концов MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  интегральные соотношения (4.51). Ясно, что левая часть соотношения (4.35) или (4.51) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  линейная операция, порожденная функцией управления на промежутке времени [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@ , а функционалы (2.11) или (2.12) являются нормой соответствующего нормированного пространства L 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaa aa@3376@ .

Таким образом, задачу оптимального управления с интегральными условиями (4.35) при функционале (2.11) или с интегральными условиями (4.51) при функционале (2.12) можно рассматривать как проблему моментов, а решение этих задач следует строить с помощью алгоритма решения проблемы моментов (см. [10]).

5. Заключение. Используя методы разделения переменных, теории управления и оптимального управления конечномерными системами с многоточечными промежуточными условиями, предложен конструктивный подход построения граничного управления и оптимального управления неоднородной колебательной системой с заданными значениями функции колебания и производной функции колебания в разные промежуточные моменты времени. Предложенный для одномерного неоднородного волнового уравнения подход можно распространить на другие одномерные и неодномерные колебательные системы.

×

Об авторах

Ваня Рафаелович Барсегян

Институт механики НАН Армении; Ереванский государственный университет

Автор, ответственный за переписку.
Email: barseghyan@sci.am
Армения, Ереван; Ереван

Список литературы

  1. Барсегян В. Р. Оптимальное граничное управление смещением на двух концах при колебании стержня, состоящего из двух участков разной плотности и упругости// Диффер. уравн. процессы управл. —2022. —№ 2. —С . 41–54.
  2. Барсегян В. Р. Оптимальное граничное управление распределенной неоднородной колебательной системой с заданными состояниями в промежуточные моменты времени//Ж. вычисл. мат. мат. физ. —2023. — 63, № 1. —С . 74–84.
  3. Бутковский А. Г. методы управления системами с распределенными параметрами. —М .: Наука, 1975.
  4. Егоров А. И., Знаменская Л. Н. Об управляемости упругих колебаний последовательно соединенных объектов с распределенными параметрами// Тр. Ин-та мат. мех. УрО РАН. —2011. — 17, № 1. —С. 85–92.
  5. Зверева М. Б., Найдюк Ф. О., Залукаева Ж. О. Моделирование колебаний сингулярной струны//Вестн. Воронеж. гос. ун-та. Сер. Физ. Мат. —2014. —№ 2. —С . 111–119.
  6. Зубов В. И. Лекции по теории управления. —М.: Наука, 1975.
  7. Ильин В. А. Оптимизация граничного управления колебаниями стержня, состоящего из двух разнородных участков// Докл. РАН. —2011. — 440, № 2. —С . 159–163.
  8. Ильин В. А. О приведении в произвольно заданное состояние колебаний первоначально покоящегося стержня, состоящего из двух разнородных участков// Докл. РАН. —2010. — 435, № 6. —С . 732–735.
  9. Корзюк В. И., Козловская И. С. Двухточечная граничная задача для уравнения колебания струны с заданной скоростью в некоторый момент времени. II// Тр. Ин-та мат. НАН Беларуси. —2011. — 19, № 1. —С . 62–70.
  10. Красовский Н. Н. Теория управления движением. —М .: Наука, 1968.
  11. Кулешов А. А. Смешанные задачи для уравнения продольных колебаний неоднородного стержня и уравнения поперечных колебаний неоднородной струны, состоящих из двух участков разной плотности и упругости// Докл. РАН. —2012. — 442, № 5. —С . 594–597.
  12. Львова Н. Н. Оптимальное управление некоторой распределенной неоднородной колебательной системой// Автомат. телемех. —1973. — № 10. —С . 22–32.
  13. Провоторов В. В. Построение граничных управлений в задаче о гашении колебаний системы струн//Вестн. Санкт-Петерб. ун-та. Прикл. мат. Информ. Процессы управл. —2012. — 1. —С . 62–71.
  14. Рогожников А. М. Исследование смешанной задачи, описывающей процесс колебаний стержня, состоящего из нескольких участков с произвольными длинами// Докл. РАН. —2012. — 444. —С . 488–491.
  15. Amara J. Ben, Beldi E. Boundary controllability of two vibrating strings connected by a point mass with variable coefficients// SIAM J. Control Optim. — 2019. — 57, № 5. — P. 3360–3387.
  16. Amara J. Ben, Bouzidi H. Null boundary controllability of a one-dimensional heat equation with an internal point mass and variable coefficients// J. Math. Phys. — 2018. — 59, № 1. — P. 1–22.
  17. Barseghyan V. R. Control problem of string vibrations with inseparable multipoint conditions at intermediate points in time// Mech. Solids. — 2019. — 54, № 8. — P. 1216–1226.
  18. Barseghyan V. R. The problem of boundary control of displacement at two ends by the process of oscillation of a rod consisting of two sections of different density and elasticity// Mech. Solids. — 2023. — 58, № 2.— P. 483–491.
  19. Barseghyan V. R. On the controllability and observability of linear dynamic systems with variable structure//Proc. Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy’s Conference) (Moscow, June 1-3, 2016), 2016. — P. 1–3.
  20. Barseghyan V. R., Barseghyan T. V. On an approach to the problems of control of dynamic system with nonseparated multipoint intermediate conditions// Automat. Remote Control. — 2015. — 76, № 4. —P. 549–559.
  21. Barseghyan V., Solodusha S. On the optimal control problem for vibrations of the rod/string consisting of two non-homogeneous sections with the condition at an intermediate iime// Mathematics. — 2022. — 10, № 23. — P. 4444.
  22. Barseghyan V., Solodusha S. Control of string vibrations by displacement of one end with the other end fixed, given the deflection form at an intermediate moment of time// Axioms. — 2022.— 11, №4. — P. 157.
  23. Barseghyan V., Solodusha S. Optimal boundary control of string vibrations with given shape of deflection at a certain moment of time// Lect. Notes Comp. Sci. — 2021. — 12755. — P. 299–313.
  24. Barseghyan V., Solodusha S. On one problem in optimal boundary control for string vibrations with a given velocity of points at an intermediate moment of time// Proc. International Russian Automation Conference (RusAutoCon) (Sochi, September 5-11, 2021). — Sochi, 2021. — P. 343–349.
  25. Barseghyan V. R., Solodusha S. V. On one boundary control problem of string vibrations with given velocity of points at an intermediate moment of time// J. Phys. Conf. Ser. — 2021.
  26. Mercier D., Regnier V. Boundary controllability of a chain of serially connected Euler–Bernoulli beams with interior masses// Collect. Math. — 2009. — 60, № 3. — P. 307–334.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Барсегян В.Р., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).