Классическое решение третьей смешанной задачи для телеграфного уравнения с нелинейным потенциалом

Обложка

Цитировать

Полный текст

Аннотация

Для телеграфного уравнения с нелинейным потенциалом, заданного в первом квадранте, рассматривается смешанная задача, в которой на пространственной полуоси задаются условия Коши, а на временной полуоси — условие третьего рода (условие Робина). Решение строится методом характеристик в неявном аналитическом виде как решение некоторых интегральных уравнений. Проводится исследование разрешимости этих уравнений, а также зависимости от начальных данных и гладкости их решений. Для рассматриваемой задачи доказывается единственность решения и устанавливаются условия, при выполнении которых существует её классическое решение. При невыполнении условий согласования строится задача с условиями сопряжения, а при недостаточно гладких данных — слабое решение.

 

Полный текст

1. Введение. Строго говоря, все сплошные среды описываются нелинейными уравнениями. Выбор для описания среды линейных или нелинейных уравнений зависит от роли, которую играют нелинейные эффекты, и определяется конкретной физической ситуацией. Например, при описании распространения лазерных импульсов необходимо учитывать зависимость показателя преломления среды от интенсивности электромагнитного поля.

Линеаризация нелинейных уравнений математической физики не всегда ведёт к содержательному результату. Может оказаться, что линеаризация имеет смысл, но линейные уравнения сохраняют применимость лишь конечное время. Даже если линеаризация нелинейных уравнений математической физики возможна, с точки зрения физики исключительно важны <<существенно нелинейные>> решения, качественно отличающиеся от решений линейных уравнений. Такими могут быть стационарные решения солитонного типа, локализованные в одном или нескольких измерениях, или решения типа волновых коллапсов, описывающие самопроизвольную концентрацию энергии в небольших областях пространства (см. [12]).

Уравнения гиперболического типа занимают особое место среди нелинейных уравнений с частными производеыми второго порядка. <<Потеря одной производной>> при обращении гиперболического оператора второго порядка приводит к принципиальным трудностям при исследовании нелинейных гиперболических уравнений. Даже для создания локальной теории нелинейных гиперболических уравнений и систем потребовалось развитие специальной теории о неявных функциях в нелинейном функциональном анализе, так как классическая теорема о неявной функции из функционального анализа оказалась здесь неприменимой.

Для (существенно) квазилинейных гиперболических уравнений второго порядка с числом независимых переменных больше двух вопрос о разрешимости в целом не исследован даже для задачи Коши.

Разрешимость в некоторых классах функций в целом задачи Коши, а также некоторых краевых задач установлена для шикорого класса слабо нелинейных гиперболических уравнений вида

( t 2 Δ)u(t,x)=f(t,x,u(t,x), t u(t,x),u(t,x)),t>0,xΩ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOaIy7aa0baaSqaaiaads haaeaacaaIYaaaaOGaeyOeI0IaeuiLdqKaaGykaiaadwhacaaIOaGa amiDaiaaiYcaieqacaWF4bGaaGykaiaai2dacaWGMbGaaGikaiaads hacaaISaGaa8hEaiaaiYcacaWG1bGaaGikaiaadshacaaISaGaa8hE aiaaiMcacaaISaGaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaamyDai aaiIcacaWG0bGaaGilaiaa=HhacaaIPaGaaGilaiabgEGirlaadwha caaIOaGaamiDaiaaiYcacaWF4bGaaGykaiaaiMcacaaISaGaaGzbVl aadshacaaI+aGaaGimaiaaiYcacaaMf8UaaCiEaiabgIGiolabfM6a xjabgAOinprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacea Gae4xhHi1aaWbaaSqabeaacaWGUbaaaaaa@71D6@

(см. [10]). Но в отличие от первой и второй смешанных задач, третьей смешанной задаче посвящено не так много работ, даже в случае достаточно хорошо изученного линейного волнового уравнения (см. [2, 18, 19, 24]), не говоря уже про нелинейные уравнения. Однако в ряде работ, посвященных третьей смешанной задаче для нелинейного уравнения (см., например [16, 20, 21, 23, 25]), строятся слабые решения, а не классические. Отметим работы [21] и [25], в первой из которых изучается задача управления для классического решения, а во второй MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  третья смешанная задача в классе бесконечно дифференцируемых начальных данных.

Отметим также, что нелинейные уравнения трудно изучать: почти не существует общих методов, работающих для всех таких уравнений, и обычно каждое отдельное уравнение приходится изучать как отдельную задачу.

В данной статье, используя способ, предложенный ранее в [5, 6], и представляющий собой сочетание метода характеристик с методом последовательных приближений, мы строим решение третьей смешанной задачи для неоднородного гиперболического нелинейного уравнения второго порядка, доказываем единственность и непрерывную зависимость решения от начальных данных, а также выводим условия гладкости данных задачи и необходимые и достаточные условия согласования, при которых решение смешанной задачи будет классическим. При невыполнении однородных условий согласования строится задача с условиями сопряжения на характеристике, причем одно из которых, в отличие от первой смешанной задачи (см. [5, 6]), содержит некоторую произвольную постоянную, обеспечивающую наперед заданный разрыв решения. Это означает, что одной третьей смешанной задаче в обычной формулировке будет соответствовать бесконечное множество третьих смешанных задач с условиями сопряжения на характеристике. Но в каждом конкретном случае будет существовать единственное классическое решение. Если же в задаче присутствуют недостаточно гладкие функции, то строится обобщенное слабое решение. В случае нелипшицевой нелинейности отыскивается локальное решение и доказывается его единственность.

2. Постановка задачи. В области Q=(0,)×(0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGypaiaaiIcacaaIWaGaaG ilaiabg6HiLkaaiMcacqGHxdaTcaaIOaGaaGimaiaaiYcacqGHEisP caaIPaaaaa@3DFD@  двух независимых переменных (t,x) Q ¯ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiabgIGiopaanaaabaGaamyuaaaacqGHckcZtuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaG Omaaaaaaa@45D5@  рассмотрим одномерное нелинейное уравнение

u(t,x)f(t,x,u(t,x))=F(t,x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFHw YvcaWG1bGaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHsislcaWG MbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG1bGaaGikaiaads hacaaISaGaamiEaiaaiMcacaaIPaGaaGypaiaadAeacaaIOaGaamiD aiaaiYcacaWG4bGaaGykaiaaiYcaaaa@4F08@  (1)

где = t 2 a 2 x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFHw YvcaaI9aGaeyOaIy7aa0baaSqaaiaadshaaeaacaaIYaaaaOGaeyOe I0IaamyyamaaCaaaleqabaGaaGOmaaaakiabgkGi2oaaDaaaleaaca WG4baabaGaaGOmaaaaaaa@4225@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  оператор Д’Аламбера ( a>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGOpaiaaicdaaaa@3425@  для определённости), F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функция, заданная на множестве Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , а f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функция, заданная на множестве [0,)×[0,)× MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHEisPca aIPaGaey41aqRaaG4waiaaicdacaaISaGaeyOhIuQaaGykaiabgEna 0orr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi faaa@4994@  и удовлетворяющая условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори по третьей переменной, т.е. существует измеримая функция k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@ , заданная на множестве Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , что

|f(t,x, z 1 )f(t,x, z 2 )|k(t,x)| z 1 z 2 | MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiMca cqGHsislcaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHKjYOcaWGRbGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamOEamaaBaaale aacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaI8baaaa@518B@  (2)

и такая, что ее вторая степень локально суммируема. К уравнению (1) присоединяются начальные условия

u(0,x)=φ(x), t u(0,x)=ψ(x),x[0,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iEaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7cqGHciITdaWgaaWcbaGaamiDaaqabaGccaWG1bGaaGikaiaaic dacaaISaGaamiEaiaaiMcacaaI9aGaeqiYdKNaaGikaiaadIhacaaI PaGaaGilaiaaywW7caWG4bGaeyicI4SaaG4waiaaicdacaaISaGaey OhIuQaaGykaiaaiYcaaaa@53FF@  (3)

и граничное условие

x u(t,0)+β(t)u(t,0)=μ(t),t[0,), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaWgaaWcbaGaamiEaaqaba GccaWG1bGaaGikaiaadshacaaISaGaaGimaiaaiMcacqGHRaWkcqaH YoGycaaIOaGaamiDaiaaiMcacaWG1bGaaGikaiaadshacaaISaGaaG imaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGaaGilaiaa ywW7caWG0bGaeyicI4SaaG4waiaaicdacaaISaGaeyOhIuQaaGykai aaiYcaaaa@5192@  (4)

где φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  и β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функции, заданные на полуоси [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHEisPca aIPaaaaa@3636@ .

3. Интегральное уравнение. Область Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  характеристикой xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@  разделим на две подобласти Q (j) ={(t,x)|( 1) j (atx)>0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaGccaaI9aGaaG4EaiaaiIcacaWG0bGaaGilaiaadIha caaIPaGaaGiFaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba GaamOAaaaakiaaiIcacaWGHbGaamiDaiabgkHiTiaadIhacaaIPaGa aGOpaiaaicdacaaI9baaaa@47EB@ , j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ .

[x = 0.5cm, y = 0.5cm] [->,line width=1.16pt] (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (0,6) node[anchor=north west] t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ ; [->,line width=1.16pt] (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (6,0) node[anchor=north west] x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ ; [line width=1.16pt,dash pattern=on 7.5pt off 6pt] (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (6,6); (2.6,2.2) node[anchor=north west] Q (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34E0@ ; (1.4,5.5) node[anchor=north west] Q (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34E1@ ; (-0.6,0.0) node[anchor=north west] O MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbaaaa@3291@ ; [<-,line width=1.16pt,dotted] (4,4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@  (7.2,4.0) node[anchor=west] xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ ;

Figure 1: Разделение области Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  характеристикой xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@  на две подобласти Q (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34E0@  и Q (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34E1@ .

В замыкании Q (j) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaWGQbGaaGykaaaaaaaaaa@3525@  каждой из подобластей Q (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3514@  рассмотрим интегральные уравнения

u (j) (t,x)= g (1,j) (xat)+ g (2) (x+at) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaai2da caWGNbWaaWbaaSqabeaacaaIOaGaaGymaiaaiYcacaWGQbGaaGykaa aakiaaiIcacaWG4bGaeyOeI0IaamyyaiaadshacaaIPaGaey4kaSIa am4zamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaaGikaiaadI hacqGHRaWkcaWGHbGaamiDaiaaiMcacqGHsislaaa@4E66@

1 4 a 2 0 xat dy (1) j (atx) x+at [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (j) zy 2a , z+y 2 ]dz, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4bGaeyOeI0Iaamyyaiaadshaa0Gaey4kIipakiaads gacaWG5bWaa8qCaeqaleaacaaIOaGaeyOeI0IaaGymaiaaiMcadaah aaqabeaacaWGQbaaaiaaiIcacaWGHbGaamiDaiabgkHiTiaadIhaca aIPaaabaGaamiEaiabgUcaRiaadggacaWG0baaniabgUIiYdGccaaI BbGaamOramaabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaai aaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baa baGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaaeaada WcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGil amaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcaca WG1bWaaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaGcdaqadaqaamaa laaabaGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISa WaaSaaaeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGa ayzkaaaacaGLOaGaayzkaaGaaGyxaiaadsgacaWG6bGaaGilaaaa@7937@

(t,x) Q (j) ¯ ,j=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiabgIGiopaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaadQga caaIPaaaaaaakiaaiYcacaWGQbGaaGypaiaaigdacaaISaGaaGOmai aaiYcaaaa@4013@  (5)

где g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@ , g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  и g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые функции, первые две из которых заданы на множестве [0,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacqGHEisPca aIPaaaaa@3636@ , а последняя MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  на (,0] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOeI0IaeyOhIuQaaGilai aaicdacaaIDbaaaa@3724@ .

Определим на замыкании Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@  области Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  функцию u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  как совпадающую на замыкании Q (j) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaWGQbGaaGykaaaaaaaaaa@3525@  области Q (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3514@  с решением u (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3538@  интегрального уравнения (5):

u(t,x)= u (j) (t,x),(t,x) Q (j) ¯ ,j=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaI9aGaamyDamaaCaaaleqabaGaaGikaiaadQgacaaI PaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGaaGzbVl aaiIcacaWG0bGaaGilaiaadIhacaaIPaGaeyicI48aa0aaaeaacaWG rbWaaWbaaSqabeaacaaIOaGaamOAaiaaiMcaaaaaaOGaaGilaiaayw W7caWGQbGaaGypaiaaigdacaaISaGaaGOmaiaai6caaaa@514F@  (6)

Лемма 3.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ . Функция u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@  принадлежит классу C 2 ( Q (1) ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaaigdacaaI PaaaaaaakiaaiMcaaaa@381B@  и удовлетворяет уравнению (1) в Q (1) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaaIXaGaaGykaaaaaaaaaa@34F1@  тогда и только тогда, когда она является непрерывным решением уравнения (5) при j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdaaaa@342E@ , функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  в котором из класса C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@ .

Лемма 3.2. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ . Функция u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  принадлежит классу C 2 ( Q (2) ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaaikdacaaI PaaaaaaakiaaiMcaaaa@381C@  и удовлетворяет уравнению (1) в Q (2) ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfadaahaaWcbeqaai aaiIcacaaIYaGaaGykaaaaaaaaaa@34F2@  тогда и только тогда, когда она является непрерывным решением уравнения (5), j=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaikdaaaa@342F@ , функции g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  в котором из классов C 2 ((,0]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiIcacqGHsislcqGHEisPcaaISaGaaGimaiaai2facaaI Paaaaa@3A44@  и C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@  соответственно.

Теорема 3.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ . Функция u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  принадлежит классу C 2 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuaaaacaaIPaaaaa@35C4@  и удовлетворят уравнению (1) тогда и только тогда, когда она для каждого j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@  является непрерывным решением уравнения (5), функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@ , g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  в котором из классов C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@ , C 2 ((,0]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiIcacqGHsislcqGHEisPcaaISaGaaGimaiaai2facaaI Paaaaa@3A44@  и C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3956@  соответственно и выполняются условия согласования

g (1,1) (0) g (1,2) (0)=0,D g (1,1) (0)D g (1,2) (0)=0, D 2 g (1,1) (0) D 2 g (1,2) (0)+ 1 a 2 F(0,0)+f(0,0, g (1,1) (0)+ g (2) (0)) =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaam4zamaaCaaale qabaGaaGikaiaaigdacaaISaGaaGymaiaaiMcaaaGccaaIOaGaaGim aiaaiMcacqGHsislcaWGNbWaaWbaaSqabeaacaaIOaGaaGymaiaaiY cacaaIYaGaaGykaaaakiaaiIcacaaIWaGaaGykaiaai2dacaaIWaGa aGilaiaaywW7caWGebGaam4zamaaCaaaleqabaGaaGikaiaaigdaca aISaGaaGymaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacqGHsislcaWG ebGaam4zamaaCaaaleqabaGaaGikaiaaigdacaaISaGaaGOmaiaaiM caaaGccaaIOaGaaGimaiaaiMcacaaI9aGaaGimaiaaiYcaaeaacaWG ebWaaWbaaSqabeaacaaIYaaaaOGaam4zamaaCaaaleqabaGaaGikai aaigdacaaISaGaaGymaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacqGH sislcaWGebWaaWbaaSqabeaacaaIYaaaaOGaam4zamaaCaaaleqaba GaaGikaiaaigdacaaISaGaaGOmaiaaiMcaaaGccaaIOaGaaGimaiaa iMcacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGHbWaaWbaaSqabeaaca aIYaaaaaaakmaabmaabaGaamOraiaaiIcacaaIWaGaaGilaiaaicda caaIPaGaey4kaSIaamOzaiaaiIcacaaIWaGaaGilaiaaicdacaaISa Gaam4zamaaCaaaleqabaGaaGikaiaaigdacaaISaGaaGymaiaaiMca aaGccaaIOaGaaGimaiaaiMcacqGHRaWkcaWGNbWaaWbaaSqabeaaca aIOaGaaGOmaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacaaIPaaacaGL OaGaayzkaaGaaGypaiaaicdacaaIUaaaaaaa@8758@  (7)

Доказательство лемм 3.1, 3.2 и теоремы 3.1 представлено в [6].

Теорема 3.2. Пусть F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , fC( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaaaaa@440E@ , функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2), и заданы непрерывные функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@ , g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@ . Тогда решения уравнений (5) существуют, единственны и непрерывно зависят от исходных данных.

Замечание 3.1. В теореме 3.1 вместо условия fC( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaaaaa@440E@  можно потребовать выполнение трех условий:

(i) функция f 1 : Q ¯ (t,x)f(t,x,z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaigdaaeqaaO GaaiOoamaanaaabaGaamyuaaaatuuDJXwAK1uy0HMmaeHbfv3ySLgz G0uy0HgiuD3BaGabaiab=TGiLlaaiIcacaWG0bGaaGilaiaadIhaca aIPaGaeSOPHeMaamOzaiaaiIcacaWG0bGaaGilaiaadIhacaaISaGa amOEaiaaiMcacqGHiiIZcqWFDeIuaaa@4F8B@  измерима при любом фиксированном z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF7@ ;

(ii) функция f 2 :zf(t,x,z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaaikdaaeqaaO GaaiOoamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGa e8xhHiLae83cIuUaamOEaiablAAiHjaadAgacaaIOaGaamiDaiaaiY cacaWG4bGaaGilaiaadQhacaaIPaGaeyicI4Sae8xhHifaaa@4CA8@  непрерывна на множестве MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risbaa@3C74@  для при почти любой фиксированной точки (t,x) Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiabgIGiopaanaaabaGaamyuaaaaaaa@3839@ ;

(iii) верно неравенство |f(t,x,z)|α(t,x)+β|z| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEaiaaiMcacaaI8bGaeyizImQaeqySdeMa aGikaiaadshacaaISaGaamiEaiaaiMcacqGHRaWkcqaHYoGycaaI8b GaamOEaiaaiYhaaaa@476D@ , где α L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaWaa0aaaeaa caWGrbaaaiaaiMcaaaa@3BBC@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risbaa@3F99@ .

Доказательства теоремы 3.2 и замечания 3.1 представлены в [5].

4. Построение решения смешанной задачи. Функции g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@  определяем из условий Коши (3). Подставляя соотношение (5) при j=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdaaaa@342E@  в условия (3) получим систему уравнений относительно функций g (1,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaaaaa@3667@  и g (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34F7@ :

u (1) (0,x)=φ(x)= g (1,1) (x)+ g (2) (x),x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIOaGaaGimaiaaiYcacaWG4bGaaGykaiaai2da cqaHgpGAcaaIOaGaamiEaiaaiMcacaaI9aGaam4zamaaCaaaleqaba GaaGikaiaaigdacaaISaGaaGymaiaaiMcaaaGccaaIOaGaamiEaiaa iMcacqGHRaWkcaWGNbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaa GccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVlaadIhacqGHLjYScaaI WaGaaGilaaaa@52A2@

t u (1) (0,x)=ψ(x)=aD g (1,1) (x)+aD g (2) (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaWgaaWcbaGaamiDaaqaba GccaWG1bWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIOaGa aGimaiaaiYcacaWG4bGaaGykaiaai2dacqaHipqEcaaIOaGaamiEai aaiMcacaaI9aGaeyOeI0IaamyyaiaadseacaWGNbWaaWbaaSqabeaa caaIOaGaaGymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaG ykaiabgUcaRiaadggacaWGebGaam4zamaaCaaaleqabaGaaGikaiaa ikdacaaIPaaaaOGaaGikaiaadIhacaaIPaGaeyOeI0caaa@5409@

1 2a 0 x [f xy 2a , x+y 2 , u (1) xy 2a , x+y 2 +F xy 2a , x+y 2 ]dy,x0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIi YdGccaaIBbGaamOzamaabmaabaWaaSaaaeaacaWG4bGaeyOeI0Iaam yEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadIhacqGHRaWk caWG5baabaGaaGOmaaaacaaISaGaamyDamaaCaaaleqabaGaaGikai aaigdacaaIPaaaaOWaaeWaaeaadaWcaaqaaiaadIhacqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamiEaiabgUcaRi aadMhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab gUcaRiaadAeadaqadaqaamaalaaabaGaamiEaiabgkHiTiaadMhaae aacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG4bGaey4kaSIaamyE aaqaaiaaikdaaaaacaGLOaGaayzkaaGaaGyxaiaadsgacaWG5bGaaG ilaiaaywW7caWG4bGaeyyzImRaaGimaiaai6caaaa@6993@

Проинтегрировав второе уравнение от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  до x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , получим

g (1,1) (x)+ g (2) (x)=φ(x),x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaGykaiabgUca RiaadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiIcaca WG4bGaaGykaiaai2dacqaHgpGAcaaIOaGaamiEaiaaiMcacaaISaGa aGzbVlaadIhacqGHLjYScaaIWaGaaGilaaaa@4AB8@

g (1,1) (x)+ g (2) (x)= 1 a 0 x ψ(z)dz+ 1 2 a 2 0 x dz 0 z [F zy 2a , z+y 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaWbaaSqabeaaca aIOaGaaGymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaGyk aiabgUcaRiaadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaaki aaiIcacaWG4bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaWGHbaa amaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakiabeI8a5j aaiIcacaWG6bGaaGykaiaadsgacaWG6bGaey4kaSYaaSaaaeaacaaI XaaabaGaaGOmaiaadggadaahaaWcbeqaaiaaikdaaaaaaOWaa8qCae qaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaamizaiaadQhadaWd XbqabSqaaiaaicdaaeaacaWG6baaniabgUIiYdGccaaIBbGaamOram aabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikdacaWG HbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaGOmaa aaaiaawIcacaGLPaaacqGHRaWkaaa@689F@

+f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy+2C,x0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGMbWaaeWaaeaadaWcaa qaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaa laaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcacaWG1b WaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGcdaqadaqaamaalaaa baGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaS aaaeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGaayzk aaaacaGLOaGaayzkaaGaaGyxaiaadsgacaWG5bGaey4kaSIaaGOmai aadoeacaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGaaGOlaaaa@584A@

Отсюда

g (1,1) (x)= φ(x) 2 1 2a 0 x ψ(z)dzC MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWG4bGaaGykaiaai2da daWcaaqaaiabeA8aQjaaiIcacaWG4bGaaGykaaqaaiaaikdaaaGaey OeI0YaaSaaaeaacaaIXaaabaGaaGOmaiaadggaaaWaa8qCaeqaleaa caaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqiYdKNaaGikaiaadQhaca aIPaGaamizaiaadQhacqGHsislcaWGdbGaeyOeI0caaa@4EC6@

1 4 a 2 0 x dz 0 z [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy,x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4baaniabgUIiYdGccaWGKbGaamOEamaapehabeWcba GaaGimaaqaaiaadQhaa0Gaey4kIipakiaaiUfacaWGgbWaaeWaaeaa daWcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaG ilamaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaaGaayjk aiaawMcaaiabgUcaRiaadAgadaqadaqaamaalaaabaGaamOEaiabgk HiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6bGa ey4kaSIaamyEaaqaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaai aaiIcacaaIXaGaaGykaaaakmaabmaabaWaaSaaaeaacaWG6bGaeyOe I0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadQhacq GHRaWkcaWG5baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaacaaIDbGaamizaiaadMhacaaISaGaaGzbVlaadIhacqGHLjYSca aIWaGaaGilaaaa@70A7@

g (2) (x)= φ(x) 2 + 1 2a 0 x ψ(z)dz+C+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIOaGaamiEaiaaiMcacaaI9aWaaSaaaeaacqaH gpGAcaaIOaGaamiEaiaaiMcaaeaacaaIYaaaaiabgUcaRmaalaaaba GaaGymaaqaaiaaikdacaWGHbaaamaapehabeWcbaGaaGimaaqaaiaa dIhaa0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaadsgaca WG6bGaey4kaSIaam4qaiabgUcaRaaa@4D35@

+ 1 4 a 2 0 x dz 0 z [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy,x0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4baaniabgUIiYdGccaWGKbGaamOEamaapehabeWcba GaaGimaaqaaiaadQhaa0Gaey4kIipakiaaiUfacaWGgbWaaeWaaeaa daWcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaG ilamaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaaGaayjk aiaawMcaaiabgUcaRiaadAgadaqadaqaamaalaaabaGaamOEaiabgk HiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6bGa ey4kaSIaamyEaaqaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaai aaiIcacaaIXaGaaGykaaaakmaabmaabaWaaSaaaeaacaWG6bGaeyOe I0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadQhacq GHRaWkcaWG5baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGL PaaacaaIDbGaamizaiaadMhacaaISaGaaGzbVlaadIhacqGHLjYSca aIWaGaaGilaaaa@709C@  (8)

где C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbaaaa@3285@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольная константа из множества действительных чисел. Функцию g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  определяем из граничного условия (4). Подставляя соотношение (5) при j=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaikdaaaa@342F@  в условия (4) получим уравнение

1 2 a 2 0 at [f( aty 2a , at+y 2 , u (2) aty 2a , at+y 2 )+F aty 2a , at+y 2 ]dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqGHsislcaWGHbGaamiDaaqdcqGHRiI8aOGaaG4waiaadA gacaaIOaWaaSaaaeaacaWGHbGaamiDaiabgkHiTiaadMhaaeaacaaI YaGaamyyaaaacaaISaWaaSaaaeaacaWGHbGaamiDaiabgUcaRiaadM haaeaacaaIYaaaaiaaiYcacaWG1bWaaWbaaSqabeaacaaIOaGaaGOm aiaaiMcaaaGcdaqadaqaamaalaaabaGaamyyaiaadshacqGHsislca WG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyyaiaadsha cqGHRaWkcaWG5baabaGaaGOmaaaaaiaawIcacaGLPaaacaaIPaGaey 4kaSIaamOramaabmaabaWaaSaaaeaacaWGHbGaamiDaiabgkHiTiaa dMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWGHbGaamiDai abgUcaRiaadMhaaeaacaaIYaaaaaGaayjkaiaawMcaaiaai2facaaM i8UaamizaiaadMhacaaMi8Uaey4kaScaaa@6F09@

+β(t) g (1,2) (at)+ g (2) (at) +D g (1,2) (at)+D g (2) (at)=μ(t),t0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaHYoGycaaIOaGaamiDai aaiMcadaqadaqaaiaadEgadaahaaWcbeqaaiaaiIcacaaIXaGaaGil aiaaikdacaaIPaaaaOGaaGikaiabgkHiTiaadggacaWG0bGaaGykai abgUcaRiaadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaa iIcacaWGHbGaamiDaiaaiMcaaiaawIcacaGLPaaacqGHRaWkcaWGeb Gaam4zamaaCaaaleqabaGaaGikaiaaigdacaaISaGaaGOmaiaaiMca aaGccaaIOaGaeyOeI0IaamyyaiaadshacaaIPaGaey4kaSIaamirai aadEgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiIcacaWG HbGaamiDaiaaiMcacaaI9aGaeqiVd0MaaGikaiaadshacaaIPaGaaG ilaiaaywW7caWG0bGaeyyzImRaaGimaiaaiYcaaaa@6689@

относительно функции g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@ . Сделав замену t=z/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiabgkHiTiaadQhaca aIVaGaamyyaaaa@3708@ , получим обыкновенное дифференциальное уравнение для отыскания функции g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  

1 2 a 2 0 z [f( yz 2a , yz 2 , u (2) yz 2a , yz 2 )+F yz 2a , yz 2 ]dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG6baaniabgUIiYdGccaaIBbGaamOzaiaaiIcadaWcaa qaaiabgkHiTiaadMhacqGHsislcaWG6baabaGaaGOmaiaadggaaaGa aGilamaalaaabaGaamyEaiabgkHiTiaadQhaaeaacaaIYaaaaiaaiY cacaWG1bWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGcdaqadaqa amaalaaabaGaeyOeI0IaamyEaiabgkHiTiaadQhaaeaacaaIYaGaam yyaaaacaaISaWaaSaaaeaacaWG5bGaeyOeI0IaamOEaaqaaiaaikda aaaacaGLOaGaayzkaaGaaGykaiabgUcaRiaadAeadaqadaqaamaala aabaGaeyOeI0IaamyEaiabgkHiTiaadQhaaeaacaaIYaGaamyyaaaa caaISaWaaSaaaeaacaWG5bGaeyOeI0IaamOEaaqaaiaaikdaaaaaca GLOaGaayzkaaGaaGyxaiaayIW7caWGKbGaamyEaiabgUcaRaaa@6953@

+β z a g (1,2) (z)+ g (2) (z) +D g (1,2) (z)+D g (2) (z)=μ z a ,z0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaamOEaaqaaiaadggaaaaacaGLOaGaayzkaaWaaeWa aeaacaWGNbWaaWbaaSqabeaacaaIOaGaaGymaiaaiYcacaaIYaGaaG ykaaaakiaaiIcacaWG6bGaaGykaiabgUcaRiaadEgadaahaaWcbeqa aiaaiIcacaaIYaGaaGykaaaakiaaiIcacqGHsislcaWG6bGaaGykaa GaayjkaiaawMcaaiabgUcaRiaadseacaWGNbWaaWbaaSqabeaacaaI OaGaaGymaiaaiYcacaaIYaGaaGykaaaakiaaiIcacaWG6bGaaGykai abgUcaRiaadseacaWGNbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMca aaGccaaIOaGaeyOeI0IaamOEaiaaiMcacaaI9aGaeqiVd02aaeWaae aacqGHsisldaWcaaqaaiaadQhaaeaacaWGHbaaaaGaayjkaiaawMca aiaaiYcacaaMf8UaamOEaiabgsMiJkaaicdacaaIUaaaaa@671A@  (9)

Уравнения (9) относительно g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  вместе с первым условием (7) рассматриваем как задачу Коши для дифференциального уравнения первого порядка. Решая эту задачу, получим:

g (1,2) (x)=exp 0 x β ξ a dξ ( φ(0) 2 C+ 0 x exp 0 ξ β θ a dθ {μ ξ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaakiaaiIcacaWG4bGaaGykaiaai2da ciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaapehabeWcbaGaaG imaaqaaiaadIhaa0Gaey4kIipakiabek7aInaabmaabaGaeyOeI0Ya aSaaaeaacqaH+oaEaeaacaWGHbaaaaGaayjkaiaawMcaaiaadsgacq aH+oaEaiaawIcacaGLPaaacaaIOaWaaSaaaeaacqaHgpGAcaaIOaGa aGimaiaaiMcaaeaacaaIYaaaaiabgkHiTiaadoeacqGHRaWkdaWdXb qabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGcciGGLbGaaiiEaiaa cchadaqadaqaamaapehabeWcbaGaaGimaaqaaiabe67a4bqdcqGHRi I8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaa dggaaaaacaGLOaGaayzkaaGaamizaiabeI7aXbGaayjkaiaawMcaai aaiUhacqaH8oqBdaqadaqaamaalaaabaGaeqOVdGhabaGaamyyaaaa aiaawIcacaGLPaaacqGHsislaaa@7350@

1 4 a 2 0 ξ f ξy 2a , yξ 2 , u (1) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqGHsislcqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzam aabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4b qaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIXaGa aGykaaaakmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislca WG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHi Tiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4kaSIaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGH sislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEai abgkHiTiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaamizaiaadMhacqGHsislaaa@6E61@

β ξ a (C+ 1 4 a 2 0 ξ dz 0 z f zy 2a , y+z 2 , u (1) zy 2a , y+z 2 +F zy 2a , y+z 2 dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaeqOVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaaI OaGaam4qaiabgUcaRmaalaaabaGaaGymaaqaaiaaisdacaWGHbWaaW baaSqabeaacaaIYaaaaaaakmaapehabeWcbaGaaGimaaqaaiabgkHi Tiabe67a4bqdcqGHRiI8aOGaamizaiaadQhadaWdXbqabSqaaiaaic daaeaacaWG6baaniabgUIiYdGcdaWadaqaaiaadAgadaqadaqaamaa laaabaGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISa WaaSaaaeaacaWG5bGaey4kaSIaamOEaaqaaiaaikdaaaGaaGilaiaa dwhadaahaaWcbeqaaiaaiIcacaaIXaGaaGykaaaakmaabmaabaWaaS aaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYca daWcaaqaaiaadMhacqGHRaWkcaWG6baabaGaaGOmaaaaaiaawIcaca GLPaaaaiaawIcacaGLPaaacqGHRaWkcaWGgbWaaeWaaeaadaWcaaqa aiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaala aabaGaamyEaiabgUcaRiaadQhaaeaacaaIYaaaaaGaayjkaiaawMca aaGaay5waiaaw2faaiaadsgacaWG5bGaey4kaScaaa@7617@

+ 1 2a 0 ξ ψ(z)dz+ φ(ξ) 2 ) ψ(ξ) 2a φ (ξ) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacqGHsislcqaH+oaE a0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaayIW7caWGKb GaamOEaiabgUcaRmaalaaabaGaeqOXdOMaaGikaiabgkHiTiabe67a 4jaaiMcaaeaacaaIYaaaaiaaiMcacqGHsisldaWcaaqaaiabeI8a5j aaiIcacqGHsislcqaH+oaEcaaIPaaabaGaaGOmaiaadggaaaGaeyOe I0YaaSaaaeaacuaHgpGAgaqbaiaaiIcacqGHsislcqaH+oaEcaaIPa aabaGaaGOmaaaacqGHRaWkaaa@5BC3@

+ 1 2 a 2 0 ξ f ξy 2a , yξ 2 , u (2) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy}dξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzamaabmaaba WaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGaaGOmaiaa dggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4bqaaiaaik daaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaa kmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baaba GaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a 4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaS IaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTi abe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa amizaiaadMhacaaI9bGaamizaiabe67a4jaaiMcacaaIUaaaaa@7199@

Заметим, что, поскольку,

exp( 0 x β ξ a dξ) C 0 x Cβ ξ a exp( 0 ξ β θ a dθ)dξ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchacaaIOaGaey OeI0Yaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaeqOS di2aaeWaaeaacqGHsisldaWcaaqaaiabe67a4bqaaiaadggaaaaaca GLOaGaayzkaaGaamizaiabe67a4jaaiMcadaqadaqaaiabgkHiTiaa doeacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYd GccaWGdbGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabe67a4bqa aiaadggaaaaacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbGaaGikam aapehabeWcbaGaaGimaaqaaiabe67a4bqdcqGHRiI8aOGaeqOSdi2a aeWaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaadggaaaaacaGLOa GaayzkaaGaamizaiabeI7aXjaaiMcacaWGKbGaeqOVdGhacaGLOaGa ayzkaaGaaGypaaaa@6A85@

=Cexp( 0 x β ξ a dξ) 1+ 0 x ξ exp 0 ξ β θ a dθ dξ = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Iaam4qaiGacwgaca GG4bGaaiiCaiaaiIcacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG 4baaniabgUIiYdGccqaHYoGydaqadaqaaiabgkHiTmaalaaabaGaeq OVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaWGKbGaeqOVdGNaaGyk amaabmaabaGaaGymaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadI haa0Gaey4kIipakmaalaaabaGaeyOaIylabaGaeyOaIyRaeqOVdGha amaadmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaadaWdXbqabSqaai aaicdaaeaacqaH+oaEa0Gaey4kIipakiabek7aInaabmaabaGaeyOe I0YaaSaaaeaacqaH4oqCaeaacaWGHbaaaaGaayjkaiaawMcaaiaads gacqaH4oqCaiaawIcacaGLPaaaaiaawUfacaGLDbaacaWGKbGaeqOV dGhacaGLOaGaayzkaaGaaGypaaaa@6B19@

=Cexp 0 x β ξ a dξ 1+exp 0 x β θ a dθ 1 =C, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Iaam4qaiGacwgaca GG4bGaaiiCamaabmaabaGaeyOeI0Yaa8qCaeqaleaacaaIWaaabaGa amiEaaqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaai abe67a4bqaaiaadggaaaaacaGLOaGaayzkaaGaamizaiabe67a4bGa ayjkaiaawMcaamaabmaabaGaaGymaiabgUcaRiGacwgacaGG4bGaai iCamaabmaabaWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8 aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaadg gaaaaacaGLOaGaayzkaaGaamizaiabeI7aXbGaayjkaiaawMcaaiab gkHiTiaaigdaaiaawIcacaGLPaaacaaI9aGaeyOeI0Iaam4qaiaaiY caaaa@6122@

и

0 x exp 0 ξ β θ a dθ φ (ξ)dξ=φ(0)φ(x)exp 0 x β θ a dθ + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG4b aaniabgUIiYdGcciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWc baGaaGimaaqaaiabe67a4bqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacq GHsisldaWcaaqaaiabeI7aXbqaaiaadggaaaaacaGLOaGaayzkaaGa amizaiabeI7aXbGaayjkaiaawMcaaiqbeA8aQzaafaGaaGikaiabgk HiTiabe67a4jaaiMcacaaMi8Uaamizaiabe67a4jaai2dacqaHgpGA caaIOaGaaGimaiaaiMcacqGHsislcqaHgpGAcaaIOaGaeyOeI0Iaam iEaiaaiMcaciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWcbaGa aGimaaqaaiaadIhaa0Gaey4kIipakiabek7aInaabmaabaGaeyOeI0 YaaSaaaeaacqaH4oqCaeaacaWGHbaaaaGaayjkaiaawMcaaiaadsga cqaH4oqCaiaawIcacaGLPaaacqGHRaWkaaa@7029@

+ 0 x exp 0 ξ β θ a dθ β ξ a φ(ξ)dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWdXbqabSqaaiaaicdaae aacaWG4baaniabgUIiYdGcciGGLbGaaiiEaiaacchadaqadaqaamaa pehabeWcbaGaaGimaaqaaiabe67a4bqdcqGHRiI8aOGaeqOSdi2aae WaaeaacqGHsisldaWcaaqaaiabeI7aXbqaaiaadggaaaaacaGLOaGa ayzkaaGaamizaiabeI7aXbGaayjkaiaawMcaaiabek7aInaabmaaba GaeyOeI0YaaSaaaeaacqaH+oaEaeaacaWGHbaaaaGaayjkaiaawMca aiabeA8aQjaaiIcacqGHsislcqaH+oaEcaaIPaGaaGjcVlaadsgacq aH+oaEcaaISaaaaa@5B16@

то функция g (1,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaaaaa@3668@  может быть представлена в виде

g (1,2) (x)=C+ φ(x) 2 +exp 0 x β ξ a dξ ( 0 x exp 0 ξ β θ a dθ {μ ξ a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIYaGaaGykaaaakiaaiIcacaWG4bGaaGykaiaai2da cqGHsislcaWGdbGaey4kaSYaaSaaaeaacqaHgpGAcaaIOaGaeyOeI0 IaamiEaiaaiMcaaeaacaaIYaaaaiabgUcaRiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0Yaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcq GHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqaaiabe67a4bqa aiaadggaaaaacaGLOaGaayzkaaGaamizaiabe67a4bGaayjkaiaawM caaiaaiIcadaWdXbqabSqaaiaaicdaaeaacaWG4baaniabgUIiYdGc ciGGLbGaaiiEaiaacchadaqadaqaamaapehabeWcbaGaaGimaaqaai abe67a4bqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWcaaqa aiabeI7aXbqaaiaadggaaaaacaGLOaGaayzkaaGaamizaiabeI7aXb GaayjkaiaawMcaaiaaiUhacqaH8oqBdaqadaqaamaalaaabaGaeqOV dGhabaGaamyyaaaaaiaawIcacaGLPaaacqGHsislaaa@7562@

1 4 a 2 0 ξ f ξy 2a , yξ 2 , u (1) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqGHsislcqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzam aabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4b qaaiaaikdaaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIXaGa aGykaaaakmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislca WG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHi Tiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaa Gaey4kaSIaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGH sislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEai abgkHiTiabe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaamizaiaadMhacqGHsislaaa@6E61@

β ξ a ( 1 4 a 2 0 ξ dz 0 z f zy 2a , y+z 2 , u (1) zy 2a , y+z 2 +F zy 2a , y+z 2 dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaeqOVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaaI OaWaaSaaaeaacaaIXaaabaGaaGinaiaadggadaahaaWcbeqaaiaaik daaaaaaOWaa8qCaeqaleaacaaIWaaabaGaeyOeI0IaeqOVdGhaniab gUIiYdGccaWGKbGaamOEamaapehabeWcbaGaaGimaaqaaiaadQhaa0 Gaey4kIipakmaadmaabaGaamOzamaabmaabaWaaSaaaeaacaWG6bGa eyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadM hacqGHRaWkcaWG6baabaGaaGOmaaaacaaISaGaamyDamaaCaaaleqa baGaaGikaiaaigdacaaIPaaaaOWaaeWaaeaadaWcaaqaaiaadQhacq GHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyE aiabgUcaRiaadQhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkai aawMcaaiabgUcaRiaadAeadaqadaqaamaalaaabaGaamOEaiabgkHi TiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG5bGaey 4kaSIaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzx aaGaamizaiaadMhacqGHRaWkaaa@746D@

+ 1 2a 0 ξ ψ(z)dz+φ(ξ)) ψ(ξ) 2a + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacqGHsislcqaH+oaE a0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaayIW7caWGKb GaamOEaiabgUcaRiabeA8aQjaaiIcacqGHsislcqaH+oaEcaaIPaGa aGykaiabgkHiTmaalaaabaGaeqiYdKNaaGikaiabgkHiTiabe67a4j aaiMcaaeaacaaIYaGaamyyaaaacqGHRaWkaaa@5360@

+ 1 2 a 2 0 ξ f ξy 2a , yξ 2 , u (2) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy}dξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzamaabmaaba WaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGaaGOmaiaa dggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4bqaaiaaik daaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaa kmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baaba GaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a 4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaS IaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTi abe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa amizaiaadMhacaaI9bGaamizaiabe67a4jaaiMcacaaIUaaaaa@7199@  (10)

Подставив формулы (8) и (10) в исходные интегральные уравнения (5), получим

u (1) (t,x)= K (1) [ u (1) ](t,x)= φ(xat)+φ(x+at) 2 + 1 2a xat x+at ψ(z)dz+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaai2da caWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGaam yDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGyxaiaaiIca caWG0bGaaGilaiaadIhacaaIPaGaaGypamaalaaabaGaeqOXdOMaaG ikaiaadIhacqGHsislcaWGHbGaamiDaiaaiMcacqGHRaWkcqaHgpGA caaIOaGaamiEaiabgUcaRiaadggacaWG0bGaaGykaaqaaiaaikdaaa Gaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaadggaaaWaa8qCaeqa leaacaWG4bGaeyOeI0IaamyyaiaadshaaeaacaWG4bGaey4kaSIaam yyaiaadshaa0Gaey4kIipakiabeI8a5jaaiIcacaWG6bGaaGykaiaa dsgacaWG6bGaey4kaScaaa@6AC1@

+ 1 4 a 2 xat x+at dz xat z F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 dy,(t,x) Q (1) ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa dIhacqGHsislcaWGHbGaamiDaaqaaiaadIhacqGHRaWkcaWGHbGaam iDaaqdcqGHRiI8aOGaamizaiaadQhadaWdXbqabSqaaiaadIhacqGH sislcaWGHbGaamiDaaqaaiaadQhaa0Gaey4kIipakmaadmaabaGaam OramaabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaG OmaaaaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaaeaadaWcaaqa aiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaala aabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcacaWG1bWa aWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGcdaqadaqaamaalaaaba GaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaa aeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGaayzkaa aacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamizaiaadMhacaaISaGa aGzbVlaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaeyicI48aa0aaae aacaWGrbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaaaaOGaaGil aaaa@7EF7@

u (2) (t,x)= K (2) [ u (1) , u (2) ](t,x)=exp 0 xat β ξ a dξ ( 0 xat exp 0 ξ β θ a dθ × MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaai2da caWGlbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaam yDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGilaiaadwha daahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaai2facaaIOaGaam iDaiaaiYcacaWG4bGaaGykaiaai2daciGGLbGaaiiEaiaacchadaqa daqaaiabgkHiTmaapehabeWcbaGaaGimaaqaaiaadIhacqGHsislca WGHbGaamiDaaqdcqGHRiI8aOGaeqOSdi2aaeWaaeaacqGHsisldaWc aaqaaiabe67a4bqaaiaadggaaaaacaGLOaGaayzkaaGaamizaiabe6 7a4bGaayjkaiaawMcaaiaaiIcadaWdXbqabSqaaiaaicdaaeaacaWG 4bGaeyOeI0Iaamyyaiaadshaa0Gaey4kIipakiGacwgacaGG4bGaai iCamaabmaabaWaa8qCaeqaleaacaaIWaaabaGaeqOVdGhaniabgUIi YdGccqaHYoGydaqadaqaaiabgkHiTmaalaaabaGaeqiUdehabaGaam yyaaaaaiaawIcacaGLPaaacaWGKbGaeqiUdehacaGLOaGaayzkaaGa ey41aqlaaa@7D47@

×{μ ξ a 1 4 a 2 0 ξ f ξy 2a , yξ 2 , u (1) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTcaaI7bGaeqiVd02aaeWaae aadaWcaaqaaiabe67a4bqaaiaadggaaaaacaGLOaGaayzkaaGaeyOe I0YaaSaaaeaacaaIXaaabaGaaGinaiaadggadaahaaWcbeqaaiaaik daaaaaaOWaa8qCaeqaleaacaaIWaaabaGaeyOeI0IaeqOVdGhaniab gUIiYdGcdaWadaqaaiaadAgadaqadaqaamaalaaabaGaeyOeI0Iaeq OVdGNaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqa aiaadMhacqGHsislcqaH+oaEaeaacaaIYaaaaiaaiYcacaWG1bWaaW baaSqabeaacaaIOaGaaGymaiaaiMcaaaGcdaqadaqaamaalaaabaGa eyOeI0IaeqOVdGNaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiY cadaWcaaqaaiaadMhacqGHsislcqaH+oaEaeaacaaIYaaaaaGaayjk aiaawMcaaaGaayjkaiaawMcaaiabgUcaRiaadAeadaqadaqaamaala aabaGaeyOeI0IaeqOVdGNaeyOeI0IaamyEaaqaaiaaikdacaWGHbaa aiaaiYcadaWcaaqaaiaadMhacqGHsislcqaH+oaEaeaacaaIYaaaaa GaayjkaiaawMcaaaGaay5waiaaw2faaiaadsgacaWG5bGaeyOeI0ca aa@7775@

β ξ a ( 1 4 a 2 0 ξ dz 0 z f zy 2a , y+z 2 , u (1) zy 2a , y+z 2 +F zy 2a , y+z 2 dy+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHYoGydaqadaqaaiabgk HiTmaalaaabaGaeqOVdGhabaGaamyyaaaaaiaawIcacaGLPaaacaaI OaWaaSaaaeaacaaIXaaabaGaaGinaiaadggadaahaaWcbeqaaiaaik daaaaaaOWaa8qCaeqaleaacaaIWaaabaGaeyOeI0IaeqOVdGhaniab gUIiYdGccaWGKbGaamOEamaapehabeWcbaGaaGimaaqaaiaadQhaa0 Gaey4kIipakmaadmaabaGaamOzamaabmaabaWaaSaaaeaacaWG6bGa eyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaaqaaiaadM hacqGHRaWkcaWG6baabaGaaGOmaaaacaaISaGaamyDamaaCaaaleqa baGaaGikaiaaigdacaaIPaaaaOWaaeWaaeaadaWcaaqaaiaadQhacq GHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyE aiabgUcaRiaadQhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkai aawMcaaiabgUcaRiaadAeadaqadaqaamaalaaabaGaamOEaiabgkHi TiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG5bGaey 4kaSIaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzx aaGaamizaiaadMhacqGHRaWkaaa@746D@

+φ(ξ)+ 1 2a 0 ξ ψ(z)dz) ψ(ξ) 2a + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcqaHgpGAcaaIOaGaeyOeI0 IaeqOVdGNaaGykaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdacaWG HbaaamaapehabeWcbaGaaGimaaqaaiabgkHiTiabe67a4bqdcqGHRi I8aOGaeqiYdKNaaGikaiaadQhacaaIPaGaaGjcVlaadsgacaWG6bGa aGykaiabgkHiTmaalaaabaGaeqiYdKNaaGikaiabgkHiTiabe67a4j aaiMcaaeaacaaIYaGaamyyaaaacqGHRaWkaaa@5360@

+ 1 2 a 2 0 ξ f ξy 2a , yξ 2 , u (2) ξy 2a , yξ 2 +F ξy 2a , yξ 2 dy}dξ)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacqaH+oaEa0Gaey4kIipakmaadmaabaGaamOzamaabmaaba WaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baabaGaaGOmaiaa dggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a4bqaaiaaik daaaGaaGilaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaa kmaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG5baaba GaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTiabe67a 4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaS IaamOramaabmaabaWaaSaaaeaacqGHsislcqaH+oaEcqGHsislcaWG 5baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamyEaiabgkHiTi abe67a4bqaaiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa amizaiaadMhacaaI9bGaamizaiabe67a4jaaiMcacqGHRaWkaaa@71C3@

+ φ(x+at)+φ(atx) 2 + 1 2a 0 x+at ψ(z)dz+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiabeA8aQjaaiI cacaWG4bGaey4kaSIaamyyaiaadshacaaIPaGaey4kaSIaeqOXdOMa aGikaiaadggacaWG0bGaeyOeI0IaamiEaiaaiMcaaeaacaaIYaaaai abgUcaRmaalaaabaGaaGymaaqaaiaaikdacaWGHbaaamaapehabeWc baGaaGimaaqaaiaadIhacqGHRaWkcaWGHbGaamiDaaqdcqGHRiI8aO GaeqiYdKNaaGikaiaadQhacaaIPaGaamizaiaadQhacqGHRaWkaaa@534F@

+ 1 4 a 2 0 x+at dz 0 z [F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (1) zy 2a , z+y 2 ]dy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4bGaey4kaSIaamyyaiaadshaa0Gaey4kIipakiaads gacaWG6bWaa8qCaeqaleaacaaIWaaabaGaamOEaaqdcqGHRiI8aOGa aG4waiaadAeadaqadaqaamaalaaabaGaamOEaiabgkHiTiaadMhaae aacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6bGaey4kaSIaamyE aaqaaiaaikdaaaaacaGLOaGaayzkaaGaey4kaSIaamOzamaabmaaba WaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikdacaWGHbaaaiaa iYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaGOmaaaacaaISa GaamyDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOWaaeWaaeaa daWcaaqaaiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaG ilamaalaaabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaaGaayjk aiaawMcaaaGaayjkaiaawMcaaiaai2facaWGKbGaamyEaiabgkHiTa aa@6DD3@

1 4 a 2 0 xat dy atx x+at F zy 2a , z+y 2 +f zy 2a , z+y 2 , u (2) zy 2a , z+y 2 dz,(t,x) Q (2) ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aI0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaa icdaaeaacaWG4bGaeyOeI0Iaamyyaiaadshaa0Gaey4kIipakiaads gacaWG5bWaa8qCaeqaleaacaWGHbGaamiDaiabgkHiTiaadIhaaeaa caWG4bGaey4kaSIaamyyaiaadshaa0Gaey4kIipakmaadmaabaGaam OramaabmaabaWaaSaaaeaacaWG6bGaeyOeI0IaamyEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhacqGHRaWkcaWG5baabaGaaG OmaaaaaiaawIcacaGLPaaacqGHRaWkcaWGMbWaaeWaaeaadaWcaaqa aiaadQhacqGHsislcaWG5baabaGaaGOmaiaadggaaaGaaGilamaala aabaGaamOEaiabgUcaRiaadMhaaeaacaaIYaaaaiaaiYcacaWG1bWa aWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGcdaqadaqaamaalaaaba GaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyyaaaacaaISaWaaSaa aeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaaaacaGLOaGaayzkaa aacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamizaiaadQhacaaISaGa aGzbVlaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaeyicI48aa0aaae aacaWGrbWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaaaaOGaaGOl aaaa@7EC1@  (11)

Лемма 4.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Тогда решения u (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3538@  ( j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@  ) уравнений (11) существуют, единственны в классе C 2 ( Q (j) ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuamaaCaaaleqabaGaaGikaiaadQgacaaI PaaaaaaakiaaiMcaaaa@384F@  и непрерывно зависят от функций φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  и μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ .

Лемма 4.1 доказывается аналогично теореме 3.2.

Таким образом, построено кусочно гладкое решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (4), которое определятся формулами (11) и (6).

5. Анализ решения смешанной задачи. Чтобы функция u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  принадлежала множеству C 2 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuaaaacaaIPaaaaa@35C4@ , кроме требований гладкости для функций f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@ , необходимо и достаточно выполнение равенств (7), согласно теореме 3.1. Вычисляя величины, которые входят в выражения (7), получаем следующие условия согласования

β(0)φ(0)μ(0)+ φ (0)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaaGimaiaaiMcacq aHgpGAcaaIOaGaaGimaiaaiMcacqGHsislcqaH8oqBcaaIOaGaaGim aiaaiMcacqGHRaWkcuaHgpGAgaqbaiaaiIcacaaIWaGaaGykaiaai2 dacaaIWaGaaGilaaaa@451C@  (12)

f(0,0,φ(0))+F(0,0)+a φ(0) β (0)+β(0)ψ(0) μ (0)+ ψ (0) =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaISaGaaG imaiaaiYcacqaHgpGAcaaIOaGaaGimaiaaiMcacaaIPaGaey4kaSIa amOraiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaey4kaSIaamyyam aabmaabaGaeqOXdOMaaGikaiaaicdacaaIPaGafqOSdiMbauaacaaI OaGaaGimaiaaiMcacqGHRaWkcqaHYoGycaaIOaGaaGimaiaaiMcacq aHipqEcaaIOaGaaGimaiaaiMcacqGHsislcuaH8oqBgaqbaiaaiIca caaIWaGaaGykaiabgUcaRiqbeI8a5zaafaGaaGikaiaaicdacaaIPa aacaGLOaGaayzkaaGaaGypaiaaicdacaaIUaaaaa@5F6F@  (13)

Результат сформулируем в виде теоремы.

Теорема 5.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , определенное формулами (6) и (11), из класса C 2 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaanaaabaGaamyuaaaacaaIPaaaaa@35C4@  тогда и только тогда, когда выполняются условия (12) и (13).

Доказательство теоремы 5.1 вытекает из теоремы 3.1, леммы 4.1 и проведенных выше рассуждений.

6. Неоднородные условия согласования. Теперь, подобно тому как это было сделано в [3–6, 8, 9, 11], рассмотрим задачу (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) вЁслучае, когда условия согласования (12) и (13) частично или полностью не выполняются. Но в отличие от первой смешанной задачи в третьей смешанной задаче условия согласования можно задать таким образом, что решение будет иметь произвольный наперед заданный разрыв на характеристике xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ .

Согласно теореме 3.1 присутствие неоднородных условий согласования нарушает непрерывность частных производных функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ . Данное заключение можно сформулировать в виде следующего утверждения.

Утверждение 6.1. Если для заданных функций μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  не выполняются однородные условия согласования (12) и (13), то какими бы гладкими ни были функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@  и ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) не имеет классического решения, определенного на Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ .

Доказательство утверждения вытекает из теоремы 3.1.

Пусть заданные функции уравнения (1), граничных условий (3), (4) являются достаточно гладкими и такими, как в теореме 5.1: f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@  и β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@ . Так как условия согласования (12) и (13), вообще говоря, не выполнены, то получим разрывными производные функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  согласно следующим выражениям:

[(u ) + (u) ](t,x=at)= C (1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGikaiaadwhacaaIPaWaaW baaSqabeaacqGHRaWkaaGccqGHsislcaaIOaGaamyDaiaaiMcadaah aaWcbeqaaiabgkHiTaaakiaai2facaaIOaGaamiDaiaaiYcacaWG4b GaaGypaiaadggacaWG0bGaaGykaiaai2dacaWGdbWaaWbaaSqabeaa caaIOaGaaGymaiaaiMcaaaGccaaISaaaaa@46C4@

[( t u ) + ( t u) ](t,x=at)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGikaiabgkGi2oaaBaaale aacaWG0baabeaakiaadwhacaaIPaWaaWbaaSqabeaacqGHRaWkaaGc cqGHsislcaaIOaGaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaamyDai aaiMcadaahaaWcbeqaaiabgkHiTaaakiaai2facaaIOaGaamiDaiaa iYcacaWG4bGaaGypaiaadggacaWG0bGaaGykaiaai2daaaa@4819@

=a[( x u ) + ( x u) ](t,x=at)=a(μ(0)β(0)φ(0) φ (0))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyyaiaaiUfaca aIOaGaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaamyDaiaaiMcadaah aaWcbeqaaiabgUcaRaaakiabgkHiTiaaiIcacqGHciITdaWgaaWcba GaamiEaaqabaGccaWG1bGaaGykamaaCaaaleqabaGaeyOeI0caaOGa aGyxaiaaiIcacaWG0bGaaGilaiaadIhacaaI9aGaamyyaiaadshaca aIPaGaaGypaiaadggacaaIOaGaeqiVd0MaaGikaiaaicdacaaIPaGa eyOeI0IaeqOSdiMaaGikaiaaicdacaaIPaGaeqOXdOMaaGikaiaaic dacaaIPaGaeyOeI0IafqOXdOMbauaacaaIOaGaaGimaiaaiMcacaaI PaGaey4kaScaaa@5F1B@

+ 1 4a 0 2at f z 2a , z 2 ,(u ) + z 2a , z 2 f z 2a , z 2 ,(u ) z 2a , z 2 dz, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI0aGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaamyyaiaa dshaa0Gaey4kIipakmaadmaabaGaamOzamaabmaabaWaaSaaaeaaca WG6baabaGaaGOmaiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaa ikdaaaGaaGilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGaey4kaS caaOWaaeWaaeaadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaI SaWaaSaaaeaacaWG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawI cacaGLPaaacqGHsislcaWGMbWaaeWaaeaadaWcaaqaaiaadQhaaeaa caaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baabaGaaGOmaaaaca aISaGaaGikaiaadwhacaaIPaWaaWbaaSqabeaacqGHsislaaGcdaqa daqaamaalaaabaGaamOEaaqaaiaaikdacaWGHbaaaiaaiYcadaWcaa qaaiaadQhaaeaacaaIYaaaaaGaayjkaiaawMcaaaGaayjkaiaawMca aaGaay5waiaaw2faaiaadsgacaWG6bGaaGilaaaa@657D@

[( t 2 u ) + ( t 2 u) ](t,x=at)= 1 2 (f(t,at,(u ) + (t,at))f(t,at,(u ) (t,at))) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGikaiabgkGi2oaaDaaale aacaWG0baabaGaaGOmaaaakiaadwhacaaIPaWaaWbaaSqabeaacqGH RaWkaaGccqGHsislcaaIOaGaeyOaIy7aa0baaSqaaiaadshaaeaaca aIYaaaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgkHiTaaakiaai2fa caaIOaGaamiDaiaaiYcacaWG4bGaaGypaiaadggacaWG0bGaaGykai aai2dadaWcaaqaaiaaigdaaeaacaaIYaaaaiaaiIcacaWGMbGaaGik aiaadshacaaISaGaamyyaiaadshacaaISaGaaGikaiaadwhacaaIPa WaaWbaaSqabeaacqGHRaWkaaGccaaIOaGaamiDaiaaiYcacaWGHbGa amiDaiaaiMcacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGilai aadggacaWG0bGaaGilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGa eyOeI0caaOGaaGikaiaadshacaaISaGaamyyaiaadshacaaIPaGaaG ykaiaaiMcacqGHsislaaa@6C62@

a(aβ(0)(β(0)φ(0)μ(0)+ φ (0))+φ(0) β (0)+β(0)ψ(0) μ (0)+ ψ (0))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaaGikaiaadggacq aHYoGycaaIOaGaaGimaiaaiMcacaaIOaGaeqOSdiMaaGikaiaaicda caaIPaGaeqOXdOMaaGikaiaaicdacaaIPaGaeyOeI0IaeqiVd0MaaG ikaiaaicdacaaIPaGaey4kaSIafqOXdOMbauaacaaIOaGaaGimaiaa iMcacaaIPaGaey4kaSIaeqOXdOMaaGikaiaaicdacaaIPaGafqOSdi MbauaacaaIOaGaaGimaiaaiMcacqGHRaWkcqaHYoGycaaIOaGaaGim aiaaiMcacqaHipqEcaaIOaGaaGimaiaaiMcacqGHsislcuaH8oqBga qbaiaaiIcacaaIWaGaaGykaiabgUcaRiqbeI8a5zaafaGaaGikaiaa icdacaaIPaGaaGykaiabgUcaRaaa@67CC@

+ 1 8a 0 2at {[ ( t u) + z 2a , z 2 a ( x u) + z 2a , z 2 y f z 2a , z 2 ,y=(u ) + z 2a , z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aI4aGaamyyaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaamyyaiaa dshaa0Gaey4kIipakiaaiUhacaaIBbWaaeWaaeaacaaIOaGaeyOaIy 7aaSbaaSqaaiaadshaaeqaaOGaamyDaiaaiMcadaahaaWcbeqaaiab gUcaRaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOmaiaadggaaa GaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaaGa eyOeI0IaamyyaiaaiIcacqGHciITdaWgaaWcbaGaamiEaaqabaGcca WG1bGaaGykamaaCaaaleqabaGaey4kaScaaOWaaeWaaeaadaWcaaqa aiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baaba GaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHciITdaWg aaWcbaGaamyEaaqabaGccaWGMbWaaeWaaeaadaWcaaqaaiaadQhaae aacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baabaGaaGOmaaaa caaISaGaamyEaiaai2dacaaIOaGaamyDaiaaiMcadaahaaWcbeqaai abgUcaRaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOmaiaadgga aaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOaGaayzkaa aacaGLOaGaayzkaaGaeyOeI0caaa@7190@

a x f z 2a , z 2 ,(u ) + z 2a , z 2 + t f z 2a , z 2 ,(u ) + z 2a , z 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaamOzamaabmaabaWaaSaaaeaacaWG6baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaGaaG ilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGaey4kaScaaOWaaeWa aeaadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaae aacaWG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHRaWkcqGHciITdaWgaaWcbaGaamiDaaqabaGccaWGMbWaaeWaae aadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaa caWG6baabaGaaGOmaaaacaaISaGaaGikaiaadwhacaaIPaWaaWbaaS qabeaacqGHRaWkaaGcdaqadaqaamaalaaabaGaamOEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhaaeaacaaIYaaaaaGaayjkai aawMcaaaGaayjkaiaawMcaaiaai2facqGHsislaaa@6092@

[ ( t u) z 2a , z 2 a ( x u) z 2a , z 2 y f z 2a , z 2 ,y=(u ) z 2a , z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIBbWaaeWaaeaacaaIOa GaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaamyDaiaaiMcadaahaaWc beqaaiabgkHiTaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOmai aadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOaGa ayzkaaGaeyOeI0IaamyyaiaaiIcacqGHciITdaWgaaWcbaGaamiEaa qabaGccaWG1bGaaGykamaaCaaaleqabaGaeyOeI0caaOWaaeWaaeaa daWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaaca WG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGH ciITdaWgaaWcbaGaamyEaaqabaGccaWGMbWaaeWaaeaadaWcaaqaai aadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaacaWG6baabaGa aGOmaaaacaaISaGaamyEaiaai2dacaaIOaGaamyDaiaaiMcadaahaa WcbeqaaiabgkHiTaaakmaabmaabaWaaSaaaeaacaWG6baabaGaaGOm aiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaaacaGLOa GaayzkaaaacaGLOaGaayzkaaGaeyOeI0caaa@687B@

a x f z 2a , z 2 ,(u ) z 2a , z 2 + t f z 2a , z 2 ,(u ) z 2a , z 2 ]}dz= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaeyOaIy7aaSbaaS qaaiaadIhaaeqaaOGaamOzamaabmaabaWaaSaaaeaacaWG6baabaGa aGOmaiaadggaaaGaaGilamaalaaabaGaamOEaaqaaiaaikdaaaGaaG ilaiaaiIcacaWG1bGaaGykamaaCaaaleqabaGaeyOeI0caaOWaaeWa aeaadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaae aacaWG6baabaGaaGOmaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHRaWkcqGHciITdaWgaaWcbaGaamiDaaqabaGccaWGMbWaaeWaae aadaWcaaqaaiaadQhaaeaacaaIYaGaamyyaaaacaaISaWaaSaaaeaa caWG6baabaGaaGOmaaaacaaISaGaaGikaiaadwhacaaIPaWaaWbaaS qabeaacqGHsislaaGcdaqadaqaamaalaaabaGaamOEaaqaaiaaikda caWGHbaaaiaaiYcadaWcaaqaaiaadQhaaeaacaaIYaaaaaGaayjkai aawMcaaaGaayjkaiaawMcaaiaai2facaaI9bGaamizaiaadQhacaaI 9aaaaa@6371@

= a 2 [( x 2 u ) + ( x 2 u) ](t,x=at)+(f(t,at,(u ) + (t,at))f(t,at,(u ) (t,at)))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyyamaaCaaaleqabaGaaG OmaaaakiaaiUfacaaIOaGaeyOaIy7aa0baaSqaaiaadIhaaeaacaaI YaaaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgUcaRaaakiabgkHiTi aaiIcacqGHciITdaqhaaWcbaGaamiEaaqaaiaaikdaaaGccaWG1bGa aGykamaaCaaaleqabaGaeyOeI0caaOGaaGyxaiaaiIcacaWG0bGaaG ilaiaadIhacaaI9aGaamyyaiaadshacaaIPaGaey4kaSIaaGikaiaa dAgacaaIOaGaamiDaiaaiYcacaWGHbGaamiDaiaaiYcacaaIOaGaam yDaiaaiMcadaahaaWcbeqaaiabgUcaRaaakiaaiIcacaWG0bGaaGil aiaadggacaWG0bGaaGykaiaaiMcacqGHsislcaWGMbGaaGikaiaads hacaaISaGaamyyaiaadshacaaISaGaaGikaiaadwhacaaIPaWaaWba aSqabeaacqGHsislaaGccaaIOaGaamiDaiaaiYcacaWGHbGaamiDai aaiMcacaaIPaGaaGykaiaai2daaaa@6D78@

=a[( t x u ) + ( t x u) ](t,x=at)+ 1 2 (f(t,at,(u ) + (t,at))f(t,at,(u ) (t,at))), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0IaamyyaiaaiUfaca aIOaGaeyOaIy7aaSbaaSqaaiaadshaaeqaaOGaeyOaIy7aaSbaaSqa aiaadIhaaeqaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgUcaRaaaki abgkHiTiaaiIcacqGHciITdaWgaaWcbaGaamiDaaqabaGccqGHciIT daWgaaWcbaGaamiEaaqabaGccaWG1bGaaGykamaaCaaaleqabaGaey OeI0caaOGaaGyxaiaaiIcacaWG0bGaaGilaiaadIhacaaI9aGaamyy aiaadshacaaIPaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaca aIOaGaamOzaiaaiIcacaWG0bGaaGilaiaadggacaWG0bGaaGilaiaa iIcacaWG1bGaaGykamaaCaaaleqabaGaey4kaScaaOGaaGikaiaads hacaaISaGaamyyaiaadshacaaIPaGaaGykaiabgkHiTiaadAgacaaI OaGaamiDaiaaiYcacaWGHbGaamiDaiaaiYcacaaIOaGaamyDaiaaiM cadaahaaWcbeqaaiabgkHiTaaakiaaiIcacaWG0bGaaGilaiaadgga caWG0bGaaGykaiaaiMcacaaIPaGaaGilaaaa@7298@  (14)

где C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@ . В дальнейшем при рассмотрении задачи с условиями сопряжения будем полагать, что C (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34D2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторая произвольная наперед заданная константа из множества действительных чисел, вообще говоря, не обязательно равная нулю. Здесь было использовано обозначение () ± MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGykamaaCaaaleqabaGaey ySaelaaaaa@353D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  предельные значения функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  и ее частных производных с разных сторон на характеристике xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ , т.е.

( t p u) ± (t,x=at)= lim δ0+ t p u(t,at±δ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeyOaIy7aa0baaSqaaiaads haaeaacaWGWbaaaOGaamyDaiaaiMcadaahaaWcbeqaaiabgglaXcaa kiaaiIcacaWG0bGaaGilaiaadIhacaaI9aGaamyyaiaadshacaaIPa GaaGypamaawafabeWcbaGaeqiTdqMaeyOKH4QaaGimaiabgUcaRaqa bOqaaiGacYgacaGGPbGaaiyBaaaacqGHciITdaqhaaWcbaGaamiDaa qaaiaadchaaaGccaWG1bGaaGikaiaadshacaaISaGaamyyaiaadsha cqGHXcqScqaH0oazcaaIPaGaaGOlaaaa@578F@

Введем обозначение Q ˜ = Q ¯ \{(t,x)|xat=0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadgfaaiaawoWaaiaai2 dadaqdaaqaaiaadgfaaaGaaiixaiaaiUhacaaIOaGaamiDaiaaiYca caWG4bGaaGykaiaacYhacaWG4bGaeyOeI0IaamyyaiaadshacaaI9a GaaGimaiaai2haaaa@424A@ . Справедлива следующая теорема.

Теорема 6.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@  из класса C 2 ( Q ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaamyuaaGaay5adaGaaGykaaaa@3675@ , которое представляется в виде

u ˜ (t,x)= u (1) (t,x)= K (1) [ u (1) ](t,x), (t,x) Q (1) {(0,x)|x(0,)}, u (2) (t,x)= K (2) [ u (1) , u (2) ](t,x) C (1) , (t,x) Q (2) {(t,0)|t(0,)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypamaaceaabaqbaeqabiGa aaqaaiaadwhadaahaaWcbeqaaiaaiIcacaaIXaGaaGykaaaakiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaadUeadaahaaWcbeqa aiaaiIcacaaIXaGaaGykaaaakiaaiUfacaWG1bWaaWbaaSqabeaaca aIOaGaaGymaiaaiMcaaaGccaaIDbGaaGikaiaadshacaaISaGaamiE aiaaiMcacaaISaaabaGaaGikaiaadshacaaISaGaamiEaiaaiMcacq GHiiIZcaWGrbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccqGH QicYcaaI7bGaaGikaiaaicdacaaISaGaamiEaiaaiMcacaGG8bGaam iEaiabgIGiolaaiIcacaaIWaGaaGilaiabg6HiLkaaiMcacaaI9bGa aGilaaqaaiaadwhadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaaki aaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGypaiaadUeadaahaaWc beqaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaWG1bWaaWbaaSqabe aacaaIOaGaaGymaiaaiMcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGikaiaaikdacaaIPaaaaOGaaGyxaiaaiIcacaWG0bGaaGilaiaadI hacaaIPaGaeyOeI0Iaam4qamaaCaaaleqabaGaaGikaiaaigdacaaI PaaaaOGaaGilaaqaaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey icI4SaamyuamaaCaaaleqabaGaaGikaiaaikdacaaIPaaaaOGaeyOk IGSaaG4EaiaaiIcacaWG0bGaaGilaiaaicdacaaIPaGaaiiFaiaads hacqGHiiIZcaaIOaGaaGimaiaaiYcacqGHEisPcaaIPaGaaGyFaiaa iYcaaaaacaGL7baaaaa@9D6C@  (15)

где функции u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@  и u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  заданы формулой (11), тогда и только тогда, когда выполняются условия (14).

Для доказательства теоремы 6.1 следует повторить рассуждения, которые ранее привели нас к теореме 5.1.

Теорема 6.2. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@ , определенное формулой (15), из класса C 2 ( Q ˜ )C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaamyuaaGaay5adaGaaGykaiabgMIihlaadoea caaIOaWaa0aaaeaacaWGrbaaaiaaiMcaaaa@3B27@  тогда и только тогда, когда выполняются условия (14) и C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@ .

Доказательство. Теорема 6.2 следует фактически из теоремы 6.1 и формул (14). Действительно, если C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@ , то решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@  на множестве {(t,x)|xat=0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaaGikaiaadshacaaISaGaam iEaiaaiMcacaGG8bGaamiEaiabgkHiTiaadggacaWG0bGaaGypaiaa icdacaaI9baaaa@3E24@  является непрерывным в силу (14). Следовательно, кроме того, что решение u ˜ C 2 ( Q ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaiabgI GiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaIOaWaaacaaeaacaWG rbaacaGLdmaacaaIPaaaaa@39B5@ , оно является непрерывной функцией на замыкании Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , u ˜ C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaiabgI GiolaadoeacaaIOaWaa0aaaeaacaWGrbaaaiaaiMcaaaa@3811@ .

Теорема 6.3. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@ , β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@ , определенное формулой (15), из класса C 2 ( Q ˜ ) C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaamyuaaGaay5adaGaaGykaiabgMIihlaadoea daahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacaWGrbaaaiaaiM caaaa@3C19@  тогда и только тогда, когда выполняются условия (14), C (1) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaaGimaaaa@365D@  и (12).

Доказательство. Теорема 6.3 легко следует из теорем 6.1, 6.2 и формул (14), так как в этом случае u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadwhaaiaawoWaaaaa@3379@  является непрерывным на множестве Q ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadgfaaaaaaa@32A4@ , но в силу (14) имеет непрерывные производные первого порядка.

Замечание 6.1. Если заданные функции задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) не удовлетворяют однородным условиям согласования (12) и (13), то решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) сводится к решению соответствующей задачи сопряжения, где условия сопряжения задаются на характеристике xat=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyOeI0Iaamyyaiaadshaca aI9aGaaGimaaaa@3707@ .

В качестве условий сопряжения могут быть условия (14). Теперь задачу (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) можно сформулировать, используя условия сопряжения (14) следующим образом.

Задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD1@ (4) с условиями сопряжения на характеристиках.

Найти классическое решение уравнения (1), удовлетворяющее условиям Коши (3), граничным условиям (4), условиям сопряжения (14).

Заметим, что такая формулировка рассмотренной задачи с условиями сопряжения более приемлема для ее численной реализации.

7. Слабое решение. Рассмотрим теперь задачу (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) в случае, когда функции β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@  и ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  не обладают достаточной степенью гладкости.

Определение 1. Функцию u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , представимую в виде (6), (11) назовем слабым решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4).

Замечание 7.1. Любое классическое решение задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) является также слабым решением этой задачи.

Справедлива следующая теорема.

Теорема 7.1. Пусть выполняются условия fC( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaaaaa@440E@ , F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , φC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BA4@ , ψ L 1 loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaGaaG4waiaa icdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3F7D@ , μ L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@401B@ , β L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@4006@  и функция f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Каратеодори по третьей переменной, т.е. существует такая функция k L 2 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI4SaamitamaaDaaale aacaaIYaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3B0E@ , что выполняется неравенство (2). Третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное слабое решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@  из класса C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaanaaabaGaamyuaa aacaaIPaaaaa@34D1@ .

Доказательство. Разрешимость интегральных уравнений (11) и принадлежность их решений классу непрерывных функций фактически следует из теоремы 3.2. Корректность представления (6) следует из того факта, что u (1) (t,x=at)= u (2) (t,x=at) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGypaiaadgga caWG0bGaaGykaiaai2dacaWG1bWaaWbaaSqabeaacaaIOaGaaGOmai aaiMcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGypaiaadggacaWG 0bGaaGykaaaa@4695@  исходя из формул (11).

Замечание 7.2. Аналогично предыдущему пункту, можно строить слабое решение задачи с условиями сопряжения.

8. Локальное решение. В предыдущих разделах настоящей работы третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  (4) рассматривалась в предположении, что нелинейность удовлетворяет условию типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори. С одной стороны, во многих разделах теоретической физики нелинейные уравнения часто имеют степенные или экспоненциальные нелинейности (см. [13, 22, 26]). Поэтому весьма важен вопрос о существовании и единственности решений таких уравнений. С другой стороны, известно, что условие типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори

|f(t,x, z 1 )f(t,x, z 2 )|k(t,x)| z 1 z 2 | MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiMca cqGHsislcaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHKjYOcaWGRbGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamOEamaaBaaale aacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaI8baaaa@518B@

нельзя ослабить до условия типа Гёльдера

|f(t,x, z 1 )f(t,x, z 2 )|k(t,x)| z 1 z 2 | α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamOzaiaaiIcacaWG0bGaaG ilaiaadIhacaaISaGaamOEamaaBaaaleaacaaIXaaabeaakiaaiMca cqGHsislcaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6b WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYhacqGHKjYOcaWGRbGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaI8bGaamOEamaaBaaale aacaaIXaaabeaakiabgkHiTiaadQhadaWgaaWcbaGaaGOmaaqabaGc caaI8bWaaWbaaSqabeaacqaHXoqyaaGccaaISaaaaa@5417@

где α(0,1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHiiIZcaaIOaGaaGimai aaiYcacaaIXaGaaGykaaaa@3870@ , сохранив при этом однозначную разрешимость задачи (см. [17]). Однако условие типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори не является единственным допустимым условием для существования и единственности классических решений смешанных задач для нелинейных уравнений. Например, в [14] с помощью априорных оценок и принципа Лере MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Шаудера построено классическое решение задачи Коши для обобщенного уравнения Лиувилля (нелинейность экспоненциального роста).

В этом разделе для любой непрерывно дифференцируемой нелинейности покажем, что третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) допускает единственное локальное классическое решение.ввв

Введем обозначения

Ω T (1) =Conv{(0,0),(T, a 1 T),(0,2 a 1 T)}, Ω T (2) =Conv{(0,0),(T, a 1 T),(2T,0)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamivaaqaai aaiIcacaaIXaGaaGykaaaakiaai2dacaWGdbGaam4Baiaad6gacaWG 2bGaaG4EaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaaGilaiaaiI cacaWGubGaaGilaiaadggadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caWGubGaaGykaiaaiYcacaaIOaGaaGimaiaaiYcacaaIYaGaamyyam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaadsfacaaIPaGaaGyFaiaa iYcacaaMf8UaeuyQdC1aa0baaSqaaiaadsfaaeaacaaIOaGaaGOmai aaiMcaaaGccaaI9aGaam4qaiaad+gacaWGUbGaamODaiaaiUhacaaI OaGaaGimaiaaiYcacaaIWaGaaGykaiaaiYcacaaIOaGaamivaiaaiY cacaWGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamivaiaaiMca caaISaGaaGikaiaaikdacaWGubGaaGilaiaaicdacaaIPaGaaGyFai aaiYcaaaa@6DE1@

Ω T, T = Ω T (1) Ω T (2) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaiaaiY caceWGubGbauaaaeqaaOGaaGypaiabfM6axnaaDaaaleaacaWGubaa baGaaGikaiaaigdacaaIPaaaaOGaeyOkIGSaeuyQdC1aa0baaSqaai qadsfagaqbaaqaaiaaiIcacaaIYaGaaGykaaaakiaai6caaaa@429D@

Лемма 8.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , φC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BA4@ , ψ L 1 loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaGaaG4waiaa icdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3F7D@ , μ L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@401B@  и β L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@4006@ . Тогда решения u (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaam OAaiaaiMcaaaaaaa@3538@  ( j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@  ) уравнений (11) существуют, единственны в классах C( Ω T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaDaaale aacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaaGykaaaa@38A8@  и C( Ω T (2) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaDaaale aaceWGubGbauaaaeaacaaIOaGaaGOmaiaaiMcaaaGccaaIPaaaaa@38B5@ , где 0< T T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiqadsfagaqbaiabgs MiJkaadsfacaaI8aGaeyOhIukaaa@38E7@ , соответственно и непрерывно зависят от функций φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  и μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ .

Доказательство. Данную теорему докажем, следуя схеме, изложенной в [7, 15]. Для определённости рассмотрим уравнение (11) для отыскания функции u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@ . Введем множество

X m,T ={u|uC( Ω T (1) )u C( Ω T (1) ) m}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaSbaaSqaaiaad2gacaaISa GaamivaaqabaGccaaI9aGaaG4EaiaadwhacaaMe8UaaGiFaiaaysW7 caWG1bGaeyicI4Saam4qaiaaiIcacqqHPoWvdaqhaaWcbaGaamivaa qaaiaaiIcacaaIXaGaaGykaaaakiaaiMcacqGHNis2rqqr1ngBPrgi fHhDYfgaiqaacqWFLicucaWG1bGae8xjIa1aaSbaaSqaaiaadoeaca aIOaGaeuyQdC1aa0baaeaacaWGubaabaGaaGikaiaaigdacaaIPaaa aiaaiMcaaeqaaOGaeyizImQaamyBaiaai2hacaaIUaaaaa@5A8D@

Утверждается, что если m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@  достаточно велико, а T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  достаточно мало, то K (1) : X m,T X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaGG6aGaamiwamaaBaaaleaacaWGTbGaaGilaiaa dsfaaeqaaOGaeSOPHeMaamiwamaaBaaaleaacaWGTbGaaGilaiaads faaeqaaaaa@3E79@ . В самом деле, поскольку f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  непрерывная функция, то она ограничена и равномерно непрерывна на компакте Ω m,T (1) = Ω T (1) ×[m,m] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamyBaiaaiY cacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaaGypaiabfM6axnaa DaaaleaacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaey41aqRaaG 4waiabgkHiTiaad2gacaaISaGaamyBaiaai2faaaa@4512@ . Пусть Φ=f C( Ω m,T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaI9aqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamOzaiab=vIiqnaaBaaaleaacaWGdbGaaGik aiabfM6axnaaDaaabaGaamyBaiaaiYcacaWGubaabaGaaGikaiaaig dacaaIPaaaaiaaiMcaaeqaaaaa@4466@ . Легко видеть, что для любых T <T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGubGbauaacaaI8aGaamivaaaa@3441@  и m <m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGTbGbauaacaaI8aGaamyBaaaa@3473@  верно неравенство

f C( Ω m , T (1) ) Φ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGMbGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaeuyQdC1aa0ba aeaaceWGTbGbauaacaaISaGabmivayaafaaabaGaaGikaiaaigdaca aIPaaaaiaaiMcaaeqaaOGaeyizImQaeuOPdyKaaGOlaaaa@462E@

Введем обозначение

G T = sup (t,x) Ω T (1) φ(xat)+φ(x+at) 2 + 1 2a xat x+at ψ(z)dz+ 1 4 a 2 xat x+at dz xat z F zy 2a , z+y 2 dy . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaO GaaGypamaawafabeWcbaGaaGikaiaadshacaaISaGaamiEaiaaiMca cqGHiiIZcqqHPoWvdaqhaaqaaiaadsfaaeaacaaIOaGaaGymaiaaiM caaaaabeGcbaGaci4CaiaacwhacaGGWbaaamaaemaabaWaaSaaaeaa cqaHgpGAcaaIOaGaamiEaiabgkHiTiaadggacaWG0bGaaGykaiabgU caRiabeA8aQjaaiIcacaWG4bGaey4kaSIaamyyaiaadshacaaIPaaa baGaaGOmaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaGaamyyaa aadaWdXbqabSqaaiaadIhacqGHsislcaWGHbGaamiDaaqaaiaadIha cqGHRaWkcaWGHbGaamiDaaqdcqGHRiI8aOGaeqiYdKNaaGikaiaadQ hacaaIPaGaamizaiaadQhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI 0aGaamyyamaaCaaaleqabaGaaGOmaaaaaaGccaaMb8UaaGzaVpaape habeWcbaGaamiEaiabgkHiTiaadggacaWG0baabaGaamiEaiabgUca RiaadggacaWG0baaniabgUIiYdGccaaMb8UaaGzaVlaaygW7caWGKb GaamOEaiaaygW7caaMb8+aa8qCaeqaleaacaWG4bGaeyOeI0Iaamyy aiaadshaaeaacaWG6baaniabgUIiYdGccaaMb8UaaGzaVlaadAeada qadaqaamaalaaabaGaamOEaiabgkHiTiaadMhaaeaacaaIYaGaamyy aaaacaaISaWaaSaaaeaacaWG6bGaey4kaSIaamyEaaqaaiaaikdaaa aacaGLOaGaayzkaaGaamizaiaadMhaaiaawEa7caGLiWoacaaIUaaa aa@9B33@  (16)

При уменьшении T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  без изменения величины G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaa aa@338E@  в предыдущей формуле знак = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aaaaa@3284@  заменяется на MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHLjYSaaa@3383@ .

Теперь для u X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamiwamaaBaaale aacaWGTbGaaGilaiaadsfaaeqaaaaa@37C5@  рассмотрим оценку

K (1) [ u (1) ] C( Ω T (1) ) G T + Φ T 2 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGyxaiab=v IiqnaaBaaaleaacaWGdbGaaGikaiabfM6axnaaDaaabaGaamivaaqa aiaaiIcacaaIXaGaaGykaaaacaaIPaaabeaakiabgsMiJkaadEeada WgaaWcbaGaamivaaqabaGccqGHRaWkdaWcaaqaaiabfA6agjaadsfa daahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiaai6caaaa@511C@

Нам необходимо выполнение неравенства

K (1) [ u (1) ] C( Ω T (1) ) G T + Φ T 2 2 m, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaCaaaleqabaGaaGikaiaaigdacaaIPaaaaOGaaGyxaiab=v IiqnaaBaaaleaacaWGdbGaaGikaiabfM6axnaaDaaabaGaamivaaqa aiaaiIcacaaIXaGaaGykaaaacaaIPaaabeaakiabgsMiJkaadEeada WgaaWcbaGaamivaaqabaGccqGHRaWkdaWcaaqaaiabfA6agjaadsfa daahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabgsMiJkaad2gaca aISaaaaa@53C1@  (17)

чтобы K (1) [ u (1) ] X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIBbGaamyDamaaCaaaleqabaGaaGikaiaaigda caaIPaaaaOGaaGyxaiabgIGiolaadIfadaWgaaWcbaGaamyBaiaaiY cacaWGubaabeaaaaa@3F0F@ . Параметры T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  и m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@ , таковы, что неравенство (17) будет верным, могут быть найдены согласно следующему алгоритму:

(i) Присвоить T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  равным любому действительному положительному числу.

(ii) Вычислить G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaa aa@338E@  по формуле (16).

(iii) Присвоить m=2 G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbGaaGypaiaaikdacaWGhbWaaS baaSqaaiaadsfaaeqaaaaa@3603@  и вычислить Φ=f C( Ω m,T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaI9aqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamOzaiab=vIiqnaaBaaaleaacaWGdbGaaGik aiabfM6axnaaDaaabaGaamyBaiaaiYcacaWGubaabaGaaGikaiaaig dacaaIPaaaaiaaiMcaaeqaaaaa@4466@ .

(iv) Уменьшить T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@ , так чтобы было верно неравенство G T +Φ T 2 /2m=2 G T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaWGhbWaaSbaaSqaaiaads faaeqaaOGaey4kaSIaeuOPdyKaamivamaaCaaaleqabaGaaGOmaaaa kiaai+cacaaIYaGaeyizImQaamyBaiaai2dacaaIYaGaam4ramaaBa aaleaacaWGubaabeaaaaa@40E5@ . Заметим, что уменьшение T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  оставляет в силе предыдущие неравенства.

Поскольку числа T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  и m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@  выбраны такими, что неравенство (17) выполняется, то K (1) [u] X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIBbGaamyDaiaai2facqGHiiIZcaWGybWaaSba aSqaaiaad2gacaaISaGaamivaaqabaaaaa@3CB8@ , если, например, u X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamiwamaaBaaale aacaWGTbGaaGilaiaadsfaaeqaaaaa@37C5@ .

Так как f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  непрерывно дифференцируемая функция, то ее частные производные ограничены на компакте Ω m,T (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamyBaiaaiY cacaWGubaabaGaaGikaiaaigdacaaIPaaaaaaa@3819@ , а тогда f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  удовлетворяет на этом компакте условию Липшица с некоторой постоянной L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbaaaa@328E@ , и в таком случае верно неравенство

K (1) [ u 1 ] K (1) [ u 2 ] C( Ω T (1) ) L T 2 2 u 1 u 2 C( Ω T (1) ) , u 1 C( Ω T (1) ), u 2 C( Ω T (1) ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaBaaaleaacaaIXaaabeaakiaai2facqGHsislcaWGlbWaaW baaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGaamyDamaaBaaa leaacaaIYaaabeaakiaai2facqWFLicudaWgaaWcbaGaam4qaiaaiI cacqqHPoWvdaqhaaqaaiaadsfaaeaacaaIOaGaaGymaiaaiMcaaaGa aGykaaqabaGccqGHKjYOdaWcaaqaaiaadYeacaWGubWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGOmaaaacqWFLicucaWG1bWaaSbaaSqaaiaa igdaaeqaaOGaeyOeI0IaamyDamaaBaaaleaacaaIYaaabeaakiab=v IiqnaaBaaaleaacaWGdbGaaGikaiabfM6axnaaDaaabaGaamivaaqa aiaaiIcacaaIXaGaaGykaaaacaaIPaaabeaakiaaiYcacaaMf8Uaam yDamaaBaaaleaacaaIXaaabeaakiabgIGiolaadoeacaaIOaGaeuyQ dC1aa0baaSqaaiaadsfaaeaacaaIOaGaaGymaiaaiMcaaaGccaaIPa GaaGilaiaaywW7caWG1bWaaSbaaSqaaiaaikdaaeqaaOGaeyicI4Sa am4qaiaaiIcacqqHPoWvdaqhaaWcbaGaamivaaqaaiaaiIcacaaIXa GaaGykaaaakiaaiMcacaaIUaaaaa@7B61@

Снова уменьшаем T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  так, чтобы для любых u 1 , u 2 X m,T C( Ω T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadwhadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaWGybWa aSbaaSqaaiaad2gacaaISaGaamivaaqabaGccqGHckcZcaWGdbGaaG ikaiabfM6axnaaDaaaleaacaWGubaabaGaaGikaiaaigdacaaIPaaa aOGaaGykaaaa@4449@  выполнялось неравенство

K (1) [ u 1 ] K (1) [ u 2 ] C( Ω T (1) ) 1 2 u 1 u 2 C( Ω T (1) ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWGlbWaaWbaaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGa amyDamaaBaaaleaacaaIXaaabeaakiaai2facqGHsislcaWGlbWaaW baaSqabeaacaaIOaGaaGymaiaaiMcaaaGccaaIBbGaamyDamaaBaaa leaacaaIYaaabeaakiaai2facqWFLicudaWgaaWcbaGaam4qaiaaiI cacqqHPoWvdaqhaaqaaiaadsfaaeaacaaIOaGaaGymaiaaiMcaaaGa aGykaaqabaGccqGHKjYOdaWcaaqaaiaaigdaaeaacaaIYaaaaiab=v IiqjaadwhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG1bWaaSba aSqaaiaaikdaaeqaaOGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaeu yQdC1aa0baaeaacaWGubaabaGaaGikaiaaigdacaaIPaaaaiaaiMca aeqaaOGaaGOlaaaa@6042@  (18)

При этом неравенство (17) останется в силе.

Выберем любое u 0 X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaO GaeyicI4SaamiwamaaBaaaleaacaWGTbGaaGilaiaadsfaaeqaaaaa @38B5@ . Если мы рекуррентно определим

u j = K (1) [ u j1 ],j, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaadUeadaahaaWcbeqaaiaaiIcacaaIXaGaaGykaaaakiaa iUfacaWG1bWaaSbaaSqaaiaadQgacqGHsislcaaIXaaabeaakiaai2 facaaISaGaaGzbVlaadQgacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=vriojaaiYcaaaa@4D75@

то согласно доказательству теоремы Банаха о неподвижной точке (см. [15]) u j u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadQgaaeqaaO GaeyOKH4QaamyDaaaa@36C3@  в пространстве C( Ω T (1) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaDaaale aacaWGubaabaGaaGikaiaaigdacaaIPaaaaOGaaGykaaaa@38A8@  и u= K (1) [u] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadUeadaahaaWcbe qaaiaaiIcacaaIXaGaaGykaaaakiaaiUfacaWG1bGaaGyxaaaa@396B@ . Более того, поскольку u j C( Ω T (1) ) m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG1bWaaSbaaSqaaiaadQgaaeqaaOGae8xjIa1aaSbaaSqaaiaa doeacaaIOaGaeuyQdC1aa0baaeaacaWGubaabaGaaGikaiaaigdaca aIPaaaaiaaiMcaaeqaaOGaeyizImQaamyBaaaa@4462@ , получаем u X m,T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4SaamiwamaaBaaale aacaWGTbGaaGilaiaadsfaaeqaaaaa@37C5@ . Единственность следует из неравенства (18).

Непрерывная зависимость решения от начальных данных исследуется аналогично работе [6].

Существование единственного непрерывного и непрерывно зависящего от начальных данных решения уравнения (11) относительно функции u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  доказывается аналогично.

Неравенство T T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGubGbauaacqGHKjYOcaWGubaaaa@3530@ , указанное в формулировке данной теоремы, следует из структуры оператора K (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34DB@ , так как для определения функции u (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@3505@  на множестве Ω T (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGabmivayaafa aabaGaaGikaiaaikdacaaIPaaaaaaa@367E@  необходимо задать функцию u (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@3504@  на множестве Ω T (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaqhaaWcbaGaamivaaqaai aaiIcacaaIXaGaaGykaaaaaaa@3671@ , где T T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaeyyzImRabmivayaafaaaaa@3541@ .

Теорема 8.1. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F C 1 ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaaGykaaaa@3812@ , φ C 2 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C97@ , ψ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3CA7@ , μ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C8F@  и β C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C7A@ . Тогда существуют такие числа 0< T T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiqadsfagaqbaiabgs MiJkaadsfacaaI8aGaeyOhIukaaa@38E7@ , что третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , заданное на множестве Ω T, T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaiaaiY caceWGubGbauaaaeqaaaaa@35EB@  и определенное формулами (6) и (11), из класса C 2 ( Ω T, T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiabfM6axnaaBaaaleaacaWGubGaaGilaiqadsfagaqbaaqa baGccaaIPaaaaa@3915@  тогда и только тогда, когда выполняются условия (12) и (13).

Доказательство теоремы 8.1 следует из теоремы 3.1 и леммы 8.1.

Теорема 8.2. Пусть выполняются условия f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ , F L 1 loc ( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4SaamitamaaDaaale aacaaIXaaabaGaamiBaiaad+gacaWGJbaaaOGaaGikamaanaaabaGa amyuaaaacaaIPaaaaa@3AE8@ , φC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BA4@ , ψ L 1 loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGmbWaa0baaS qaaiaaigdaaeaacaWGSbGaam4BaiaadogaaaGccaaIOaGaaG4waiaa icdacaaISaGaeyOhIuQaaGykaiaaiMcaaaa@3F7D@ , μ L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@401B@ , β L loc ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGmbWaa0baaS qaaiabg6HiLcqaaiaadYgacaWGVbGaam4yaaaakiaaiIcacaaIBbGa aGimaiaaiYcacqGHEisPcaaIPaGaaGykaaaa@4006@ . Тогда существуют такие числа 0< T T< MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiqadsfagaqbaiabgs MiJkaadsfacaaI8aGaeyOhIukaaa@38E7@ , что третья смешанная задача (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (4) имеет единственное слабое решение u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , заданное на множестве Ω T, T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvdaWgaaWcbaGaamivaiaaiY caceWGubGbauaaaeqaaaaa@35EB@  и определенное формулами (6) и (11), из класса C( Ω T, T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axnaaBaaale aacaWGubGaaGilaiqadsfagaqbaaqabaGccaaIPaaaaa@3822@ .

Доказательство теоремы 8.2 следует из теоремы 7.1 и леммы 8.1.

Отметим, что условия гладкости, указанные в теореме 8.2 о существовании и единственности локального слабого решения, сильнее, чем в теореме 7.1 о существовании и единственности глобального слабого решения. Во-первых, это происходит из-за того, что теорема 8.2 не требует выполнения условия типа Липшица MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Каратеодори (см. (2)), которое обеспечивает единственность решения. Вместо этого мы пользуемся фактом, что непрерывно дифференцируемая функция на компактном подмножестве евклидова пространства удовлетворяет условию Липшица. Поэтому мы вынуждены полагать f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcadaqdaaqaaiaadgfaaaGaey41aq7efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucaaIPa aaaa@4500@ . Но с другой стороны, для существования (но не единственности) локального слабого решения не обязательно считать функцию f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  непрерывно дифференцируемой. Для построения локального слабого можно воспользоваться теоремой Шаудера, как это сделано в [1], и в таком случае функцию f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  можно полагать непрерывной, но остальные условия гладкости, указанные в теореме 8.2, должны быть усилены: FC( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaaGykaaaa@3720@ , φ C 1 ([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOGaaGikaiaaiUfacaaIWaGaaGilaiabg6HiLkaa iMcacaaIPaaaaa@3C96@ , ψC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3BB5@ , μC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3B9D@ , βC([0,)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHiiIZcaWGdbGaaGikai aaiUfacaaIWaGaaGilaiabg6HiLkaaiMcacaaIPaaaaa@3B88@ . Это связано с тем, что теорема Шаудера требует, чтобы оператор был вполне непрерывным, чего можно добиться, например, потребовав, чтобы операторы K (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34DA@  и K (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34DB@  переводили непрерывные функции в непрерывно дифференцируемые. Кроме того, в [17] показано, что, вообще говоря, в случае fC( Q ¯ ×)f C 1 ( Q ¯ ×) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcada qdaaqaaiaadgfaaaGaey41aq7efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIucaaIPaGaey4jIKTaamOzaiabgMGipl aadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaWaa0aaaeaacaWGrbaa aiabgEna0kab=1risjaaiMcaaaa@4F5F@  смешанная задача вида (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4) не имеет единственного локального решения.

Замечание 8.1. Аналогично п. 6, можно строить локальное классическое решение задачи с условиями сопряжения.

9. Заключение. В статье были сформулированы достаточные условия, при выполнении которых существует единственное классическое решение третьей смешанной задачи в четверти плоскости для телеграфного уравнения с нелинейным потенциалом. Показано, что нарушение условий согласования приводит к невозможности построения классического решения во всей четверти плоскости. В случае невыполнения данных условий рассмотрена задача с условиями сопряжения на характеристиках. В случае недостаточной гладкости исходных данных построено слабое решение начальной задачи и доказана его единственность. Если нелинейность уравнения не является липшицевой, то построено локальное классическое и слабое решение.

×

Об авторах

Виктор Иванович Корзюк

Белорусский государственный университет; Институт математики Национальной академии наук Беларуси

Автор, ответственный за переписку.
Email: korzyuk@bsu.by
Белоруссия, Минск; Минск

Ян Вячеславович Рудько

Институт математики Национальной академии наук Беларуси

Email: janycz@yahoo.com
Белоруссия, Минск

Список литературы

  1. Джохадзе О. М. Смешанная задача с нелинейным граничным условием для полулинейного уравнения колебания струны// Диффер. уравн. — 2022. — 58, № 5. — С. 591–606.
  2. Корзюк В. И., Козловская И. С. Классические решения задач для гиперболических уравнений: курс лекций. — Минск: БГУ, 2017.
  3. Корзюк В. И., Козловская И. С. Наумовец С. Н. Классическое решение первой смешанной задачи одномерного волнового уравнения с условиями типа Коши// Изв. НАН Беларуси. Сер. физ.-мат. наук. — 2015. — № 1. — С. 7–21.
  4. Корзюк В. И., Наумовец С. Н., Сериков В. П. Смешанная задача для одномерного волнового уравнения с условиями сопряжения и производными второго порядка в граничных условиях// Изв. НАН Беларуси. Сер. физ.-мат. наук. — 2020. — 56, № 3. — С. 287–297.
  5. Корзюк В. И., Рудько Я. В. Классическое и слабое решение первой смешанной задачи для телеграфного уравнения с нелинейным потенциалом// Изв. Иркут. гос. ун-та. Сер. Мат. — 2023. — 43. —С. 48–63.
  6. Корзюк В. И., Рудько Я. В. Классическое решение первой смешанной задачи для телеграфного уравнения с нелинейным потенциалом// Диффер. уравн. — 2022. — 58, № 2. — С. 174–184.
  7. Корзюк В. И., Рудько Я. В. Локальное классическое решение задачи Коши для полулинейного гиперболического уравнения в случае двух независимых переменных// Мат. Междунар. науч. конф. «Уфимская осенняя математическая школа». Т. 2 (Уфа, 28 сентября—1 октября 2022). — Уфа: РИЦ БашГУ, 2022. — С. 48–50.
  8. Корзюк В. И., Столярчук И. И. Классическое решение первой смешанной задачи для гиперболического уравнения второго порядка в криволинейной полуполосе с переменными коэффициентами//Диффер. уравн. — 2017. — 53, № 1. — С. 77–88.
  9. Корзюк В. И., Столярчук И. И. Классическое решение первой смешанной задачи для уравнения типа Клейна—Гордона—Фока с неоднородными условиями согласования// Докл. НАН Беларуси. — 2019. — 63, № 1. — С. 7–13.
  10. Математическая энциклопедия. — М.: Советская энциклопедия, 1982.
  11. Моисеев Е. И., Корзюк В. И., Козловская И. С. Классическое решение задачи с интегральным условием для одномерного волнового уравнения// Диффер. уравн. — 2014. — 50, № 10. — С. 1373–1385.
  12. Прохоров А. М. Физическая энциклопедия. Т. 3. — М., 1992.
  13. Фущич В. И. Симметрия в задачах математической физики// в кн.: Теоретико-алгебраические исследования в математической физике (Фущич В. И., ред.). — Киев: Ин-т мат. АН УССР, 1981. —С. 6–28.
  14. Харибегашвили С. С., Джохадзе О. М. 2011// Диффер. уравн.. — 47, № 12. — С. 1741–1753.
  15. Evans L. C. Partial Differential Equations. — Providence: Am. Math. Soc., 2010.
  16. Giai Giang Vo. A semilinear wave equation with a boundary condition of many-point type: Global existence and stability of weak solutions// Abstr. Appl. Anal. — 2015. — 2015. — 531872.
  17. Korzyuk V. I., Rudzko J. V. On the absence and non-uniqueness of classical solutions of mixed problems for the telegraph equation with a nonlinear potential/ arXiv: 2303.17483 [math.AP].
  18. Nesterenko Yu. R. Mixed problem for the wave equation with Robin boundary conditions// Dokl. Math. — 2009. — 79, № 3. — P. 322–324.
  19. Nikitin A. A. On the mixed problem for the wave equation with the third and first boundary conditions//Differ. Equations. — 2007. — 43, № 12. — P. 1733–1741.
  20. Le Thi Phuong Ngoc, Le Huu Ky Son, Nguyen Thanh Long Existence, blow-up and exponential decay estimates for the nonlinear Kirchhoff–Carrier wave equation in an annular with Robin–Dirichlet conditions//Kyungpook Math. J. — 2021. — 61. — P. 859–888.
  21. Li T. Exact boundary controllability for quasilinear wave equations// J. Comput. Appl. Math. — 2006. — 190. — P. 127–135.
  22. Nakayama Y. Liouville field theory: A decade after the revolution// Int. J. Mod. Phys. A. — 2004. — 19, № 17–18. — P. 2771–2930.
  23. Nguyen Huu Nhan, Le Thi Phuong Ngoc, Tran Minh Thuyet, Nguyen Thanh Long A Robin–Dirichlet problem for a nonlinear wave equation with the source term containing a nonlinear integral// Lithuan. Math. J. — 2017. — 57, № 1. — P. 80–108.
  24. Van Horssen W. T.,Wang Y., Cao G. On solving wave equations on fixed bounded intervals involving Robin boundary conditions with time-dependent coefficients// J. Sound Vibr. — 2018. — 424. — P. 263–271.
  25. Wu X., Mei L., Liu C. An analytical expression of solutions to nonlinear wave equations in higher dimensions with Robin boundary conditions// J. Math. Anal. Appl. — 2015. — 426, № 2. — P. 1164–1173.
  26. Xie Y., Tang J. A unified method for solving sinh-Gordon-type equations// Nuovo Cim. — 2006. — 121, № 2. — P. 1373–1385.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Примечание

Посвящается академику Е. И. Моисееву


© Корзюк В.И., Рудько Я.В., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».