Классическое решение третьей смешанной задачи для телеграфного уравнения с нелинейным потенциалом

Обложка

Цитировать

Полный текст

Аннотация

Для телеграфного уравнения с нелинейным потенциалом, заданного в первом квадранте, рассматривается смешанная задача, в которой на пространственной полуоси задаются условия Коши, а на временной полуоси — условие третьего рода (условие Робина). Решение строится методом характеристик в неявном аналитическом виде как решение некоторых интегральных уравнений. Проводится исследование разрешимости этих уравнений, а также зависимости от начальных данных и гладкости их решений. Для рассматриваемой задачи доказывается единственность решения и устанавливаются условия, при выполнении которых существует её классическое решение. При невыполнении условий согласования строится задача с условиями сопряжения, а при недостаточно гладких данных — слабое решение.

 

Полный текст

1. Введение. Строго говоря, все сплошные среды описываются нелинейными уравнениями. Выбор для описания среды линейных или нелинейных уравнений зависит от роли, которую играют нелинейные эффекты, и определяется конкретной физической ситуацией. Например, при описании распространения лазерных импульсов необходимо учитывать зависимость показателя преломления среды от интенсивности электромагнитного поля.

Линеаризация нелинейных уравнений математической физики не всегда ведёт к содержательному результату. Может оказаться, что линеаризация имеет смысл, но линейные уравнения сохраняют применимость лишь конечное время. Даже если линеаризация нелинейных уравнений математической физики возможна, с точки зрения физики исключительно важны <<существенно нелинейные>> решения, качественно отличающиеся от решений линейных уравнений. Такими могут быть стационарные решения солитонного типа, локализованные в одном или нескольких измерениях, или решения типа волновых коллапсов, описывающие самопроизвольную концентрацию энергии в небольших областях пространства (см. [12]).

Уравнения гиперболического типа занимают особое место среди нелинейных уравнений с частными производеыми второго порядка. <<Потеря одной производной>> при обращении гиперболического оператора второго порядка приводит к принципиальным трудностям при исследовании нелинейных гиперболических уравнений. Даже для создания локальной теории нелинейных гиперболических уравнений и систем потребовалось развитие специальной теории о неявных функциях в нелинейном функциональном анализе, так как классическая теорема о неявной функции из функционального анализа оказалась здесь неприменимой.

Для (существенно) квазилинейных гиперболических уравнений второго порядка с числом независимых переменных больше двух вопрос о разрешимости в целом не исследован даже для задачи Коши.

Разрешимость в некоторых классах функций в целом задачи Коши, а также некоторых краевых задач установлена для шикорого класса слабо нелинейных гиперболических уравнений вида

( t 2 Δ)u(t,x)=f(t,x,u(t,x), t u(t,x),u(t,x)),t>0,xΩ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOaIy7aa0baaSqaaiaads haaeaacaaIYaaaaOGaeyOeI0IaeuiLdqKaaGykaiaadwhacaaIOaGa amiDaiaaiYcaieqacaWF4bGaaGykaiaai2dacaWGMbGaaGikaiaads hacaaISaGaa8hEaiaaiYcacaWG1bGaaGikaiaadshacaaISaGaa8hE aiaaiMcacaaISaGaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaamyDai aaiIcacaWG0bGaaGilaiaa=HhacaaIPaGaaGilaiabgEGirlaadwha caaIOaGaamiDaiaaiYcacaWF4bGaaGykaiaaiMcacaaISaGaaGzbVl aadshacaaI+aGaaGimaiaaiYcacaaMf8UaaCiEaiabgIGiolabfM6a xjabgAOinprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacea Gae4xhHi1aaWbaaSqabeaacaWGUbaaaaaa@71D6@

(см. [10]). Но в отличие от первой и второй смешанных задач, третьей смешанной задаче посвящено не так много работ, даже в случае достаточно хорошо изученного линейного волнового уравнения (см. [2, 18, 19, 24]), не говоря уже про нелинейные уравнения. Однако в ряде работ, посвященных третьей смешанной задаче для нелинейного уравнения (см., например [16, 20, 21, 23, 25]), строятся слабые решения, а не классические. Отметим работы [21] и [25], в первой из которых изучается задача управления для классического решения, а во второй MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  третья смешанная задача в классе бесконечно дифференцируемых начальных данных.

Отметим также, что нелинейные уравнения трудно изучать: почти не существует общих методов, работающих для всех таких уравнений, и обычно каждое отдельное уравнение приходится изучать как отдельную задачу.

В данной статье, используя способ, предложенный ранее в [5, 6], и представляющий собой сочетание метода характеристик с методом последовательных приближений, мы строим решение третьей смешанной задачи для неоднородного гиперболического нелинейного уравнения второго порядка, доказываем единственность и непрерывную зависимость решения от начальных данных, а также выводим условия гладкости данных задачи и необходимые и достаточные условия согласования, при которых решение смешанной задачи будет классическим. При невыполнении однородных условий согласования строится задача с условиями сопряжения на характеристике, причем одно из которых, в отличие от первой смешанной задачи (см. [5, 6]), содержит некоторую произвольную постоянную, обеспечивающую наперед заданный разрыв решения. Это означает, что одной третьей смешанной задаче в обычной формулировке будет соответствовать бесконечное множество третьих смешанных задач с условиями сопряжения на характеристике. Но в каждом конкретном случае будет существовать единственное классическое решение. Если же в задаче присутствуют недостаточно гладкие функции, то строится обобщенное слабое решение. В случае нелипшицевой нелинейности отыскивается локальное решение и доказывается его единственность.

2. Постановка задачи. В области Q=(0,)×(0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGypaiaaiIcacaaIWaGaaG ilaiabg6HiLkaaiMcacqGHxdaTcaaIOaGaaGimaiaaiYcacqGHEisP caaIPaaaaa@3DFD@  двух независимых переменных (t,x) Q ¯ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiabgIGiopaanaaabaGaamyuaaaacqGHckcZtuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaG Omaaaaaaa@45D5@  рассмотрим одномерное нелинейное уравнение

u(t,x)f(t,x,u(t,x))=F(t,x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFHw YvcaWG1bGaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHsislcaWG MbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG1bGaaGikaiaads hacaaISaGaamiEaiaaiMcacaaIPaGaaGypaiaadAeacaaIOaGaamiD aiaaiYcacaWG4bGaaGykaiaaiYcaaaa@4F08@  (1)

где = t 2 a 2 x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFHw YvcaaI9aGaeyOaIy7aa0baaSqaaiaadshaaeaacaaIYaaaaOGaeyOe I0IaamyyamaaCaaaleqabaGaaGOmaaaakiabgkGi2oaaDaaaleaaca WG4baabaGaaGOmaaaaaaa@4225@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  оператор Д’Аламбера ( a>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGOpaiaaicdaaaa@3425@  для определённости), F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функция, заданная на множестве Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , а f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функция, заданная на множестве [0,)×[0,)× MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHEisPca aIPaGaey41aqRaaG4waiaaicdacaaISaGaeyOhIuQaaGykaiabgEna 0orr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi faaa@4994@  и удовлетворяющая условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори по третьей переменной, т.е. существует измеримая функция k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@ , заданная на множестве Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , что

|f(t,x, z 1 )f(t,x, z 2 )|k(t,x)| z 1 z 2 | MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiMca cqGHsislcaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHKjYOcaWGRbGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamOEamaaBaaale aacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaI8baaaa@518B@  (2)

и такая, что ее вторая степень локально суммируема. К уравнению (1) присоединяются начальные условия

u(0,x)=φ(x), t u(0,x)=ψ(x),x[0,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iEaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7cqGHciITdaWgaaWcbaGaamiDaaqabaGccaWG1bGaaGikaiaaic dacaaISaGaamiEaiaaiMcacaaI9aGaeqiYdKNaaGikaiaadIhacaaI PaGaaGilaiaaywW7caWG4bGaeyicI4SaaG4waiaaicdacaaISaGaey OhIuQaaGykaiaaiYcaaaa@53FF@  (3)

и граничное условие

x u(t,0)+β(t)u(t,0)=μ(t),t[0,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaWgaaWcbaGaamiEaaqaba GccaWG1bGaaGikaiaadshacaaISaGaaGimaiaaiMcacqGHRaWkcqaH YoGycaaIOaGaamiDaiaaiMcacaWG1bGaaGikaiaadshacaaISaGaaG imaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGaaGilaiaa ywW7caWG0bGaeyicI4SaaG4waiaaicdacaaISaGaeyOhIuQaaGykai aaiYcaaaa@5192@  (4)

где φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  и β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функции, заданные на полуоси [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHEisPca aIPaaaaa@3636@ .

3. Интегральное уравнение. Область Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  характеристикой xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@  разделим на две подобласти Q (j) ={(t,x)|( 1) j (atx)>0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaGccaaI9aGaaG4EaiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaaGiFaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba GaamOAaaaakiaaiIcacaWGHbGaamiDaiabgkHiTiaadIhacaaIPaGa aGOpaiaaicdacaaI9baaaa@47EB@ , j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ .

[x = 0.5cm, y = 0.5cm] [->,line width=1.16pt] (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (0,6) node[anchor=north west] t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ ; [->,line width=1.16pt] (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (6,0) node[anchor=north west] x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ ; [line width=1.16pt,dash pattern=on 7.5pt off 6pt] (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (6,6); (2.6,2.2) node[anchor=north west] Q (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34E0@ ; (1.4,5.5) node[anchor=north west] Q (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34E1@ ; (-0.6,0.0) node[anchor=north west] O MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbaaaa@3291@ ; [<-,line width=1.16pt,dotted] (4,4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (7.2,4.0) node[anchor=west] xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ ;

Figure 1: Разделение области Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  характеристикой xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@  на две подобласти Q (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34E0@  и Q (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34E1@ .

В замыкании Q (j) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaWGQbGaaGykaaaaaaaaaa@3525@  каждой из подобластей Q (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3514@  рассмотрим интегральные уравнения

u (j) (t,x)= g (1,j) (xat)+ g (2) (x+at) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaai2da caWGNbWaaWbaaSqabeaacaaIOaGaaGymaiaaiYcacaWGQbGaaGykaa aakiaaiIcacaWG4bGaeyOeI0IaamyyaiaadshacaaIPaGaey4kaSIa am4zamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGikaiaadI hacqGHRaWkcaWGHbGaamiDaiaaiMcacqGHsislaaa@4E66@

1 4 a 2 0 xat dy (1) j (atx) x+at [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (j) zy 2a , z+y 2 ]dz, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4bGaeyOeI0Iaamyyaiaadshaa0Gaey4kIipakiaads gacaWG5bWaa8qCaeqaleaacaaIOaGaeyOeI0IaaGymaiaaiMcadaah aaqabeaacaWGQbaaaiaaiIcacaWGHbGaamiDaiabgkHiTiaadIhaca aIPaaabaGaamiEaiabgUcaRiaadggacaWG0baaniabgUIiYdGccaaI BbGaamOramaabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaai aaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baa baGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaaeaada WcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGil amaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcaca WG1bWaaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaGcdaqadaqaamaa laaabaGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISa WaaSaaaeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGa ayzkaaaacaGLOaGaayzkaaGaaGyxaiaadsgacaWG6bGaaGilaaaa@7937@

(t,x) Q (j) ¯ ,j=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiabgIGiopaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaadQga caaIPaaaaaaakiaaiYcacaWGQbGaaGypaiaaigdacaaISaGaaGOmai aaiYcaaaa@4013@  (5)

где g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@ , g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  и g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые функции, первые две из которых заданы на множестве [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHEisPca aIPaaaaa@3636@ , а последняя MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  на (,0] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aaicdacaaIDbaaaa@3724@ .

Определим на замыкании Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@  области Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  функцию u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  как совпадающую на замыкании Q (j) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaWGQbGaaGykaaaaaaaaaa@3525@  области Q (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3514@  с решением u (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3538@  интегрального уравнения (5):

u(t,x)= u (j) (t,x),(t,x) Q (j) ¯ ,j=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaI9aGaamyDamaaCaaaleqabaGaaGikaiaadQgacaaI PaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGaaGzbVl aaiIcacaWG0bGaaGilaiaadIhacaaIPaGaeyicI48aa0aaaeaacaWG rbWaaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaaaaOGaaGilaiaayw W7caWGQbGaaGypaiaaigdacaaISaGaaGOmaiaai6caaaa@514F@  (6)

Лемма 3.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ . Функция u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@  принадлежит классу C 2 ( Q (1) ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaaigdacaaI PaaaaaaakiaaiMcaaaa@381B@  и удовлетворяет уравнению (1) в Q (1) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaaIXaGaaGykaaaaaaaaaa@34F1@  тогда и только тогда, когда она является непрерывным решением уравнения (5) при j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdaaaa@342E@ , функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  в котором из класса C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@ .

Лемма 3.2. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ . Функция u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  принадлежит классу C 2 ( Q (2) ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaaikdacaaI PaaaaaaakiaaiMcaaaa@381C@  и удовлетворяет уравнению (1) в Q (2) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaaIYaGaaGykaaaaaaaaaa@34F2@  тогда и только тогда, когда она является непрерывным решением уравнения (5), j=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaikdaaaa@342F@ , функции g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  в котором из классов C 2 ((,0]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiIcacqGHsislcqGHEisPcaaISaGaaGimaiaai2facaaI Paaaaa@3A44@  и C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@  соответственно.

Теорема 3.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ . Функция u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  принадлежит классу C 2 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuaaaacaaIPaaaaa@35C4@  и удовлетворят уравнению (1) тогда и только тогда, когда она для каждого j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@  является непрерывным решением уравнения (5), функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@ , g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  в котором из классов C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@ , C 2 ((,0]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiIcacqGHsislcqGHEisPcaaISaGaaGimaiaai2facaaI Paaaaa@3A44@  и C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@  соответственно и выполняются условия согласования

g (1,1) (0) g (1,2) (0)=0,D g (1,1) (0)D g (1,2) (0)=0, D 2 g (1,1) (0) D 2 g (1,2) (0)+ 1 a 2 F(0,0)+f(0,0, g (1,1) (0)+ g (2) (0)) =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaam4zamaaCaaale qabaGaaGikaiaaigdacaaISaGaaGymaiaaiMcaaaGccaaIOaGaaGim aiaaiMcacqGHsislcaWGNbWaaWbaaSqabeaacaaIOaGaaGymaiaaiY cacaaIYaGaaGykaaaakiaaiIcacaaIWaGaaGykaiaai2dacaaIWaGa aGilaiaaywW7caWGebGaam4zamaaCaaaleqabaGaaGikaiaaigdaca aISaGaaGymaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacqGHsislcaWG ebGaam4zamaaCaaaleqabaGaaGikaiaaigdacaaISaGaaGOmaiaaiM caaaGccaaIOaGaaGimaiaaiMcacaaI9aGaaGimaiaaiYcaaeaacaWG ebWaaWbaaSqabeaacaaIYaaaaOGaam4zamaaCaaaleqabaGaaGikai aaigdacaaISaGaaGymaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacqGH sislcaWGebWaaWbaaSqabeaacaaIYaaaaOGaam4zamaaCaaaleqaba GaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaGccaaIOaGaaGimaiaa iMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGHbWaaWbaaSqabeaaca aIYaaaaaaakmaabmaabaGaamOraiaaiIcacaaIWaGaaGilaiaaicda caaIPaGaey4kaSIaamOzaiaaiIcacaaIWaGaaGilaiaaicdacaaISa Gaam4zamaaCaaaleqabaGaaGikaiaaigdacaaISaGaaGymaiaaiMca aaGccaaIOaGaaGimaiaaiMcacqGHRaWkcaWGNbWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacaaIPaaacaGL OaGaayzkaaGaaGypaiaaicdacaaIUaaaaaaa@8758@  (7)

Доказательство лемм 3.1, 3.2 и теоремы 3.1 представлено в [6].

Теорема 3.2. Пусть F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , fC( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaaaaa@440E@ , функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2), и заданы непрерывные функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@ , g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@ . Тогда решения уравнений (5) существуют, единственны и непрерывно зависят от исходных данных.

Замечание 3.1. В теореме 3.1 вместо условия fC( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaaaaa@440E@  можно потребовать выполнение трех условий:

(i) функция f 1 : Q ¯ (t,x)f(t,x,z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaigdaaeqaaO GaaiOoamaanaaabaGaamyuaaaatuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGabaiab=TGiLlaaiIcacaWG0bGaaGilaiaadIhaca aIPaGaeSOPHeMaamOzaiaaiIcacaWG0bGaaGilaiaadIhacaaISaGa amOEaiaaiMcacqGHiiIZcqWFDeIuaaa@4F8B@  измерима при любом фиксированном z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF7@ ;

(ii) функция f 2 :zf(t,x,z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaikdaaeqaaO GaaiOoamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGa e8xhHiLae83cIuUaamOEaiablAAiHjaadAgacaaIOaGaamiDaiaaiY cacaWG4bGaaGilaiaadQhacaaIPaGaeyicI4Sae8xhHifaaa@4CA8@  непрерывна на множестве MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risbaa@3C74@  для при почти любой фиксированной точки (t,x) Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiabgIGiopaanaaabaGaamyuaaaaaaa@3839@ ;

(iii) верно неравенство |f(t,x,z)|α(t,x)+β|z| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEaiaaiMcacaaI8bGaeyizImQaeqySdeMa aGikaiaadshacaaISaGaamiEaiaaiMcacqGHRaWkcqaHYoGycaaI8b GaamOEaiaaiYhaaaa@476D@ , где α L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaWaa0aaaeaa caWGrbaaaiaaiMcaaaa@3BBC@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risbaa@3F99@ .

Доказательства теоремы 3.2 и замечания 3.1 представлены в [5].

4. Построение решения смешанной задачи. Функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  определяем из условий Коши (3). Подставляя соотношение (5) при j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdaaaa@342E@  в условия (3) получим систему уравнений относительно функций g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@ :

u (1) (0,x)=φ(x)= g (1,1) (x)+ g (2) (x),x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIOaGaaGimaiaaiYcacaWG4bGaaGykaiaai2da cqaHgpGAcaaIOaGaamiEaiaaiMcacaaI9aGaam4zamaaCaaaleqaba GaaGikaiaaigdacaaISaGaaGymaiaaiMcaaaGccaaIOaGaamiEaiaa iMcacqGHRaWkcaWGNbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaa GccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVlaadIhacqGHLjYScaaI WaGaaGilaaaa@52A2@

t u (1) (0,x)=ψ(x)=aD g (1,1) (x)+aD g (2) (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaWgaaWcbaGaamiDaaqaba GccaWG1bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIOaGa aGimaiaaiYcacaWG4bGaaGykaiaai2dacqaHipqEcaaIOaGaamiEai aaiMcacaaI9aGaeyOeI0IaamyyaiaadseacaWGNbWaaWbaaSqabeaa caaIOaGaaGymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaG ykaiabgUcaRiaadggacaWGebGaam4zamaaCaaaleqabaGaaGikaiaa ikdacaaIPaaaaOGaaGikaiaadIhacaaIPaGaeyOeI0caaa@5409@

1 2a 0 x [f xy 2a , x+y 2 , u (1) xy 2a , x+y 2 +F xy 2a , x+y 2 ]dy,x0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIi YdGccaaIBbGaamOzamaabmaabaWaaSaaaeaacaWG4bGaeyOeI0Iaam yEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadIhacqGHRaWk caWG5baabaGaaGOmaaaacaaISaGaamyDamaaCaaaleqabaGaaGikai aaigdacaaIPaaaaOWaaeWaaeaadaWcaaqaaiaadIhacqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamiEaiabgUcaRi aadMhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab gUcaRiaadAeadaqadaqaamaalaaabaGaamiEaiabgkHiTiaadMhaae aacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG4bGaey4kaSIaamyE aaqaaiaaikdaaaaacaGLOaGaayzkaaGaaGyxaiaadsgacaWG5bGaaG ilaiaaywW7caWG4bGaeyyzImRaaGimaiaai6caaaa@6993@

Проинтегрировав второе уравнение от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  до x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , получим

g (1,1) (x)+ g (2) (x)=φ(x),x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaGykaiabgUca RiaadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiIcaca WG4bGaaGykaiaai2dacqaHgpGAcaaIOaGaamiEaiaaiMcacaaISaGa aGzbVlaadIhacqGHLjYScaaIWaGaaGilaaaa@4AB8@

g (1,1) (x)+ g (2) (x)= 1 a 0 x ψ(z)dz+ 1 2 a 2 0 x dz 0 z [F zy 2a , z+y 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaWbaaSqabeaaca aIOaGaaGymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaGyk aiabgUcaRiaadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaaki aaiIcacaWG4bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaWGHbaa amaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabeI8a5j aaiIcacaWG6bGaaGykaiaadsgacaWG6bGaey4kaSYaaSaaaeaacaaI XaaabaGaaGOmaiaadggadaahaaWcbeqaaiaaikdaaaaaaOWaa8qCae qaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamizaiaadQhadaWd XbqabSqaaiaaicdaaeaacaWG6baaniabgUIiYdGccaaIBbGaamOram aabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikdacaWG HbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaGOmaa aaaiaawIcacaGLPaaacqGHRaWkaaa@689F@

+f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy+2C,x0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGMbWaaeWaaeaadaWcaa qaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaa laaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcacaWG1b WaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGcdaqadaqaamaalaaa baGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaS aaaeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGaayzk aaaacaGLOaGaayzkaaGaaGyxaiaadsgacaWG5bGaey4kaSIaaGOmai aadoeacaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGaaGOlaaaa@584A@

Отсюда

g (1,1) (x)= φ(x) 2 1 2a 0 x ψ(z)dzC MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaGykaiaai2da daWcaaqaaiabeA8aQjaaiIcacaWG4bGaaGykaaqaaiaaikdaaaGaey OeI0YaaSaaaeaacaaIXaaabaGaaGOmaiaadggaaaWaa8qCaeqaleaa caaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqiYdKNaaGikaiaadQhaca aIPaGaamizaiaadQhacqGHsislcaWGdbGaeyOeI0caaa@4EC6@

1 4 a 2 0 x dz 0 z [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy,x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4baaniabgUIiYdGccaWGKbGaamOEamaapehabeWcba GaaGimaaqaaiaadQhaa0Gaey4kIipakiaaiUfacaWGgbWaaeWaaeaa daWcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaG ilamaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaaGaayjk aiaawMcaaiabgUcaRiaadAgadaqadaqaamaalaaabaGaamOEaiabgk HiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6bGa ey4kaSIaamyEaaqaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaai aaiIcacaaIXaGaaGykaaaakmaabmaabaWaaSaaaeaacaWG6bGaeyOe I0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadQhacq GHRaWkcaWG5baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaacaaIDbGaamizaiaadMhacaaISaGaaGzbVlaadIhacqGHLjYSca aIWaGaaGilaaaa@70A7@

g (2) (x)= φ(x) 2 + 1 2a 0 x ψ(z)dz+C+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIOaGaamiEaiaaiMcacaaI9aWaaSaaaeaacqaH gpGAcaaIOaGaamiEaiaaiMcaaeaacaaIYaaaaiabgUcaRmaalaaaba GaaGymaaqaaiaaikdacaWGHbaaamaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaadsgaca WG6bGaey4kaSIaam4qaiabgUcaRaaa@4D35@

+ 1 4 a 2 0 x dz 0 z [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy,x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4baaniabgUIiYdGccaWGKbGaamOEamaapehabeWcba GaaGimaaqaaiaadQhaa0Gaey4kIipakiaaiUfacaWGgbWaaeWaaeaa daWcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaG ilamaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaaGaayjk aiaawMcaaiabgUcaRiaadAgadaqadaqaamaalaaabaGaamOEaiabgk HiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6bGa ey4kaSIaamyEaaqaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaai aaiIcacaaIXaGaaGykaaaakmaabmaabaWaaSaaaeaacaWG6bGaeyOe I0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadQhacq GHRaWkcaWG5baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaacaaIDbGaamizaiaadMhacaaISaGaaGzbVlaadIhacqGHLjYSca aIWaGaaGilaaaa@709C@  (8)

где C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbaaaa@3285@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольная константа из множества действительных чисел. Функцию g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  определяем из граничного условия (4). Подставляя соотношение (5) при j=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaikdaaaa@342F@  в условия (4) получим уравнение

1 2 a 2 0 at [f( aty 2a , at+y 2 , u (2) aty 2a , at+y 2 )+F aty 2a , at+y 2 ]dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqGHsislcaWGHbGaamiDaaqdcqGHRiI8aOGaaG4waiaadA gacaaIOaWaaSaaaeaacaWGHbGaamiDaiabgkHiTiaadMhaaeaacaaI YaGaamyyaaaacaaISaWaaSaaaeaacaWGHbGaamiDaiabgUcaRiaadM haaeaacaaIYaaaaiaaiYcacaWG1bWaaWbaaSqabeaacaaIOaGaaGOm aiaaiMcaaaGcdaqadaqaamaalaaabaGaamyyaiaadshacqGHsislca WG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyyaiaadsha cqGHRaWkcaWG5baabaGaaGOmaaaaaiaawIcacaGLPaaacaaIPaGaey 4kaSIaamOramaabmaabaWaaSaaaeaacaWGHbGaamiDaiabgkHiTiaa dMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWGHbGaamiDai abgUcaRiaadMhaaeaacaaIYaaaaaGaayjkaiaawMcaaiaai2facaaM i8UaamizaiaadMhacaaMi8Uaey4kaScaaa@6F09@

+β(t) g (1,2) (at)+ g (2) (at) +D g (1,2) (at)+D g (2) (at)=μ(t),t0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaHYoGycaaIOaGaamiDai aaiMcadaqadaqaaiaadEgadaahaaWcbeqaaiaaiIcacaaIXaGaaGil aiaaikdacaaIPaaaaOGaaGikaiabgkHiTiaadggacaWG0bGaaGykai abgUcaRiaadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaa iIcacaWGHbGaamiDaiaaiMcaaiaawIcacaGLPaaacqGHRaWkcaWGeb Gaam4zamaaCaaaleqabaGaaGikaiaaigdacaaISaGaaGOmaiaaiMca aaGccaaIOaGaeyOeI0IaamyyaiaadshacaaIPaGaey4kaSIaamirai aadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiIcacaWG HbGaamiDaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGaaG ilaiaaywW7caWG0bGaeyyzImRaaGimaiaaiYcaaaa@6689@

относительно функции g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@ . Сделав замену t=z/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiabgkHiTiaadQhaca aIVaGaamyyaaaa@3708@ , получим обыкновенное дифференциальное уравнение для отыскания функции g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  

1 2 a 2 0 z [f( yz 2a , yz 2 , u (2) yz 2a , yz 2 )+F yz 2a , yz 2 ]dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG6baaniabgUIiYdGccaaIBbGaamOzaiaaiIcadaWcaa qaaiabgkHiTiaadMhacqGHsislcaWG6baabaGaaGOmaiaadggaaaGa aGilamaalaaabaGaamyEaiabgkHiTiaadQhaaeaacaaIYaaaaiaaiY cacaWG1bWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGcdaqadaqa amaalaaabaGaeyOeI0IaamyEaiabgkHiTiaadQhaaeaacaaIYaGaam yyaaaacaaISaWaaSaaaeaacaWG5bGaeyOeI0IaamOEaaqaaiaaikda aaaacaGLOaGaayzkaaGaaGykaiabgUcaRiaadAeadaqadaqaamaala aabaGaeyOeI0IaamyEaiabgkHiTiaadQhaaeaacaaIYaGaamyyaaaa caaISaWaaSaaaeaacaWG5bGaeyOeI0IaamOEaaqaaiaaikdaaaaaca GLOaGaayzkaaGaaGyxaiaayIW7caWGKbGaamyEaiabgUcaRaaa@6953@

+β z a g (1,2) (z)+ g (2) (z) +D g (1,2) (z)+D g (2) (z)=μ z a ,z0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaamOEaaqaaiaadggaaaaacaGLOaGaayzkaaWaaeWa aeaacaWGNbWaaWbaaSqabeaacaaIOaGaaGymaiaaiYcacaaIYaGaaG ykaaaakiaaiIcacaWG6bGaaGykaiabgUcaRiaadEgadaahaaWcbeqa aiaaiIcacaaIYaGaaGykaaaakiaaiIcacqGHsislcaWG6bGaaGykaa GaayjkaiaawMcaaiabgUcaRiaadseacaWGNbWaaWbaaSqabeaacaaI OaGaaGymaiaaiYcacaaIYaGaaGykaaaakiaaiIcacaWG6bGaaGykai abgUcaRiaadseacaWGNbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMca aaGccaaIOaGaeyOeI0IaamOEaiaaiMcacaaI9aGaeqiVd02aaeWaae aacqGHsisldaWcaaqaaiaadQhaaeaacaWGHbaaaaGaayjkaiaawMca aiaaiYcacaaMf8UaamOEaiabgsMiJkaaicdacaaIUaaaaa@671A@  (9)

Уравнения (9) относительно g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  вместе с первым условием (7) рассматриваем как задачу Коши для дифференциального уравнения первого порядка. Решая эту задачу, получим:

g (1,2) (x)=exp 0 x β ξ a dξ ( φ(0) 2 C+ 0 x exp 0 ξ β θ a dθ {μ ξ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaakiaaiIcacaWG4bGaaGykaiaai2da ciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaapehabeWcbaGaaG imaaqaaiaadIhaa0Gaey4kIipakiabek7aInaabmaabaGaeyOeI0Ya aSaaaeaacqaH+oaEaeaacaWGHbaaaaGaayjkaiaawMcaaiaadsgacq aH+oaEaiaawIcacaGLPaaacaaIOaWaaSaaaeaacqaHgpGAcaaIOaGa aGimaiaaiMcaaeaacaaIYaaaaiabgkHiTiaadoeacqGHRaWkdaWdXb qabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGcciGGLbGaaiiEaiaa cchadaqadaqaamaapehabeWcbaGaaGimaaqaaiabe67a4bqdcqGHRi I8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaa dggaaaaacaGLOaGaayzkaaGaamizaiabeI7aXbGaayjkaiaawMcaai aaiUhacqaH8oqBdaqadaqaamaalaaabaGaeqOVdGhabaGaamyyaaaa aiaawIcacaGLPaaacqGHsislaaa@7350@

1 4 a 2 0 ξ f ξy 2a , yξ 2 , u (1) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqGHsislcqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzam aabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4b qaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIXaGa aGykaaaakmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislca WG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHi Tiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4kaSIaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGH sislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEai abgkHiTiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaamizaiaadMhacqGHsislaaa@6E61@

β ξ a (C+ 1 4 a 2 0 ξ dz 0 z f zy 2a , y+z 2 , u (1) zy 2a , y+z 2 +F zy 2a , y+z 2 dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaeqOVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaaI OaGaam4qaiabgUcaRmaalaaabaGaaGymaaqaaiaaisdacaWGHbWaaW baaSqabeaacaaIYaaaaaaakmaapehabeWcbaGaaGimaaqaaiabgkHi Tiabe67a4bqdcqGHRiI8aOGaamizaiaadQhadaWdXbqabSqaaiaaic daaeaacaWG6baaniabgUIiYdGcdaWadaqaaiaadAgadaqadaqaamaa laaabaGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISa WaaSaaaeaacaWG5bGaey4kaSIaamOEaaqaaiaaikdaaaGaaGilaiaa dwhadaahaaWcbeqaaiaaiIcacaaIXaGaaGykaaaakmaabmaabaWaaS aaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYca daWcaaqaaiaadMhacqGHRaWkcaWG6baabaGaaGOmaaaaaiaawIcaca GLPaaaaiaawIcacaGLPaaacqGHRaWkcaWGgbWaaeWaaeaadaWcaaqa aiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaala aabaGaamyEaiabgUcaRiaadQhaaeaacaaIYaaaaaGaayjkaiaawMca aaGaay5waiaaw2faaiaadsgacaWG5bGaey4kaScaaa@7617@

+ 1 2a 0 ξ ψ(z)dz+ φ(ξ) 2 ) ψ(ξ) 2a φ (ξ) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacqGHsislcqaH+oaE a0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaayIW7caWGKb GaamOEaiabgUcaRmaalaaabaGaeqOXdOMaaGikaiabgkHiTiabe67a 4jaaiMcaaeaacaaIYaaaaiaaiMcacqGHsisldaWcaaqaaiabeI8a5j aaiIcacqGHsislcqaH+oaEcaaIPaaabaGaaGOmaiaadggaaaGaeyOe I0YaaSaaaeaacuaHgpGAgaqbaiaaiIcacqGHsislcqaH+oaEcaaIPa aabaGaaGOmaaaacqGHRaWkaaa@5BC3@

+ 1 2 a 2 0 ξ f ξy 2a , yξ 2 , u (2) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy}dξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzamaabmaaba WaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGaaGOmaiaa dggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4bqaaiaaik daaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaa kmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baaba GaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a 4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaS IaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTi abe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa amizaiaadMhacaaI9bGaamizaiabe67a4jaaiMcacaaIUaaaaa@7199@

Заметим, что, поскольку,

exp( 0 x β ξ a dξ) C 0 x Cβ ξ a exp( 0 ξ β θ a dθ)dξ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchacaaIOaGaey OeI0Yaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqOS di2aaeWaaeaacqGHsisldaWcaaqaaiabe67a4bqaaiaadggaaaaaca GLOaGaayzkaaGaamizaiabe67a4jaaiMcadaqadaqaaiabgkHiTiaa doeacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYd GccaWGdbGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabe67a4bqa aiaadggaaaaacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbGaaGikam aapehabeWcbaGaaGimaaqaaiabe67a4bqdcqGHRiI8aOGaeqOSdi2a aeWaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaadggaaaaacaGLOa GaayzkaaGaamizaiabeI7aXjaaiMcacaWGKbGaeqOVdGhacaGLOaGa ayzkaaGaaGypaaaa@6A85@

=Cexp( 0 x β ξ a dξ) 1+ 0 x ξ exp 0 ξ β θ a dθ dξ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Iaam4qaiGacwgaca GG4bGaaiiCaiaaiIcacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG 4baaniabgUIiYdGccqaHYoGydaqadaqaaiabgkHiTmaalaaabaGaeq OVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaWGKbGaeqOVdGNaaGyk amaabmaabaGaaGymaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadI haa0Gaey4kIipakmaalaaabaGaeyOaIylabaGaeyOaIyRaeqOVdGha amaadmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaai aaicdaaeaacqaH+oaEa0Gaey4kIipakiabek7aInaabmaabaGaeyOe I0YaaSaaaeaacqaH4oqCaeaacaWGHbaaaaGaayjkaiaawMcaaiaads gacqaH4oqCaiaawIcacaGLPaaaaiaawUfacaGLDbaacaWGKbGaeqOV dGhacaGLOaGaayzkaaGaaGypaaaa@6B19@

=Cexp 0 x β ξ a dξ 1+exp 0 x β θ a dθ 1 =C, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Iaam4qaiGacwgaca GG4bGaaiiCamaabmaabaGaeyOeI0Yaa8qCaeqaleaacaaIWaaabaGa amiEaaqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaai abe67a4bqaaiaadggaaaaacaGLOaGaayzkaaGaamizaiabe67a4bGa ayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiGacwgacaGG4bGaai iCamaabmaabaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8 aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaadg gaaaaacaGLOaGaayzkaaGaamizaiabeI7aXbGaayjkaiaawMcaaiab gkHiTiaaigdaaiaawIcacaGLPaaacaaI9aGaeyOeI0Iaam4qaiaaiY caaaa@6122@

и

0 x exp 0 ξ β θ a dθ φ (ξ)dξ=φ(0)φ(x)exp 0 x β θ a dθ + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG4b aaniabgUIiYdGcciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWc baGaaGimaaqaaiabe67a4bqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacq GHsisldaWcaaqaaiabeI7aXbqaaiaadggaaaaacaGLOaGaayzkaaGa amizaiabeI7aXbGaayjkaiaawMcaaiqbeA8aQzaafaGaaGikaiabgk HiTiabe67a4jaaiMcacaaMi8Uaamizaiabe67a4jaai2dacqaHgpGA caaIOaGaaGimaiaaiMcacqGHsislcqaHgpGAcaaIOaGaeyOeI0Iaam iEaiaaiMcaciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWcbaGa aGimaaqaaiaadIhaa0Gaey4kIipakiabek7aInaabmaabaGaeyOeI0 YaaSaaaeaacqaH4oqCaeaacaWGHbaaaaGaayjkaiaawMcaaiaadsga cqaH4oqCaiaawIcacaGLPaaacqGHRaWkaaa@7029@

+ 0 x exp 0 ξ β θ a dθ β ξ a φ(ξ)dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWG4baaniabgUIiYdGcciGGLbGaaiiEaiaacchadaqadaqaamaa pehabeWcbaGaaGimaaqaaiabe67a4bqdcqGHRiI8aOGaeqOSdi2aae WaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaadggaaaaacaGLOaGa ayzkaaGaamizaiabeI7aXbGaayjkaiaawMcaaiabek7aInaabmaaba GaeyOeI0YaaSaaaeaacqaH+oaEaeaacaWGHbaaaaGaayjkaiaawMca aiabeA8aQjaaiIcacqGHsislcqaH+oaEcaaIPaGaaGjcVlaadsgacq aH+oaEcaaISaaaaa@5B16@

то функция g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  может быть представлена в виде

g (1,2) (x)=C+ φ(x) 2 +exp 0 x β ξ a dξ ( 0 x exp 0 ξ β θ a dθ {μ ξ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaakiaaiIcacaWG4bGaaGykaiaai2da cqGHsislcaWGdbGaey4kaSYaaSaaaeaacqaHgpGAcaaIOaGaeyOeI0 IaamiEaiaaiMcaaeaacaaIYaaaaiabgUcaRiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0Yaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcq GHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabe67a4bqa aiaadggaaaaacaGLOaGaayzkaaGaamizaiabe67a4bGaayjkaiaawM caaiaaiIcadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGc ciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWcbaGaaGimaaqaai abe67a4bqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqa aiabeI7aXbqaaiaadggaaaaacaGLOaGaayzkaaGaamizaiabeI7aXb GaayjkaiaawMcaaiaaiUhacqaH8oqBdaqadaqaamaalaaabaGaeqOV dGhabaGaamyyaaaaaiaawIcacaGLPaaacqGHsislaaa@7562@

1 4 a 2 0 ξ f ξy 2a , yξ 2 , u (1) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqGHsislcqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzam aabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4b qaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIXaGa aGykaaaakmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislca WG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHi Tiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4kaSIaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGH sislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEai abgkHiTiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaamizaiaadMhacqGHsislaaa@6E61@

β ξ a ( 1 4 a 2 0 ξ dz 0 z f zy 2a , y+z 2 , u (1) zy 2a , y+z 2 +F zy 2a , y+z 2 dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaeqOVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaaI OaWaaSaaaeaacaaIXaaabaGaaGinaiaadggadaahaaWcbeqaaiaaik daaaaaaOWaa8qCaeqaleaacaaIWaaabaGaeyOeI0IaeqOVdGhaniab gUIiYdGccaWGKbGaamOEamaapehabeWcbaGaaGimaaqaaiaadQhaa0 Gaey4kIipakmaadmaabaGaamOzamaabmaabaWaaSaaaeaacaWG6bGa eyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadM hacqGHRaWkcaWG6baabaGaaGOmaaaacaaISaGaamyDamaaCaaaleqa baGaaGikaiaaigdacaaIPaaaaOWaaeWaaeaadaWcaaqaaiaadQhacq GHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyE aiabgUcaRiaadQhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkai aawMcaaiabgUcaRiaadAeadaqadaqaamaalaaabaGaamOEaiabgkHi TiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG5bGaey 4kaSIaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzx aaGaamizaiaadMhacqGHRaWkaaa@746D@

+ 1 2a 0 ξ ψ(z)dz+φ(ξ)) ψ(ξ) 2a + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacqGHsislcqaH+oaE a0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaayIW7caWGKb GaamOEaiabgUcaRiabeA8aQjaaiIcacqGHsislcqaH+oaEcaaIPaGa aGykaiabgkHiTmaalaaabaGaeqiYdKNaaGikaiabgkHiTiabe67a4j aaiMcaaeaacaaIYaGaamyyaaaacqGHRaWkaaa@5360@

+ 1 2 a 2 0 ξ f ξy 2a , yξ 2 , u (2) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy}dξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzamaabmaaba WaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGaaGOmaiaa dggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4bqaaiaaik daaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaa kmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baaba GaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a 4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaS IaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTi abe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa amizaiaadMhacaaI9bGaamizaiabe67a4jaaiMcacaaIUaaaaa@7199@  (10)

Подставив формулы (8) и (10) в исходные интегральные уравнения (5), получим

u (1) (t,x)= K (1) [ u (1) ](t,x)= φ(xat)+φ(x+at) 2 + 1 2a xat x+at ψ(z)dz+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaai2da caWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGaam yDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGyxaiaaiIca caWG0bGaaGilaiaadIhacaaIPaGaaGypamaalaaabaGaeqOXdOMaaG ikaiaadIhacqGHsislcaWGHbGaamiDaiaaiMcacqGHRaWkcqaHgpGA caaIOaGaamiEaiabgUcaRiaadggacaWG0bGaaGykaaqaaiaaikdaaa Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaadggaaaWaa8qCaeqa leaacaWG4bGaeyOeI0IaamyyaiaadshaaeaacaWG4bGaey4kaSIaam yyaiaadshaa0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaa dsgacaWG6bGaey4kaScaaa@6AC1@

+ 1 4 a 2 xat x+at dz xat z F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 dy,(t,x) Q (1) ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa dIhacqGHsislcaWGHbGaamiDaaqaaiaadIhacqGHRaWkcaWGHbGaam iDaaqdcqGHRiI8aOGaamizaiaadQhadaWdXbqabSqaaiaadIhacqGH sislcaWGHbGaamiDaaqaaiaadQhaa0Gaey4kIipakmaadmaabaGaam OramaabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaG OmaaaaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaaeaadaWcaaqa aiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaala aabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcacaWG1bWa aWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGcdaqadaqaamaalaaaba GaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaa aeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGaayzkaa aacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamizaiaadMhacaaISaGa aGzbVlaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaeyicI48aa0aaae aacaWGrbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaaaaOGaaGil aaaa@7EF7@

u (2) (t,x)= K (2) [ u (1) , u (2) ](t,x)=exp 0 xat β ξ a dξ ( 0 xat exp 0 ξ β θ a dθ × MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaai2da caWGlbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaam yDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGilaiaadwha daahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaai2facaaIOaGaam iDaiaaiYcacaWG4bGaaGykaiaai2daciGGLbGaaiiEaiaacchadaqa daqaaiabgkHiTmaapehabeWcbaGaaGimaaqaaiaadIhacqGHsislca WGHbGaamiDaaqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWc aaqaaiabe67a4bqaaiaadggaaaaacaGLOaGaayzkaaGaamizaiabe6 7a4bGaayjkaiaawMcaaiaaiIcadaWdXbqabSqaaiaaicdaaeaacaWG 4bGaeyOeI0Iaamyyaiaadshaa0Gaey4kIipakiGacwgacaGG4bGaai iCamaabmaabaWaa8qCaeqaleaacaaIWaaabaGaeqOVdGhaniabgUIi YdGccqaHYoGydaqadaqaaiabgkHiTmaalaaabaGaeqiUdehabaGaam yyaaaaaiaawIcacaGLPaaacaWGKbGaeqiUdehacaGLOaGaayzkaaGa ey41aqlaaa@7D47@

×{μ ξ a 1 4 a 2 0 ξ f ξy 2a , yξ 2 , u (1) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaaI7bGaeqiVd02aaeWaae aadaWcaaqaaiabe67a4bqaaiaadggaaaaacaGLOaGaayzkaaGaeyOe I0YaaSaaaeaacaaIXaaabaGaaGinaiaadggadaahaaWcbeqaaiaaik daaaaaaOWaa8qCaeqaleaacaaIWaaabaGaeyOeI0IaeqOVdGhaniab gUIiYdGcdaWadaqaaiaadAgadaqadaqaamaalaaabaGaeyOeI0Iaeq OVdGNaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqa aiaadMhacqGHsislcqaH+oaEaeaacaaIYaaaaiaaiYcacaWG1bWaaW baaSqabeaacaaIOaGaaGymaiaaiMcaaaGcdaqadaqaamaalaaabaGa eyOeI0IaeqOVdGNaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiY cadaWcaaqaaiaadMhacqGHsislcqaH+oaEaeaacaaIYaaaaaGaayjk aiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaadAeadaqadaqaamaala aabaGaeyOeI0IaeqOVdGNaeyOeI0IaamyEaaqaaiaaikdacaWGHbaa aiaaiYcadaWcaaqaaiaadMhacqGHsislcqaH+oaEaeaacaaIYaaaaa GaayjkaiaawMcaaaGaay5waiaaw2faaiaadsgacaWG5bGaeyOeI0ca aa@7775@

β ξ a ( 1 4 a 2 0 ξ dz 0 z f zy 2a , y+z 2 , u (1) zy 2a , y+z 2 +F zy 2a , y+z 2 dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaeqOVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaaI OaWaaSaaaeaacaaIXaaabaGaaGinaiaadggadaahaaWcbeqaaiaaik daaaaaaOWaa8qCaeqaleaacaaIWaaabaGaeyOeI0IaeqOVdGhaniab gUIiYdGccaWGKbGaamOEamaapehabeWcbaGaaGimaaqaaiaadQhaa0 Gaey4kIipakmaadmaabaGaamOzamaabmaabaWaaSaaaeaacaWG6bGa eyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadM hacqGHRaWkcaWG6baabaGaaGOmaaaacaaISaGaamyDamaaCaaaleqa baGaaGikaiaaigdacaaIPaaaaOWaaeWaaeaadaWcaaqaaiaadQhacq GHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyE aiabgUcaRiaadQhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkai aawMcaaiabgUcaRiaadAeadaqadaqaamaalaaabaGaamOEaiabgkHi TiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG5bGaey 4kaSIaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzx aaGaamizaiaadMhacqGHRaWkaaa@746D@

+φ(ξ)+ 1 2a 0 ξ ψ(z)dz) ψ(ξ) 2a + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaHgpGAcaaIOaGaeyOeI0 IaeqOVdGNaaGykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdacaWG HbaaamaapehabeWcbaGaaGimaaqaaiabgkHiTiabe67a4bqdcqGHRi I8aOGaeqiYdKNaaGikaiaadQhacaaIPaGaaGjcVlaadsgacaWG6bGa aGykaiabgkHiTmaalaaabaGaeqiYdKNaaGikaiabgkHiTiabe67a4j aaiMcaaeaacaaIYaGaamyyaaaacqGHRaWkaaa@5360@

+ 1 2 a 2 0 ξ f ξy 2a , yξ 2 , u (2) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy}dξ)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzamaabmaaba WaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGaaGOmaiaa dggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4bqaaiaaik daaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaa kmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baaba GaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a 4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaS IaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTi abe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa amizaiaadMhacaaI9bGaamizaiabe67a4jaaiMcacqGHRaWkaaa@71C3@

+ φ(x+at)+φ(atx) 2 + 1 2a 0 x+at ψ(z)dz+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiabeA8aQjaaiI cacaWG4bGaey4kaSIaamyyaiaadshacaaIPaGaey4kaSIaeqOXdOMa aGikaiaadggacaWG0bGaeyOeI0IaamiEaiaaiMcaaeaacaaIYaaaai abgUcaRmaalaaabaGaaGymaaqaaiaaikdacaWGHbaaamaapehabeWc baGaaGimaaqaaiaadIhacqGHRaWkcaWGHbGaamiDaaqdcqGHRiI8aO GaeqiYdKNaaGikaiaadQhacaaIPaGaamizaiaadQhacqGHRaWkaaa@534F@

+ 1 4 a 2 0 x+at dz 0 z [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4bGaey4kaSIaamyyaiaadshaa0Gaey4kIipakiaads gacaWG6bWaa8qCaeqaleaacaaIWaaabaGaamOEaaqdcqGHRiI8aOGa aG4waiaadAeadaqadaqaamaalaaabaGaamOEaiabgkHiTiaadMhaae aacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6bGaey4kaSIaamyE aaqaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSIaamOzamaabmaaba WaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaa iYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaGOmaaaacaaISa GaamyDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOWaaeWaaeaa daWcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaG ilamaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaaGaayjk aiaawMcaaaGaayjkaiaawMcaaiaai2facaWGKbGaamyEaiabgkHiTa aa@6DD3@

1 4 a 2 0 xat dy atx x+at F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (2) zy 2a , z+y 2 dz,(t,x) Q (2) ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4bGaeyOeI0Iaamyyaiaadshaa0Gaey4kIipakiaads gacaWG5bWaa8qCaeqaleaacaWGHbGaamiDaiabgkHiTiaadIhaaeaa caWG4bGaey4kaSIaamyyaiaadshaa0Gaey4kIipakmaadmaabaGaam OramaabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaG OmaaaaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaaeaadaWcaaqa aiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaala aabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcacaWG1bWa aWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGcdaqadaqaamaalaaaba GaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaa aeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGaayzkaa aacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamizaiaadQhacaaISaGa aGzbVlaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaeyicI48aa0aaae aacaWGrbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaaaaOGaaGOl aaaa@7EC1@  (11)

Лемма 4.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Тогда решения u (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3538@  ( j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@  ) уравнений (11) существуют, единственны в классе C 2 ( Q (j) ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaadQgacaaI PaaaaaaakiaaiMcaaaa@384F@  и непрерывно зависят от функций φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  и μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ .

Лемма 4.1 доказывается аналогично теореме 3.2.

Таким образом, построено кусочно гладкое решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (4), которое определятся формулами (11) и (6).

5. Анализ решения смешанной задачи. Чтобы функция u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  принадлежала множеству C 2 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuaaaacaaIPaaaaa@35C4@ , кроме требований гладкости для функций f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@ , необходимо и достаточно выполнение равенств (7), согласно теореме 3.1. Вычисляя величины, которые входят в выражения (7), получаем следующие условия согласования

β(0)φ(0)μ(0)+ φ (0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaaGimaiaaiMcacq aHgpGAcaaIOaGaaGimaiaaiMcacqGHsislcqaH8oqBcaaIOaGaaGim aiaaiMcacqGHRaWkcuaHgpGAgaqbaiaaiIcacaaIWaGaaGykaiaai2 dacaaIWaGaaGilaaaa@451C@  (12)

f(0,0,φ(0))+F(0,0)+a φ(0) β (0)+β(0)ψ(0) μ (0)+ ψ (0) =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaISaGaaG imaiaaiYcacqaHgpGAcaaIOaGaaGimaiaaiMcacaaIPaGaey4kaSIa amOraiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaey4kaSIaamyyam aabmaabaGaeqOXdOMaaGikaiaaicdacaaIPaGafqOSdiMbauaacaaI OaGaaGimaiaaiMcacqGHRaWkcqaHYoGycaaIOaGaaGimaiaaiMcacq aHipqEcaaIOaGaaGimaiaaiMcacqGHsislcuaH8oqBgaqbaiaaiIca caaIWaGaaGykaiabgUcaRiqbeI8a5zaafaGaaGikaiaaicdacaaIPa aacaGLOaGaayzkaaGaaGypaiaaicdacaaIUaaaaa@5F6F@  (13)

Результат сформулируем в виде теоремы.

Теорема 5.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , определенное формулами (6) и (11), из класса C 2 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuaaaacaaIPaaaaa@35C4@  тогда и только тогда, когда выполняются условия (12) и (13).

Доказательство теоремы 5.1 вытекает из теоремы 3.1, леммы 4.1 и проведенных выше рассуждений.

6. Неоднородные условия согласования. Теперь, подобно тому как это было сделано в [3–6, 8, 9, 11], рассмотрим задачу (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) вЁслучае, когда условия согласования (12) и (13) частично или полностью не выполняются. Но в отличие от первой смешанной задачи в третьей смешанной задаче условия согласования можно задать таким образом, что решение будет иметь произвольный наперед заданный разрыв на характеристике xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ .

Согласно теореме 3.1 присутствие неоднородных условий согласования нарушает непрерывность частных производных функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ . Данное заключение можно сформулировать в виде следующего утверждения.

Утверждение 6.1. Если для заданных функций μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  не выполняются однородные условия согласования (12) и (13), то какими бы гладкими ни были функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@  и ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) не имеет классического решения, определенного на Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ .

Доказательство утверждения вытекает из теоремы 3.1.

Пусть заданные функции уравнения (1), граничных условий (3), (4) являются достаточно гладкими и такими, как в теореме 5.1: f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@  и β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@ . Так как условия согласования (12) и (13), вообще говоря, не выполнены, то получим разрывными производные функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  согласно следующим выражениям:

[(u ) + (u) ](t,x=at)= C (1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGikaiaadwhacaaIPaWaaW baaSqabeaacqGHRaWkaaGccqGHsislcaaIOaGaamyDaiaaiMcadaah aaWcbeqaaiabgkHiTaaakiaai2facaaIOaGaamiDaiaaiYcacaWG4b GaaGypaiaadggacaWG0bGaaGykaiaai2dacaWGdbWaaWbaaSqabeaa caaIOaGaaGymaiaaiMcaaaGccaaISaaaaa@46C4@

[( t u ) + ( t u) ](t,x=at)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGikaiabgkGi2oaaBaaale aacaWG0baabeaakiaadwhacaaIPaWaaWbaaSqabeaacqGHRaWkaaGc cqGHsislcaaIOaGaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaamyDai aaiMcadaahaaWcbeqaaiabgkHiTaaakiaai2facaaIOaGaamiDaiaa iYcacaWG4bGaaGypaiaadggacaWG0bGaaGykaiaai2daaaa@4819@

=a[( x u ) + ( x u) ](t,x=at)=a(μ(0)β(0)φ(0) φ (0))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyyaiaaiUfaca aIOaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaamyDaiaaiMcadaah aaWcbeqaaiabgUcaRaaakiabgkHiTiaaiIcacqGHciITdaWgaaWcba GaamiEaaqabaGccaWG1bGaaGykamaaCaaaleqabaGaeyOeI0caaOGa aGyxaiaaiIcacaWG0bGaaGilaiaadIhacaaI9aGaamyyaiaadshaca aIPaGaaGypaiaadggacaaIOaGaeqiVd0MaaGikaiaaicdacaaIPaGa eyOeI0IaeqOSdiMaaGikaiaaicdacaaIPaGaeqOXdOMaaGikaiaaic dacaaIPaGaeyOeI0IafqOXdOMbauaacaaIOaGaaGimaiaaiMcacaaI PaGaey4kaScaaa@5F1B@

+ 1 4a 0 2at f z 2a , z 2 ,(u ) + z 2a , z 2 f z 2a , z 2 ,(u ) z 2a , z 2 dz, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaamyyaiaa dshaa0Gaey4kIipakmaadmaabaGaamOzamaabmaabaWaaSaaaeaaca WG6baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaa ikdaaaGaaGilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGaey4kaS caaOWaaeWaaeaadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaI SaWaaSaaaeaacaWG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawI cacaGLPaaacqGHsislcaWGMbWaaeWaaeaadaWcaaqaaiaadQhaaeaa caaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baabaGaaGOmaaaaca aISaGaaGikaiaadwhacaaIPaWaaWbaaSqabeaacqGHsislaaGcdaqa daqaamaalaaabaGaamOEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaa qaaiaadQhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkaiaawMca aaGaay5waiaaw2faaiaadsgacaWG6bGaaGilaaaa@657D@

[( t 2 u ) + ( t 2 u) ](t,x=at)= 1 2 (f(t,at,(u ) + (t,at))f(t,at,(u ) (t,at))) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGikaiabgkGi2oaaDaaale aacaWG0baabaGaaGOmaaaakiaadwhacaaIPaWaaWbaaSqabeaacqGH RaWkaaGccqGHsislcaaIOaGaeyOaIy7aa0baaSqaaiaadshaaeaaca aIYaaaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgkHiTaaakiaai2fa caaIOaGaamiDaiaaiYcacaWG4bGaaGypaiaadggacaWG0bGaaGykai aai2dadaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiIcacaWGMbGaaGik aiaadshacaaISaGaamyyaiaadshacaaISaGaaGikaiaadwhacaaIPa WaaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiYcacaWGHbGa amiDaiaaiMcacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGilai aadggacaWG0bGaaGilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGa eyOeI0caaOGaaGikaiaadshacaaISaGaamyyaiaadshacaaIPaGaaG ykaiaaiMcacqGHsislaaa@6C62@

a(aβ(0)(β(0)φ(0)μ(0)+ φ (0))+φ(0) β (0)+β(0)ψ(0) μ (0)+ ψ (0))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaaGikaiaadggacq aHYoGycaaIOaGaaGimaiaaiMcacaaIOaGaeqOSdiMaaGikaiaaicda caaIPaGaeqOXdOMaaGikaiaaicdacaaIPaGaeyOeI0IaeqiVd0MaaG ikaiaaicdacaaIPaGaey4kaSIafqOXdOMbauaacaaIOaGaaGimaiaa iMcacaaIPaGaey4kaSIaeqOXdOMaaGikaiaaicdacaaIPaGafqOSdi MbauaacaaIOaGaaGimaiaaiMcacqGHRaWkcqaHYoGycaaIOaGaaGim aiaaiMcacqaHipqEcaaIOaGaaGimaiaaiMcacqGHsislcuaH8oqBga qbaiaaiIcacaaIWaGaaGykaiabgUcaRiqbeI8a5zaafaGaaGikaiaa icdacaaIPaGaaGykaiabgUcaRaaa@67CC@

+ 1 8a 0 2at {[ ( t u) + z 2a , z 2 a ( x u) + z 2a , z 2 y f z 2a , z 2 ,y=(u ) + z 2a , z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI4aGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaamyyaiaa dshaa0Gaey4kIipakiaaiUhacaaIBbWaaeWaaeaacaaIOaGaeyOaIy 7aaSbaaSqaaiaadshaaeqaaOGaamyDaiaaiMcadaahaaWcbeqaaiab gUcaRaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOmaiaadggaaa GaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaaGa eyOeI0IaamyyaiaaiIcacqGHciITdaWgaaWcbaGaamiEaaqabaGcca WG1bGaaGykamaaCaaaleqabaGaey4kaScaaOWaaeWaaeaadaWcaaqa aiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baaba GaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHciITdaWg aaWcbaGaamyEaaqabaGccaWGMbWaaeWaaeaadaWcaaqaaiaadQhaae aacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baabaGaaGOmaaaa caaISaGaamyEaiaai2dacaaIOaGaamyDaiaaiMcadaahaaWcbeqaai abgUcaRaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOmaiaadgga aaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaa aacaGLOaGaayzkaaGaeyOeI0caaa@7190@

a x f z 2a , z 2 ,(u ) + z 2a , z 2 + t f z 2a , z 2 ,(u ) + z 2a , z 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaamOzamaabmaabaWaaSaaaeaacaWG6baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaGaaG ilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGaey4kaScaaOWaaeWa aeaadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaae aacaWG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHRaWkcqGHciITdaWgaaWcbaGaamiDaaqabaGccaWGMbWaaeWaae aadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaa caWG6baabaGaaGOmaaaacaaISaGaaGikaiaadwhacaaIPaWaaWbaaS qabeaacqGHRaWkaaGcdaqadaqaamaalaaabaGaamOEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhaaeaacaaIYaaaaaGaayjkai aawMcaaaGaayjkaiaawMcaaiaai2facqGHsislaaa@6092@

[ ( t u) z 2a , z 2 a ( x u) z 2a , z 2 y f z 2a , z 2 ,y=(u ) z 2a , z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIBbWaaeWaaeaacaaIOa GaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaamyDaiaaiMcadaahaaWc beqaaiabgkHiTaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOmai aadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOaGa ayzkaaGaeyOeI0IaamyyaiaaiIcacqGHciITdaWgaaWcbaGaamiEaa qabaGccaWG1bGaaGykamaaCaaaleqabaGaeyOeI0caaOWaaeWaaeaa daWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaaca WG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH ciITdaWgaaWcbaGaamyEaaqabaGccaWGMbWaaeWaaeaadaWcaaqaai aadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baabaGa aGOmaaaacaaISaGaamyEaiaai2dacaaIOaGaamyDaiaaiMcadaahaa WcbeqaaiabgkHiTaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOm aiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOa GaayzkaaaacaGLOaGaayzkaaGaeyOeI0caaa@687B@

a x f z 2a , z 2 ,(u ) z 2a , z 2 + t f z 2a , z 2 ,(u ) z 2a , z 2 ]}dz= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaamOzamaabmaabaWaaSaaaeaacaWG6baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaGaaG ilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGaeyOeI0caaOWaaeWa aeaadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaae aacaWG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHRaWkcqGHciITdaWgaaWcbaGaamiDaaqabaGccaWGMbWaaeWaae aadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaa caWG6baabaGaaGOmaaaacaaISaGaaGikaiaadwhacaaIPaWaaWbaaS qabeaacqGHsislaaGcdaqadaqaamaalaaabaGaamOEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhaaeaacaaIYaaaaaGaayjkai aawMcaaaGaayjkaiaawMcaaiaai2facaaI9bGaamizaiaadQhacaaI 9aaaaa@6371@

= a 2 [( x 2 u ) + ( x 2 u) ](t,x=at)+(f(t,at,(u ) + (t,at))f(t,at,(u ) (t,at)))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyyamaaCaaaleqabaGaaG OmaaaakiaaiUfacaaIOaGaeyOaIy7aa0baaSqaaiaadIhaaeaacaaI YaaaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgUcaRaaakiabgkHiTi aaiIcacqGHciITdaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaWG1bGa aGykamaaCaaaleqabaGaeyOeI0caaOGaaGyxaiaaiIcacaWG0bGaaG ilaiaadIhacaaI9aGaamyyaiaadshacaaIPaGaey4kaSIaaGikaiaa dAgacaaIOaGaamiDaiaaiYcacaWGHbGaamiDaiaaiYcacaaIOaGaam yDaiaaiMcadaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaGil aiaadggacaWG0bGaaGykaiaaiMcacqGHsislcaWGMbGaaGikaiaads hacaaISaGaamyyaiaadshacaaISaGaaGikaiaadwhacaaIPaWaaWba aSqabeaacqGHsislaaGccaaIOaGaamiDaiaaiYcacaWGHbGaamiDai aaiMcacaaIPaGaaGykaiaai2daaaa@6D78@

=a[( t x u ) + ( t x u) ](t,x=at)+ 1 2 (f(t,at,(u ) + (t,at))f(t,at,(u ) (t,at))), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyyaiaaiUfaca aIOaGaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaeyOaIy7aaSbaaSqa aiaadIhaaeqaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgUcaRaaaki abgkHiTiaaiIcacqGHciITdaWgaaWcbaGaamiDaaqabaGccqGHciIT daWgaaWcbaGaamiEaaqabaGccaWG1bGaaGykamaaCaaaleqabaGaey OeI0caaOGaaGyxaiaaiIcacaWG0bGaaGilaiaadIhacaaI9aGaamyy aiaadshacaaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaca aIOaGaamOzaiaaiIcacaWG0bGaaGilaiaadggacaWG0bGaaGilaiaa iIcacaWG1bGaaGykamaaCaaaleqabaGaey4kaScaaOGaaGikaiaads hacaaISaGaamyyaiaadshacaaIPaGaaGykaiabgkHiTiaadAgacaaI OaGaamiDaiaaiYcacaWGHbGaamiDaiaaiYcacaaIOaGaamyDaiaaiM cadaahaaWcbeqaaiabgkHiTaaakiaaiIcacaWG0bGaaGilaiaadgga caWG0bGaaGykaiaaiMcacaaIPaGaaGilaaaa@7298@  (14)

где C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@ . В дальнейшем при рассмотрении задачи с условиями сопряжения будем полагать, что C (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34D2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторая произвольная наперед заданная константа из множества действительных чисел, вообще говоря, не обязательно равная нулю. Здесь было использовано обозначение () ± MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGykamaaCaaaleqabaGaey ySaelaaaaa@353D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  предельные значения функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  и ее частных производных с разных сторон на характеристике xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ , т.е.

( t p u) ± (t,x=at)= lim δ0+ t p u(t,at±δ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOaIy7aa0baaSqaaiaads haaeaacaWGWbaaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgglaXcaa kiaaiIcacaWG0bGaaGilaiaadIhacaaI9aGaamyyaiaadshacaaIPa GaaGypamaawafabeWcbaGaeqiTdqMaeyOKH4QaaGimaiabgUcaRaqa bOqaaiGacYgacaGGPbGaaiyBaaaacqGHciITdaqhaaWcbaGaamiDaa qaaiaadchaaaGccaWG1bGaaGikaiaadshacaaISaGaamyyaiaadsha cqGHXcqScqaH0oazcaaIPaGaaGOlaaaa@578F@

Введем обозначение Q ˜ = Q ¯ \{(t,x)|xat=0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadgfaaiaawoWaaiaai2 dadaqdaaqaaiaadgfaaaGaaiixaiaaiUhacaaIOaGaamiDaiaaiYca caWG4bGaaGykaiaacYhacaWG4bGaeyOeI0IaamyyaiaadshacaaI9a GaaGimaiaai2haaaa@424A@ . Справедлива следующая теорема.

Теорема 6.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@  из класса C 2 ( Q ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaamyuaaGaay5adaGaaGykaaaa@3675@ , которое представляется в виде

u ˜ (t,x)= u (1) (t,x)= K (1) [ u (1) ](t,x), (t,x) Q (1) {(0,x)|x(0,)}, u (2) (t,x)= K (2) [ u (1) , u (2) ](t,x) C (1) , (t,x) Q (2) {(t,0)|t(0,)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypamaaceaabaqbaeqabiGa aaqaaiaadwhadaahaaWcbeqaaiaaiIcacaaIXaGaaGykaaaakiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaadUeadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiUfacaWG1bWaaWbaaSqabeaaca aIOaGaaGymaiaaiMcaaaGccaaIDbGaaGikaiaadshacaaISaGaamiE aiaaiMcacaaISaaabaGaaGikaiaadshacaaISaGaamiEaiaaiMcacq GHiiIZcaWGrbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccqGH QicYcaaI7bGaaGikaiaaicdacaaISaGaamiEaiaaiMcacaGG8bGaam iEaiabgIGiolaaiIcacaaIWaGaaGilaiabg6HiLkaaiMcacaaI9bGa aGilaaqaaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaaki aaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaadUeadaahaaWc beqaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaWG1bWaaWbaaSqabe aacaaIOaGaaGymaiaaiMcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGikaiaaikdacaaIPaaaaOGaaGyxaiaaiIcacaWG0bGaaGilaiaadI hacaaIPaGaeyOeI0Iaam4qamaaCaaaleqabaGaaGikaiaaigdacaaI PaaaaOGaaGilaaqaaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey icI4SaamyuamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaeyOk IGSaaG4EaiaaiIcacaWG0bGaaGilaiaaicdacaaIPaGaaiiFaiaads hacqGHiiIZcaaIOaGaaGimaiaaiYcacqGHEisPcaaIPaGaaGyFaiaa iYcaaaaacaGL7baaaaa@9D6C@  (15)

где функции u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@  и u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  заданы формулой (11), тогда и только тогда, когда выполняются условия (14).

Для доказательства теоремы 6.1 следует повторить рассуждения, которые ранее привели нас к теореме 5.1.

Теорема 6.2. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@ , определенное формулой (15), из класса C 2 ( Q ˜ )C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaamyuaaGaay5adaGaaGykaiabgMIihlaadoea caaIOaWaa0aaaeaacaWGrbaaaiaaiMcaaaa@3B27@  тогда и только тогда, когда выполняются условия (14) и C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@ .

Доказательство. Теорема 6.2 следует фактически из теоремы 6.1 и формул (14). Действительно, если C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@ , то решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@  на множестве {(t,x)|xat=0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaaGikaiaadshacaaISaGaam iEaiaaiMcacaGG8bGaamiEaiabgkHiTiaadggacaWG0bGaaGypaiaa icdacaaI9baaaa@3E24@  является непрерывным в силу (14). Следовательно, кроме того, что решение u ˜ C 2 ( Q ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaiabgI GiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaIOaWaaacaaeaacaWG rbaacaGLdmaacaaIPaaaaa@39B5@ , оно является непрерывной функцией на замыкании Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , u ˜ C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaiabgI GiolaadoeacaaIOaWaa0aaaeaacaWGrbaaaiaaiMcaaaa@3811@ .

Теорема 6.3. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@ , определенное формулой (15), из класса C 2 ( Q ˜ ) C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaamyuaaGaay5adaGaaGykaiabgMIihlaadoea daahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacaWGrbaaaiaaiM caaaa@3C19@  тогда и только тогда, когда выполняются условия (14), C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@  и (12).

Доказательство. Теорема 6.3 легко следует из теорем 6.1, 6.2 и формул (14), так как в этом случае u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@  является непрерывным на множестве Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , но в силу (14) имеет непрерывные производные первого порядка.

Замечание 6.1. Если заданные функции задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) не удовлетворяют однородным условиям согласования (12) и (13), то решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) сводится к решению соответствующей задачи сопряжения, где условия сопряжения задаются на характеристике xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ .

В качестве условий сопряжения могут быть условия (14). Теперь задачу (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) можно сформулировать, используя условия сопряжения (14) следующим образом.

Задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD1@ (4) с условиями сопряжения на характеристиках.

Найти классическое решение уравнения (1), удовлетворяющее условиям Коши (3), граничным условиям (4), условиям сопряжения (14).

Заметим, что такая формулировка рассмотренной задачи с условиями сопряжения более приемлема для ее численной реализации.

7. Слабое решение. Рассмотрим теперь задачу (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) в случае, когда функции β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@  и ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  не обладают достаточной степенью гладкости.

Определение 1. Функцию u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , представимую в виде (6), (11) назовем слабым решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4).

Замечание 7.1. Любое классическое решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) является также слабым решением этой задачи.

Справедлива следующая теорема.

Теорема 7.1. Пусть выполняются условия fC( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaaaaa@440E@ , F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , φC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BA4@ , ψ L 1 loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaGaaG4waiaa icdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3F7D@ , μ L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@401B@ , β L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@4006@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное слабое решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  из класса C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaanaaabaGaamyuaa aacaaIPaaaaa@34D1@ .

Доказательство. Разрешимость интегральных уравнений (11) и принадлежность их решений классу непрерывных функций фактически следует из теоремы 3.2. Корректность представления (6) следует из того факта, что u (1) (t,x=at)= u (2) (t,x=at) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGypaiaadgga caWG0bGaaGykaiaai2dacaWG1bWaaWbaaSqabeaacaaIOaGaaGOmai aaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGypaiaadggacaWG 0bGaaGykaaaa@4695@  исходя из формул (11).

Замечание 7.2. Аналогично предыдущему пункту, можно строить слабое решение задачи с условиями сопряжения.

8. Локальное решение. В предыдущих разделах настоящей работы третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (4) рассматривалась в предположении, что нелинейность удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори. С одной стороны, во многих разделах теоретической физики нелинейные уравнения часто имеют степенные или экспоненциальные нелинейности (см. [13, 22, 26]). Поэтому весьма важен вопрос о существовании и единственности решений таких уравнений. С другой стороны, известно, что условие типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори

|f(t,x, z 1 )f(t,x, z 2 )|k(t,x)| z 1 z 2 | MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiMca cqGHsislcaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHKjYOcaWGRbGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamOEamaaBaaale aacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaI8baaaa@518B@

нельзя ослабить до условия типа Гёльдера

|f(t,x, z 1 )f(t,x, z 2 )|k(t,x)| z 1 z 2 | α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiMca cqGHsislcaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHKjYOcaWGRbGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamOEamaaBaaale aacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaI8bWaaWbaaSqabeaacqaHXoqyaaGccaaISaaaaa@5417@

где α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHiiIZcaaIOaGaaGimai aaiYcacaaIXaGaaGykaaaa@3870@ , сохранив при этом однозначную разрешимость задачи (см. [17]). Однако условие типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори не является единственным допустимым условием для существования и единственности классических решений смешанных задач для нелинейных уравнений. Например, в [14] с помощью априорных оценок и принципа Лере MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Шаудера построено классическое решение задачи Коши для обобщенного уравнения Лиувилля (нелинейность экспоненциального роста).

В этом разделе для любой непрерывно дифференцируемой нелинейности покажем, что третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) допускает единственное локальное классическое решение.ввв

Введем обозначения

Ω T (1) =Conv{(0,0),(T, a 1 T),(0,2 a 1 T)}, Ω T (2) =Conv{(0,0),(T, a 1 T),(2T,0)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamivaaqaai aaiIcacaaIXaGaaGykaaaakiaai2dacaWGdbGaam4Baiaad6gacaWG 2bGaaG4EaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaaGilaiaaiI cacaWGubGaaGilaiaadggadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caWGubGaaGykaiaaiYcacaaIOaGaaGimaiaaiYcacaaIYaGaamyyam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaadsfacaaIPaGaaGyFaiaa iYcacaaMf8UaeuyQdC1aa0baaSqaaiaadsfaaeaacaaIOaGaaGOmai aaiMcaaaGccaaI9aGaam4qaiaad+gacaWGUbGaamODaiaaiUhacaaI OaGaaGimaiaaiYcacaaIWaGaaGykaiaaiYcacaaIOaGaamivaiaaiY cacaWGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamivaiaaiMca caaISaGaaGikaiaaikdacaWGubGaaGilaiaaicdacaaIPaGaaGyFai aaiYcaaaa@6DE1@

Ω T, T = Ω T (1) Ω T (2) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaiaaiY caceWGubGbauaaaeqaaOGaaGypaiabfM6axnaaDaaaleaacaWGubaa baGaaGikaiaaigdacaaIPaaaaOGaeyOkIGSaeuyQdC1aa0baaSqaai qadsfagaqbaaqaaiaaiIcacaaIYaGaaGykaaaakiaai6caaaa@429D@

Лемма 8.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , φC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BA4@ , ψ L 1 loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaGaaG4waiaa icdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3F7D@ , μ L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@401B@  и β L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@4006@ . Тогда решения u (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3538@  ( j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@  ) уравнений (11) существуют, единственны в классах C( Ω T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaDaaale aacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaaGykaaaa@38A8@  и C( Ω T (2) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaDaaale aaceWGubGbauaaaeaacaaIOaGaaGOmaiaaiMcaaaGccaaIPaaaaa@38B5@ , где 0< T T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiqadsfagaqbaiabgs MiJkaadsfacaaI8aGaeyOhIukaaa@38E7@ , соответственно и непрерывно зависят от функций φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  и μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ .

Доказательство. Данную теорему докажем, следуя схеме, изложенной в [7, 15]. Для определённости рассмотрим уравнение (11) для отыскания функции u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@ . Введем множество

X m,T ={u|uC( Ω T (1) )u C( Ω T (1) ) m}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaad2gacaaISa GaamivaaqabaGccaaI9aGaaG4EaiaadwhacaaMe8UaaGiFaiaaysW7 caWG1bGaeyicI4Saam4qaiaaiIcacqqHPoWvdaqhaaWcbaGaamivaa qaaiaaiIcacaaIXaGaaGykaaaakiaaiMcacqGHNis2rqqr1ngBPrgi fHhDYfgaiqaacqWFLicucaWG1bGae8xjIa1aaSbaaSqaaiaadoeaca aIOaGaeuyQdC1aa0baaeaacaWGubaabaGaaGikaiaaigdacaaIPaaa aiaaiMcaaeqaaOGaeyizImQaamyBaiaai2hacaaIUaaaaa@5A8D@

Утверждается, что если m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@  достаточно велико, а T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  достаточно мало, то K (1) : X m,T X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaGG6aGaamiwamaaBaaaleaacaWGTbGaaGilaiaa dsfaaeqaaOGaeSOPHeMaamiwamaaBaaaleaacaWGTbGaaGilaiaads faaeqaaaaa@3E79@ . В самом деле, поскольку f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  непрерывная функция, то она ограничена и равномерно непрерывна на компакте Ω m,T (1) = Ω T (1) ×[m,m] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamyBaiaaiY cacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaaGypaiabfM6axnaa DaaaleaacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaey41aqRaaG 4waiabgkHiTiaad2gacaaISaGaamyBaiaai2faaaa@4512@ . Пусть Φ=f C( Ω m,T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaI9aqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamOzaiab=vIiqnaaBaaaleaacaWGdbGaaGik aiabfM6axnaaDaaabaGaamyBaiaaiYcacaWGubaabaGaaGikaiaaig dacaaIPaaaaiaaiMcaaeqaaaaa@4466@ . Легко видеть, что для любых T <T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGubGbauaacaaI8aGaamivaaaa@3441@  и m <m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGTbGbauaacaaI8aGaamyBaaaa@3473@  верно неравенство

f C( Ω m , T (1) ) Φ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGMbGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaeuyQdC1aa0ba aeaaceWGTbGbauaacaaISaGabmivayaafaaabaGaaGikaiaaigdaca aIPaaaaiaaiMcaaeqaaOGaeyizImQaeuOPdyKaaGOlaaaa@462E@

Введем обозначение

G T = sup (t,x) Ω T (1) φ(xat)+φ(x+at) 2 + 1 2a xat x+at ψ(z)dz+ 1 4 a 2 xat x+at dz xat z F zy 2a , z+y 2 dy . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaO GaaGypamaawafabeWcbaGaaGikaiaadshacaaISaGaamiEaiaaiMca cqGHiiIZcqqHPoWvdaqhaaqaaiaadsfaaeaacaaIOaGaaGymaiaaiM caaaaabeGcbaGaci4CaiaacwhacaGGWbaaamaaemaabaWaaSaaaeaa cqaHgpGAcaaIOaGaamiEaiabgkHiTiaadggacaWG0bGaaGykaiabgU caRiabeA8aQjaaiIcacaWG4bGaey4kaSIaamyyaiaadshacaaIPaaa baGaaGOmaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaGaamyyaa aadaWdXbqabSqaaiaadIhacqGHsislcaWGHbGaamiDaaqaaiaadIha cqGHRaWkcaWGHbGaamiDaaqdcqGHRiI8aOGaeqiYdKNaaGikaiaadQ hacaaIPaGaamizaiaadQhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI 0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGccaaMb8UaaGzaVpaape habeWcbaGaamiEaiabgkHiTiaadggacaWG0baabaGaamiEaiabgUca RiaadggacaWG0baaniabgUIiYdGccaaMb8UaaGzaVlaaygW7caWGKb GaamOEaiaaygW7caaMb8+aa8qCaeqaleaacaWG4bGaeyOeI0Iaamyy aiaadshaaeaacaWG6baaniabgUIiYdGccaaMb8UaaGzaVlaadAeada qadaqaamaalaaabaGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyy aaaacaaISaWaaSaaaeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaa aacaGLOaGaayzkaaGaamizaiaadMhaaiaawEa7caGLiWoacaaIUaaa aa@9B33@  (16)

При уменьшении T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  без изменения величины G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaa aa@338E@  в предыдущей формуле знак = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aaaaa@3284@  заменяется на MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHLjYSaaa@3383@ .

Теперь для u X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamiwamaaBaaale aacaWGTbGaaGilaiaadsfaaeqaaaaa@37C5@  рассмотрим оценку

K (1) [ u (1) ] C( Ω T (1) ) G T + Φ T 2 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGyxaiab=v IiqnaaBaaaleaacaWGdbGaaGikaiabfM6axnaaDaaabaGaamivaaqa aiaaiIcacaaIXaGaaGykaaaacaaIPaaabeaakiabgsMiJkaadEeada WgaaWcbaGaamivaaqabaGccqGHRaWkdaWcaaqaaiabfA6agjaadsfa daahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiaai6caaaa@511C@

Нам необходимо выполнение неравенства

K (1) [ u (1) ] C( Ω T (1) ) G T + Φ T 2 2 m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGyxaiab=v IiqnaaBaaaleaacaWGdbGaaGikaiabfM6axnaaDaaabaGaamivaaqa aiaaiIcacaaIXaGaaGykaaaacaaIPaaabeaakiabgsMiJkaadEeada WgaaWcbaGaamivaaqabaGccqGHRaWkdaWcaaqaaiabfA6agjaadsfa daahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabgsMiJkaad2gaca aISaaaaa@53C1@  (17)

чтобы K (1) [ u (1) ] X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIBbGaamyDamaaCaaaleqabaGaaGikaiaaigda caaIPaaaaOGaaGyxaiabgIGiolaadIfadaWgaaWcbaGaamyBaiaaiY cacaWGubaabeaaaaa@3F0F@ . Параметры T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  и m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@ , таковы, что неравенство (17) будет верным, могут быть найдены согласно следующему алгоритму:

(i) Присвоить T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  равным любому действительному положительному числу.

(ii) Вычислить G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaa aa@338E@  по формуле (16).

(iii) Присвоить m=2 G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaaGypaiaaikdacaWGhbWaaS baaSqaaiaadsfaaeqaaaaa@3603@  и вычислить Φ=f C( Ω m,T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaI9aqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamOzaiab=vIiqnaaBaaaleaacaWGdbGaaGik aiabfM6axnaaDaaabaGaamyBaiaaiYcacaWGubaabaGaaGikaiaaig dacaaIPaaaaiaaiMcaaeqaaaaa@4466@ .

(iv) Уменьшить T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@ , так чтобы было верно неравенство G T +Φ T 2 /2m=2 G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaWGhbWaaSbaaSqaaiaads faaeqaaOGaey4kaSIaeuOPdyKaamivamaaCaaaleqabaGaaGOmaaaa kiaai+cacaaIYaGaeyizImQaamyBaiaai2dacaaIYaGaam4ramaaBa aaleaacaWGubaabeaaaaa@40E5@ . Заметим, что уменьшение T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  оставляет в силе предыдущие неравенства.

Поскольку числа T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  и m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@  выбраны такими, что неравенство (17) выполняется, то K (1) [u] X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIBbGaamyDaiaai2facqGHiiIZcaWGybWaaSba aSqaaiaad2gacaaISaGaamivaaqabaaaaa@3CB8@ , если, например, u X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamiwamaaBaaale aacaWGTbGaaGilaiaadsfaaeqaaaaa@37C5@ .

Так как f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  непрерывно дифференцируемая функция, то ее частные производные ограничены на компакте Ω m,T (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamyBaiaaiY cacaWGubaabaGaaGikaiaaigdacaaIPaaaaaaa@3819@ , а тогда f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет на этом компакте условию Липшица с некоторой постоянной L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@328E@ , и в таком случае верно неравенство

K (1) [ u 1 ] K (1) [ u 2 ] C( Ω T (1) ) L T 2 2 u 1 u 2 C( Ω T (1) ) , u 1 C( Ω T (1) ), u 2 C( Ω T (1) ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaBaaaleaacaaIXaaabeaakiaai2facqGHsislcaWGlbWaaW baaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGaamyDamaaBaaa leaacaaIYaaabeaakiaai2facqWFLicudaWgaaWcbaGaam4qaiaaiI cacqqHPoWvdaqhaaqaaiaadsfaaeaacaaIOaGaaGymaiaaiMcaaaGa aGykaaqabaGccqGHKjYOdaWcaaqaaiaadYeacaWGubWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGOmaaaacqWFLicucaWG1bWaaSbaaSqaaiaa igdaaeqaaOGaeyOeI0IaamyDamaaBaaaleaacaaIYaaabeaakiab=v IiqnaaBaaaleaacaWGdbGaaGikaiabfM6axnaaDaaabaGaamivaaqa aiaaiIcacaaIXaGaaGykaaaacaaIPaaabeaakiaaiYcacaaMf8Uaam yDamaaBaaaleaacaaIXaaabeaakiabgIGiolaadoeacaaIOaGaeuyQ dC1aa0baaSqaaiaadsfaaeaacaaIOaGaaGymaiaaiMcaaaGccaaIPa GaaGilaiaaywW7caWG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyicI4Sa am4qaiaaiIcacqqHPoWvdaqhaaWcbaGaamivaaqaaiaaiIcacaaIXa GaaGykaaaakiaaiMcacaaIUaaaaa@7B61@

Снова уменьшаем T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  так, чтобы для любых u 1 , u 2 X m,T C( Ω T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadwhadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaWGybWa aSbaaSqaaiaad2gacaaISaGaamivaaqabaGccqGHckcZcaWGdbGaaG ikaiabfM6axnaaDaaaleaacaWGubaabaGaaGikaiaaigdacaaIPaaa aOGaaGykaaaa@4449@  выполнялось неравенство

K (1) [ u 1 ] K (1) [ u 2 ] C( Ω T (1) ) 1 2 u 1 u 2 C( Ω T (1) ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaBaaaleaacaaIXaaabeaakiaai2facqGHsislcaWGlbWaaW baaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGaamyDamaaBaaa leaacaaIYaaabeaakiaai2facqWFLicudaWgaaWcbaGaam4qaiaaiI cacqqHPoWvdaqhaaqaaiaadsfaaeaacaaIOaGaaGymaiaaiMcaaaGa aGykaaqabaGccqGHKjYOdaWcaaqaaiaaigdaaeaacaaIYaaaaiab=v IiqjaadwhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG1bWaaSba aSqaaiaaikdaaeqaaOGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaeu yQdC1aa0baaeaacaWGubaabaGaaGikaiaaigdacaaIPaaaaiaaiMca aeqaaOGaaGOlaaaa@6042@  (18)

При этом неравенство (17) останется в силе.

Выберем любое u 0 X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaeyicI4SaamiwamaaBaaaleaacaWGTbGaaGilaiaadsfaaeqaaaaa @38B5@ . Если мы рекуррентно определим

u j = K (1) [ u j1 ],j, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaadUeadaahaaWcbeqaaiaaiIcacaaIXaGaaGykaaaakiaa iUfacaWG1bWaaSbaaSqaaiaadQgacqGHsislcaaIXaaabeaakiaai2 facaaISaGaaGzbVlaadQgacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=vriojaaiYcaaaa@4D75@

то согласно доказательству теоремы Банаха о неподвижной точке (см. [15]) u j u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadQgaaeqaaO GaeyOKH4QaamyDaaaa@36C3@  в пространстве C( Ω T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaDaaale aacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaaGykaaaa@38A8@  и u= K (1) [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadUeadaahaaWcbe qaaiaaiIcacaaIXaGaaGykaaaakiaaiUfacaWG1bGaaGyxaaaa@396B@ . Более того, поскольку u j C( Ω T (1) ) m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadQgaaeqaaOGae8xjIa1aaSbaaSqaaiaa doeacaaIOaGaeuyQdC1aa0baaeaacaWGubaabaGaaGikaiaaigdaca aIPaaaaiaaiMcaaeqaaOGaeyizImQaamyBaaaa@4462@ , получаем u X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamiwamaaBaaale aacaWGTbGaaGilaiaadsfaaeqaaaaa@37C5@ . Единственность следует из неравенства (18).

Непрерывная зависимость решения от начальных данных исследуется аналогично работе [6].

Существование единственного непрерывного и непрерывно зависящего от начальных данных решения уравнения (11) относительно функции u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  доказывается аналогично.

Неравенство T T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGubGbauaacqGHKjYOcaWGubaaaa@3530@ , указанное в формулировке данной теоремы, следует из структуры оператора K (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34DB@ , так как для определения функции u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  на множестве Ω T (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGabmivayaafa aabaGaaGikaiaaikdacaaIPaaaaaaa@367E@  необходимо задать функцию u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@  на множестве Ω T (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamivaaqaai aaiIcacaaIXaGaaGykaaaaaaa@3671@ , где T T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaeyyzImRabmivayaafaaaaa@3541@ .

Теорема 8.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@  и β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@ . Тогда существуют такие числа 0< T T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiqadsfagaqbaiabgs MiJkaadsfacaaI8aGaeyOhIukaaa@38E7@ , что третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , заданное на множестве Ω T, T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaiaaiY caceWGubGbauaaaeqaaaaa@35EB@  и определенное формулами (6) и (11), из класса C 2 ( Ω T, T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiabfM6axnaaBaaaleaacaWGubGaaGilaiqadsfagaqbaaqa baGccaaIPaaaaa@3915@  тогда и только тогда, когда выполняются условия (12) и (13).

Доказательство теоремы 8.1 следует из теоремы 3.1 и леммы 8.1.

Теорема 8.2. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , φC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BA4@ , ψ L 1 loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaGaaG4waiaa icdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3F7D@ , μ L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@401B@ , β L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@4006@ . Тогда существуют такие числа 0< T T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiqadsfagaqbaiabgs MiJkaadsfacaaI8aGaeyOhIukaaa@38E7@ , что третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное слабое решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , заданное на множестве Ω T, T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaiaaiY caceWGubGbauaaaeqaaaaa@35EB@  и определенное формулами (6) и (11), из класса C( Ω T, T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaBaaale aacaWGubGaaGilaiqadsfagaqbaaqabaGccaaIPaaaaa@3822@ .

Доказательство теоремы 8.2 следует из теоремы 7.1 и леммы 8.1.

Отметим, что условия гладкости, указанные в теореме 8.2 о существовании и единственности локального слабого решения, сильнее, чем в теореме 7.1 о существовании и единственности глобального слабого решения. Во-первых, это происходит из-за того, что теорема 8.2 не требует выполнения условия типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори (см. (2)), которое обеспечивает единственность решения. Вместо этого мы пользуемся фактом, что непрерывно дифференцируемая функция на компактном подмножестве евклидова пространства удовлетворяет условию Липшица. Поэтому мы вынуждены полагать f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ . Но с другой стороны, для существования (но не единственности) локального слабого решения не обязательно считать функцию f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  непрерывно дифференцируемой. Для построения локального слабого можно воспользоваться теоремой Шаудера, как это сделано в [1], и в таком случае функцию f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  можно полагать непрерывной, но остальные условия гладкости, указанные в теореме 8.2, должны быть усилены: FC( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaaGykaaaa@3720@ , φ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C96@ , ψC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BB5@ , μC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3B9D@ , βC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3B88@ . Это связано с тем, что теорема Шаудера требует, чтобы оператор был вполне непрерывным, чего можно добиться, например, потребовав, чтобы операторы K (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34DA@  и K (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34DB@  переводили непрерывные функции в непрерывно дифференцируемые. Кроме того, в [17] показано, что, вообще говоря, в случае fC( Q ¯ ×)f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaGaey4jIKTaamOzaiabgMGipl aadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacaWGrbaa aiabgEna0kab=1risjaaiMcaaaa@4F5F@  смешанная задача вида (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) не имеет единственного локального решения.

Замечание 8.1. Аналогично п. 6, можно строить локальное классическое решение задачи с условиями сопряжения.

9. Заключение. В статье были сформулированы достаточные условия, при выполнении которых существует единственное классическое решение третьей смешанной задачи в четверти плоскости для телеграфного уравнения с нелинейным потенциалом. Показано, что нарушение условий согласования приводит к невозможности построения классического решения во всей четверти плоскости. В случае невыполнения данных условий рассмотрена задача с условиями сопряжения на характеристиках. В случае недостаточной гладкости исходных данных построено слабое решение начальной задачи и доказана его единственность. Если нелинейность уравнения не является липшицевой, то построено локальное классическое и слабое решение.

×

Об авторах

Виктор Иванович Корзюк

Белорусский государственный университет; Институт математики Национальной академии наук Беларуси

Автор, ответственный за переписку.
Email: korzyuk@bsu.by
Белоруссия, Минск; Минск

Ян Вячеславович Рудько

Институт математики Национальной академии наук Беларуси

Email: janycz@yahoo.com
Белоруссия, Минск

Список литературы

  1. Джохадзе О. М. Смешанная задача с нелинейным граничным условием для полулинейного уравнения колебания струны// Диффер. уравн. — 2022. — 58, № 5. — С. 591–606.
  2. Корзюк В. И., Козловская И. С. Классические решения задач для гиперболических уравнений: курс лекций. — Минск: БГУ, 2017.
  3. Корзюк В. И., Козловская И. С. Наумовец С. Н. Классическое решение первой смешанной задачи одномерного волнового уравнения с условиями типа Коши// Изв. НАН Беларуси. Сер. физ.-мат. наук. — 2015. — № 1. — С. 7–21.
  4. Корзюк В. И., Наумовец С. Н., Сериков В. П. Смешанная задача для одномерного волнового уравнения с условиями сопряжения и производными второго порядка в граничных условиях// Изв. НАН Беларуси. Сер. физ.-мат. наук. — 2020. — 56, № 3. — С. 287–297.
  5. Корзюк В. И., Рудько Я. В. Классическое и слабое решение первой смешанной задачи для телеграфного уравнения с нелинейным потенциалом// Изв. Иркут. гос. ун-та. Сер. Мат. — 2023. — 43. —С. 48–63.
  6. Корзюк В. И., Рудько Я. В. Классическое решение первой смешанной задачи для телеграфного уравнения с нелинейным потенциалом// Диффер. уравн. — 2022. — 58, № 2. — С. 174–184.
  7. Корзюк В. И., Рудько Я. В. Локальное классическое решение задачи Коши для полулинейного гиперболического уравнения в случае двух независимых переменных// Мат. Междунар. науч. конф. «Уфимская осенняя математическая школа». Т. 2 (Уфа, 28 сентября—1 октября 2022). — Уфа: РИЦ БашГУ, 2022. — С. 48–50.
  8. Корзюк В. И., Столярчук И. И. Классическое решение первой смешанной задачи для гиперболического уравнения второго порядка в криволинейной полуполосе с переменными коэффициентами//Диффер. уравн. — 2017. — 53, № 1. — С. 77–88.
  9. Корзюк В. И., Столярчук И. И. Классическое решение первой смешанной задачи для уравнения типа Клейна—Гордона—Фока с неоднородными условиями согласования// Докл. НАН Беларуси. — 2019. — 63, № 1. — С. 7–13.
  10. Математическая энциклопедия. — М.: Советская энциклопедия, 1982.
  11. Моисеев Е. И., Корзюк В. И., Козловская И. С. Классическое решение задачи с интегральным условием для одномерного волнового уравнения// Диффер. уравн. — 2014. — 50, № 10. — С. 1373–1385.
  12. Прохоров А. М. Физическая энциклопедия. Т. 3. — М., 1992.
  13. Фущич В. И. Симметрия в задачах математической физики// в кн.: Теоретико-алгебраические исследования в математической физике (Фущич В. И., ред.). — Киев: Ин-т мат. АН УССР, 1981. —С. 6–28.
  14. Харибегашвили С. С., Джохадзе О. М. 2011// Диффер. уравн.. — 47, № 12. — С. 1741–1753.
  15. Evans L. C. Partial Differential Equations. — Providence: Am. Math. Soc., 2010.
  16. Giai Giang Vo. A semilinear wave equation with a boundary condition of many-point type: Global existence and stability of weak solutions// Abstr. Appl. Anal. — 2015. — 2015. — 531872.
  17. Korzyuk V. I., Rudzko J. V. On the absence and non-uniqueness of classical solutions of mixed problems for the telegraph equation with a nonlinear potential/ arXiv: 2303.17483 [math.AP].
  18. Nesterenko Yu. R. Mixed problem for the wave equation with Robin boundary conditions// Dokl. Math. — 2009. — 79, № 3. — P. 322–324.
  19. Nikitin A. A. On the mixed problem for the wave equation with the third and first boundary conditions//Differ. Equations. — 2007. — 43, № 12. — P. 1733–1741.
  20. Le Thi Phuong Ngoc, Le Huu Ky Son, Nguyen Thanh Long Existence, blow-up and exponential decay estimates for the nonlinear Kirchhoff–Carrier wave equation in an annular with Robin–Dirichlet conditions//Kyungpook Math. J. — 2021. — 61. — P. 859–888.
  21. Li T. Exact boundary controllability for quasilinear wave equations// J. Comput. Appl. Math. — 2006. — 190. — P. 127–135.
  22. Nakayama Y. Liouville field theory: A decade after the revolution// Int. J. Mod. Phys. A. — 2004. — 19, № 17–18. — P. 2771–2930.
  23. Nguyen Huu Nhan, Le Thi Phuong Ngoc, Tran Minh Thuyet, Nguyen Thanh Long A Robin–Dirichlet problem for a nonlinear wave equation with the source term containing a nonlinear integral// Lithuan. Math. J. — 2017. — 57, № 1. — P. 80–108.
  24. Van Horssen W. T.,Wang Y., Cao G. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients// J. Sound Vibr. — 2018. — 424. — P. 263–271.
  25. Wu X., Mei L., Liu C. An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions// J. Math. Anal. Appl. — 2015. — 426, № 2. — P. 1164–1173.
  26. Xie Y., Tang J. A unified method for solving sinh-Gordon-type equations// Nuovo Cim. — 2006. — 121, № 2. — P. 1373–1385.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Примечание

Посвящается академику Е. И. Моисееву


© Корзюк В.И., Рудько Я.В., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).