Обобщенные формулы Римана решения первой смешанной задачи для общего телеграфного уравнения с переменными коэффициентами в первой четверти плоскости

Обложка

Цитировать

Полный текст

Аннотация

Известным методом Римана и новым методом компенсации граничного режима правой частью уравнения получены формулы Римана единственного и устойчивого классического решения первой смешанной задачи для линейного общего неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости. Из постановки смешанной задачи, определения классических решений и установленного критерия гладкости правой части уравнения выведен её критерий корректности по Адамару. Этот критерий корректности состоит из требований гладкости и трёх условий согласования правой части уравнения, граничного и начальных данных. Подтверждена справедливость полученных формул Римана и критерия корректности тем, что доказано их совпадение с известными формулами классического решения и критерием корректности для модельного телеграфного уравнения.

Полный текст

1. Введение. В настоящей работе впервые явно решена и полностью изучена корректность по Адамару (существование, единственность и устойчивость) первой смешанной задачи для линейного общего неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости для классических решений. Выведены обобщенные формулы типа Римана её единственного и устойчивого классического решения и установлен критерий (необходимые и достаточные условия) её корректности во множестве классических решений (теорема 3.1). Этот критерий корректности состоит из требований гладкости на правую часть уравнения, граничное и начальные данные и трёх условий согласования граничного режима с начальными условиями и уравнением. В настоящей статье (теорема 4.1) с помощью вычисленной функции Римана доказано, что в случае модельного телеграфного уравнения эти обобщенные формулы типа Римана и критерий корректности первой смешанной задачи из теоремы 3.1 совпадают с уже известными результатами из статьи [5]. В ней ранее автором настоящей работы были получены явные формулы классического решения, часть критерия корректности и доказана теорема существования единственного и устойчивого классического решения первой смешанной задачи для общего неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости. В теореме 3.1 настоящей работы вывод полного критерия корректности на правую часть телеграфного уравнения с переменными коэффициентами использует критерий корректности [15, 16]. Результаты из [5] и настоящей работы нами распространены <<методом вспомогательных смешанных задач для полуограниченной струны>> (см. [6]) на первую смешанную задачу для модельного и общего телеграфных уравнений с переменными коэффициентами в полуполосе плоскости в статьях [17, 18].

В работе автора [5] обобщались результаты кандидатской диссертации [1], в которой первая смешанная задача для однородного уравнения в полуполосе плоскости, периодическими продолжениями исходных данных задачи и коэффициентов уравнения при соответствующих предположениях на них заменяется задачей Коши для него в верхней полуплоскости. Глобальная теорема корректности первой смешанной задачи для более общего ( a 1 a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaigdaaeqaaO GaeyiyIKRaamyyamaaBaaaleaacaaIYaaabeaaaaa@3729@  ) волнового уравнения на отрезке, но с постоянными коэффициентами имеется в [7]. В этой статье введено понятие глобальных теорем корректности линейных краевых задач и с помощью леммы Цорна доказана теорема (см. [7, теорема 1]) о существовании их глобальных теорем корректности. Глобальными называются теоремы корректности краевых задач с критериями (необходимыми и достаточными условиями) их корректности по Адамару. Теорема 1 из [7] утверждает: каждая корректно поставленная линейная краевая задача для дифференциального уравнения в частных производных имеет глобальную теорему её корректной разрешимости по Адамару в соответствующей паре локально выпуклых топологических векторных пространств.

Результаты настоящей работы обобщают работы [3, 12–14], в которых рассматривалась первая смешанная задача для простейшего ( a=const>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaadogacaWGVbGaam OBaiaadohacaWG0bGaaGOpaiaaicdaaaa@39AC@ , b=c=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGypaiaadogacaaI9aGaaG imaaaa@35D4@ , q=q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGypaiaadghacaaIOaGaam iEaiaaiMcaaaa@36D2@  ) телеграфного уравнения (2.1). В диссертации [14] установлены необходимые и достаточные условия на начальные данные и только достаточные условия на правую часть уравнения для классического решения первой смешанной задачи. Согласно [3, 7]] необходимые условия f(0,t)=f(π,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamOzaiaaiIcacqaHapaCcaaISaGaamiDaiaa iMcacaaI9aGaaGimaaaa@3E7A@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , на правую часть f(x,t)C( Q ¯ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikamaanaaabaGaamyuaaaacaaI Paaaaa@3B51@  уравнения колебаний струны из [14] являются лишь одними из достаточных (необязательных) условий корректности первой смешанной задачи. Здесь одними из необходимых (обязательных) условий служат условия согласования f(0,0)=f(π,0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaaicdacaaISaGaaG imaiaaiMcacaaI9aGaamOzaiaaiIcacqaHapaCcaaISaGaaGimaiaa iMcacaaI9aGaaGimaaaa@3DFC@  правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  с нулевыми начальными и граничными данными. В статьях [12, 13] для волнового уравнения найдена формула и необходимые и достаточные условия на начальные данные для обобщенного (почти классического) решения смешанной задачи, предполагая его единственность. Это решение удовлетворяет уравнению почти всюду по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ .

2. Постановка основной первой смешанной задачи. В первой четверти G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  решить и вывести критерий корректности первой смешанной задачи

Lu(x,t) u tt (x,t) a 2 (x,t) u xx (x,t)+b(x,t) u t (x,t)+c(x,t) u x (x,t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimjaayIW7caWG1bGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacqGHHjIUcaWG1bWaaSbaaSqaaiaadshacaWG0b aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyOeI0Iaamyy amaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaamyDamaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgUcaRiaadkgacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiDaaqabaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadogacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaaqabaGccaaI OaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRaaa@7303@

+q(x,t)u(x,t)=f(x,t),(x,t) G ˙ = 0,+ × 0,+ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGXbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI9aGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaG ilaiaaywW7caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolqa dEeagaGaamaaBaaaleaacqGHEisPaeqaaOGaaGypamaajmcabaGaaG imaiaaiYcacqGHRaWkcqGHEisPaiaaw2facaGLBbaacqGHxdaTdaqc JaqaaiaaicdacaaISaGaey4kaSIaeyOhIukacaGLDbGaay5waaGaaG ilaaaa@5C13@  (2.1)

u | t=0 =φ(x), u t | t=0 =ψ(x),x>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGiFamaaBaaaleaacaWG0b GaaGypaiaaicdaaeqaaOGaaGypaiabeA8aQjaaiIcacaWG4bGaaGyk aiaaiYcacaaMf8UaamyDamaaBaaaleaacaWG0baabeaakiaaiYhada WgaaWcbaGaamiDaiaai2dacaaIWaaabeaakiaai2dacqaHipqEcaaI OaGaamiEaiaaiMcacaaISaGaaGzbVlaadIhacaaI+aGaaGimaiaaiY caaaa@4DE6@  (2.2)

u | x=0 =μ(t),t>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGiFamaaBaaaleaacaWG4b GaaGypaiaaicdaaeqaaOGaaGypaiabeY7aTjaaiIcacaWG0bGaaGyk aiaaiYcacaaMf8UaamiDaiaai6dacaaIWaGaaGilaaaa@40C1@  (2.3)

где коэффициенты уравнения a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  вещественные функции и исходные данные задачи f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданные функции своих переменных x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ . Количеством нижних индексов функций мы обозначаем порядки их соответствующих частных производных.

Пусть C k (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaWGRbaaaO GaaGikaiabfM6axjaaiMcaaaa@369F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  множество k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  раз непрерывно дифференцируемых функций на подмножестве Ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvaaa@334B@ , C(Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabfM6axjaaiMcaaa a@3578@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  множество непрерывных функций на Ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcqGHckcZtuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGa aGOmaaaaaaa@40E7@  и 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@3D5D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  плоскость.

Определение 2.1. Классическим решением смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) называется непрерывная ограниченная функция c непрерывными и ограниченными первыми и вторыми частными производными на G = 0,+ × 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba GccaaI9aWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5w aiaawUfaaiabgEna0oaajicabaGaaGimaiaaiYcacqGHRaWkcqGHEi sPaiaawUfacaGLBbaaaaa@42BE@ , т.е. u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@ , удовлетворяющая уравнению (2.1) на G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  в обычном смысле, а начальным условиям (2.2) и граничному режиму (2.3) в смысле значений пределов u( x ˙ , t ˙ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiqadIhagaGaaiaaiY caceWG0bGbaiaacaaIPaaaaa@36DA@  и её производной u t ˙ ( x ˙ , t ˙ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiqadshagaGaaa qabaGccaaIOaGabmiEayaacaGaaGilaiqadshagaGaaiaaiMcaaaa@3812@  по t ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG0bGbaiaaaaa@32BF@  во внутренних точках ( x ˙ , t ˙ ) G ˙ = 0,+ × 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmiEayaacaGaaGilaiqads hagaGaaiaaiMcacqGHiiIZceWGhbGbaiaadaWgaaWcbaGaeyOhIuka beaakiaai2dadaqcJaqaaiaaicdacaaISaGaey4kaSIaeyOhIukaca GLDbGaay5waaGaey41aq7aaKWiaeaacaaIWaGaaGilaiabgUcaRiab g6HiLcGaayzxaiaawUfaaaaa@4874@ , стремящихся к соответствующим граничным точкам (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@35CE@ .

Требуется найти в явном виде классическое решение u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  и установить критерий корректности на правую часть f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , начальные φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@  и граничное μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  данные для ее однозначной везде разрешимости.

Из постановки этой смешанной задачи и определения 2.1 её классических решений сразу вытекают следующие необходимые условия гладкости исходных данных:

fC( G ),φ C 2 0,+ ,ψ C 1 0,+ ,μ C 2 0,+ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaGaaGilaiaaywW7cqaH gpGAcqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOWaaKGiaeaaca aIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfaaiaaiYcacaaM f8UaeqiYdKNaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakmaaji cabaGaaGimaiaaiYcacqGHRaWkcqGHEisPaiaawUfacaGLBbaacaaI SaGaaGzbVlabeY7aTjabgIGiolaadoeadaahaaWcbeqaaiaaikdaaa GcdaqcIaqaaiaaicdacaaISaGaey4kaSIaeyOhIukacaGLBbGaay5w aaGaaGOlaaaa@60D5@  (2.4)

Ниже в теореме 3.1 возьмем дополнительные необходимые и достаточные требования гладкости (3.1) на fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  из [15, 16], где ищутся классические решения неоднородного модельного телеграфного уравнения с минимальной гладкостью правой части.

Полагая t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  соответственно в граничном режиме (2.3), первой и второй производных по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  от граничного режима (2.3), с помощью начальных условий (2.2) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  и уравнения (2.1) при x=t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaadshacaaI9aGaaG imaaaa@35FB@  выводим необходимые условия согласования:

φ(0)=μ(0),ψ(0)= μ (0), Sf(0,0)+ a 2 (0,0) φ (0)b(0,0)ψ(0)c(0,0) φ (0)q(0,0)φ(0)= μ (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaeqOXdOMaaGikai aaicdacaaIPaGaaGypaiabeY7aTjaaiIcacaaIWaGaaGykaiaaiYca caaMf8UaeqiYdKNaaGikaiaaicdacaaIPaGaaGypaiqbeY7aTzaafa GaaGikaiaaicdacaaIPaGaaGilaaqaaiaadofacqGHHjIUcaWGMbGa aGikaiaaicdacaaISaGaaGimaiaaiMcacqGHRaWkcaWGHbWaaWbaaS qabeaacaaIYaaaaOGaaGikaiaaicdacaaISaGaaGimaiaaiMcacuaH gpGAgaqbgaqbaiaaiIcacaaIWaGaaGykaiabgkHiTiaadkgacaaIOa GaaGimaiaaiYcacaaIWaGaaGykaiabeI8a5jaaiIcacaaIWaGaaGyk aiabgkHiTiaadogacaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiqbeA 8aQzaafaGaaGikaiaaicdacaaIPaGaeyOeI0IaamyCaiaaiIcacaaI WaGaaGilaiaaicdacaaIPaGaeqOXdOMaaGikaiaaicdacaaIPaGaaG ypaiqbeY7aTzaafyaafaGaaGikaiaaicdacaaIPaGaaGOlaaaaaaa@787E@  (2.5)

Количеством штрихов над функциями одной переменной мы обозначаем порядки их обыкновенных производных по этой переменной.

Уравнение (2.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  имеет характеристические дифференциальные уравнения

dx=( 1) i a(x,t)dt,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaamiEaiaai2dacaaIOaGaey OeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadMgaaaGccaWGHbGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcacaaMf8 UaamyAaiaai2dacaaIXaGaaGilaiaaikdacaaISaaaaa@4651@  (2.6)

которым в плоскости 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaaGOmaaaaaaa@3D5D@  переменных x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  соответствуют два различных семейства неявных характеристик g i (x,t)= C i , C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaakiaaiYcacaWGdbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@496E@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ . Если коэффициент a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , то переменная t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  на характеристике g 1 (x,t)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaaIXaaabeaaaaa@3A21@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ , строго убывает, а на характеристике g 2 (x,t)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaaIYaaabeaaaaa@3A23@ , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB2@ , строго возрастает вместе с ростом x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  в правой плоскости Oxt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEaiaadshaaaa@3487@ . Поэтому у неявных функций y i = g i (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadEgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaaaa@3AC7@ , x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , существуют явные строго монотонные обратные функции x= h i { y i ,t} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaadIgadaWgaaWcba GaamyAaaqabaGccaaI7bGaamyEamaaBaaaleaacaWGPbaabeaakiaa iYcacaWG0bGaaGyFaaaa@3B6F@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , и t= h (i) [x, y i ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadIgadaahaaWcbe qaaiaaiIcacaWGPbGaaGykaaaakiaaiUfacaWG4bGaaGilaiaadMha daWgaaWcbaGaamyAaaqabaGccaaIDbaaaa@3C95@ , x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , для которых на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  выполняются следующие тождества обращения из статьи [5]:

5 g i ( h i { y i ,t},t)= y i ,t0, h i { g i (x,t),t}=x,x0,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI1aGaam4zamaaBaaaleaacaWGPb aabeaakiaaiIcacaWGObWaaSbaaSqaaiaadMgaaeqaaOGaaG4Eaiaa dMhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamiDaiaai2hacaaISa GaamiDaiaaiMcacaaI9aGaamyEamaaBaaaleaacaWGPbaabeaakiaa iYcacaaMf8UaamiDaiabgwMiZkaaicdacaaISaGaaGzbVlaadIgada WgaaWcbaGaamyAaaqabaGccaaI7bGaam4zamaaBaaaleaacaWGPbaa beaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaadshaca aI9bGaaGypaiaadIhacaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGa aGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcaaa a@64C6@  (2.7)

g i (x, h (i) [x, y i ])= y i ,x0, h (i) [x, g i (x,t)]=t,t0,i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiAamaaCaaaleqabaGaaGikaiaadMga caaIPaaaaOGaaG4waiaadIhacaaISaGaamyEamaaBaaaleaacaWGPb aabeaakiaai2facaaIPaGaaGypaiaadMhadaWgaaWcbaGaamyAaaqa baGccaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGaaGilaiaaywW7ca WGObWaaWbaaSqabeaacaaIOaGaamyAaiaaiMcaaaGccaaIBbGaamiE aiaaiYcacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaIDbGaaGypaiaadshacaaISaGaaGzbVlaa dshacqGHLjYScaaIWaGaaGilaiaaywW7caWGPbGaaGypaiaaigdaca aISaGaaGOmaiaaiYcaaaa@665B@  (2.8)

h i { y i , h (i) [x, y i ]}=x,x0, h (i) [ h i { y i ,t}, y i ]=t,t0,i=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaO GaaG4EaiaadMhadaWgaaWcbaGaamyAaaqabaGccaaISaGaamiAamaa CaaaleqabaGaaGikaiaadMgacaaIPaaaaOGaaG4waiaadIhacaaISa GaamyEamaaBaaaleaacaWGPbaabeaakiaai2facaaI9bGaaGypaiaa dIhacaaISaGaaGzbVlaadIhacqGHLjYScaaIWaGaaGilaiaaywW7ca WGObWaaWbaaSqabeaacaaIOaGaamyAaiaaiMcaaaGccaaIBbGaamiA amaaBaaaleaacaWGPbaabeaakiaaiUhacaWG5bWaaSbaaSqaaiaadM gaaeqaaOGaaGilaiaadshacaaI9bGaaGilaiaadMhadaWgaaWcbaGa amyAaaqabaGccaaIDbGaaGypaiaadshacaaISaGaaGzbVlaadshacq GHLjYScaaIWaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGa aGOmaiaai6caaaa@69F7@  (2.9)

Если коэффициент a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , то функции g i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaa aa@33C3@ , h i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaa aa@33C4@ , h (i) C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaam yAaiaaiMcaaaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaaaa @3869@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , y i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaa aa@33D5@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. [1]).

Замечание 2.1. В случае a(x,t)=a=const>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyyaiaai2dacaWGJbGaam4Baiaad6gacaWG ZbGaamiDaiaai6dacaaIWaaaaa@3F6A@  ими служат функции g 1 (x,t)=x+at MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaamiEaiabgUca RiaadggacaWG0baaaa@3C30@ , g 2 (x,t)=xat MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaamiEaiabgkHi TiaadggacaWG0baaaa@3C3C@ , h 1 { y 1 ,t}= y 1 at MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaG4EaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiDaiaa i2hacaaI9aGaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadg gacaWG0baaaa@3EC7@ , h 2 { y 2 ,t}= y 2 +at MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaikdaaeqaaO GaaG4EaiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaamiDaiaa i2hacaaI9aGaamyEamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadg gacaWG0baaaa@3EBF@ , h (1) [x, y 1 ]=( y 1 x)/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaIBbGaamiEaiaaiYcacaWG5bWaaSbaaSqaaiaa igdaaeqaaOGaaGyxaiaai2dacaaIOaGaamyEamaaBaaaleaacaaIXa aabeaakiabgkHiTiaadIhacaaIPaGaaG4laiaadggaaaa@4213@ , h (2) [x, y 2 ]=(x y 2 )/a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaamiEaiaaiYcacaWG5bWaaSbaaSqaaiaa ikdaaeqaaOGaaGyxaiaai2dacaaIOaGaamiEaiabgkHiTiaadMhada WgaaWcbaGaaGOmaaqabaGccaaIPaGaaG4laiaadggaaaa@4216@  (см. [10]).

Определение 2.2. Характеристика g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@ , в которой a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , называется критической для уравнения (2.1) в первой четверти плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ .

Критическая характеристика разбивает четверть плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  на два множества

G ={(x,t) G : g 2 (x,t)> g 2 (0,0)}, G + ={(x,t) G : g 2 (x,t) g 2 (0,0)}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba GccaaI9aGaaG4EaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyic I4Saam4ramaaBaaaleaacqGHEisPaeqaaOGaaGOoaiaadEgadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa i6dacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaaicdacaaISa GaaGimaiaaiMcacaaI9bGaaGilaiaaywW7caWGhbWaaSbaaSqaaiab gUcaRaqabaGccaaI9aGaaG4EaiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaeyicI4Saam4ramaaBaaaleaacqGHEisPaeqaaOGaaGOoaiaa dEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiabgsMiJkaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa aGimaiaaiYcacaaIWaGaaGykaiaai2hacaaIUaaaaa@68FF@

На этих множествах первая смешанная задача (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) может иметь разные единственные согласованные классические решения и критерии корректности по Адамару. В отличие от смешанных (начально-граничных) задач, в задаче Коши обычно нет условий согласования.

3. Исследование корректности основной смешанной задачи. Если в уравнении (2.1) продолжить функцию a(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B4@  чётным образом на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ , то характеристики g i (x,t)= C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaaaaa@3A87@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , будут заданы на верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  плоскости Oxt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEaiaadshaaaa@3487@ .

Обобщенные формулы Римана классического решения и критерий корректности описаны в следующей теореме.

Теорема 3.1 (см. [19]). Пусть a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , b,c,q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacaaISaGaam yCaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaam4r amaaBaaaleaacqGHEisPaeqaaOGaaGykaaaa@3D04@ . Первая смешанная задача (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (2.3) в области G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  имеет единственное и устойчивое по φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  классическое решение u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  тогда и только тогда, когда справедливы требования гладкости (2.4),

H i (x,t) 0 t f(| h i { g i (x,t),τ}|,τ) a(| h i { g i (x,t),τ}|,τ) h i { g i (x,t),τ} g i dτ C 1 ( G ),i=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHHjIUdaWdXbqabSqa aiaaicdaaeaacaWG0baaniabgUIiYdGcdaWcaaqaaiaadAgacaaIOa GaaGiFaiaadIgadaWgaaWcbaGaamyAaaqabaGccaaI7bGaam4zamaa BaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGilaiabes8a0jaai2hacaaI8bGaaGilaiabes8a0jaaiMcaaeaa caWGHbGaaGikaiaaiYhacaWGObWaaSbaaSqaaiaadMgaaeqaaOGaaG 4EaiaadEgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaaiYca caWG0bGaaGykaiaaiYcacqaHepaDcaaI9bGaaGiFaiaaiYcacqaHep aDcaaIPaaaaiaayIW7daWcaaqaaiabgkGi2kaadIgadaWgaaWcbaGa amyAaaqabaGccaaI7bGaam4zamaaBaaaleaacaWGPbaabeaakiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabes8a0jaai2haaeaa cqGHciITcaWGNbWaaSbaaSqaaiaadMgaaeqaaaaakiaayIW7caWGKb GaeqiXdqNaeyicI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIca caWGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaGaaGilaiaaywW7ca WGPbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcaaaa@8A41@  (3.1)

и условия согласования (2.5). Классическим решением задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) в G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  является функция

u (x,t)= (auv)( h 2 { g 2 (x,t),0},0)+(auv)( h 1 { g 1 (x,t),0},0) 2a(x,t) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dadaWcaaqaaiaa iIcacaWGHbGaamyDaiaadAhacaaIPaGaaGikaiaadIgadaWgaaWcba GaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaGaey4kaSIaaGikaiaadggacaWG1bGaamODaiaa iMcacaaIOaGaamiAamaaBaaaleaacaaIXaaabeaakiaaiUhacaWGNb WaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaISaGaaGimaiaai2hacaaISaGaaGimaiaaiMcaaeaacaaIYa GaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaiabgUcaRaaa @64F5@

+ 1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaa qaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGil aiaaicdacaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4Eai aadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGilaiaaicdacaaI9baaniabgUIiYdGccaaIBbGaeqiYdK NaaGikaiaadohacaaIPaGaamODaiaaiIcacaWGZbGaaGilaiaaicda caaIPaGaeyOeI0IaeqOXdOMaaGikaiaadohacaaIPaGaamODamaaBa aaleaacqaHepaDaeqaaOGaaGikaiaadohacaaISaGaaGimaiaaiMca cqGHRaWkcaWGIbGaaGikaiaadohacaaISaGaaGimaiaaiMcacqaHgp GAcaaIOaGaam4CaiaaiMcacaWG2bGaaGikaiaadohacaaISaGaaGim aiaaiMcacaaIDbGaaGjcVlaadsgacaWGZbGaey4kaScaaa@7B24@

+ 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f(s,τ)v(s,τ;x,t)ds,(x,t) G , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc caWGMbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadAhacaaIOa Gaam4CaiaaiYcacqaHepaDcaaI7aGaaGjcVlaadIhacaaISaGaamiD aiaaiMcacaaMi8UaamizaiaadohacaaISaGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaISaaaaa@7945@  (3.2)

u + (x,t)= (auv)( h 1 { g 1 (x,t),0},0)(auv)( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0) 2a(x,t) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaayIW7caaI9aGaaGjc VpaalaaabaGaaGikaiaadggacaWG1bGaamODaiaaiMcacaaIOaGaam iAamaaBaaaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaa igdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaG imaiaai2hacaaISaGaaGimaiaaiMcacqGHsislcaaIOaGaamyyaiaa dwhacaWG2bGaaGykaiaaiIcacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaG4EaiaadEgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaa iYcacaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBb GaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiaaiYcacaaIWaGaaG yFaiaaiYcacaaIWaGaaGykaaqaaiaaikdacaWGHbGaaGikaiaadIha caaISaGaamiDaiaaiMcaaaGaey4kaScaaa@7349@

+ 1 2a(x,t) h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0} h 1 { g 1 (x,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaa qaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadIgadaahaaqabeaa caaIOaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBa aabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI DbGaaGykaiaaiYcacaaIWaGaaGyFaaqaaiaadIgadaWgaaqaaiaaig daaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyFaaqdcqGHRiI8aO GaaG4waiabeI8a5jaaiIcacaWGZbGaaGykaiaadAhacaaIOaGaam4C aiaaiYcacaaIWaGaaGykaiabgkHiTiabeA8aQjaaiIcacaWGZbGaaG ykaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGil aiaaicdacaaIPaGaey4kaSIaamOyaiaaiIcacaWGZbGaaGilaiaaic dacaaIPaGaeqOXdOMaaGikaiaadohacaaIPaGaamODaiaaiIcacaWG ZbGaaGilaiaaicdacaaIPaGaaGyxaiaayIW7caWGKbGaam4CaiabgU caRaaa@862C@

+ 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f (|s|,τ)v(|s|,τ;|x|,t)ds+μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc ceWGMbGbaqbacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0j aaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaD caaI7aGaaGjcVlaaiYhacaWG4bGaaGiFaiaaiYcacaWG0bGaaGykai aayIW7caWGKbGaam4CaiabgUcaRiabeY7aTjaaiIcacaWG0bGaaGyk aiabgkHiTaaa@7C77@

1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f (|s|,τ)v(|s|,τ;0,t)ds,(x,t) G + , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGimai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc ceWGMbGbaqbacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0j aaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaD caaI7aGaaGjcVlaaicdacaaISaGaamiDaiaaiMcacaaMi8Uaamizai aadohacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaIPaGa eyicI4Saam4ramaaBaaaleaacqGHRaWkaeqaaOGaaGilaaaa@7DFA@  (3.3)

где f (x,t)=f(x,t) f μ (x,t)+ f (0) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dacaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHsislcaWGMbWaaSbaaSqaaiabeY7aTbqabaGccaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadAgadaahaaWcbeqa aiaaiIcacaaIWaGaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaaaaa@4CA0@ , f μ (x,t)=Lμ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiabeY7aTbqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2datuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=jrimjaayIW7cqaH8o qBcaaIOaGaamiDaiaaiMcaaaa@499E@ , f (0) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaWbaaSqabeaacaaIOaGaaG imaiaaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@390F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  сужение на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  решения системы (3.27) интегрального уравнения Вольтерра второго рода и соответствующего линейного алгебраического уравнения, а функции Римана v(s,τ)=v(s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaai2dacaWG2bGaaGikaiaadohacaaISaGaeqiXdqNa aG4oaiaayIW7caWG4bGaaGilaiaadshacaaIPaaaaa@432C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  классические решения задач Гурса (3.10), (3.13) в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и (3.20), (3.21) в G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ .

Доказательство. Достаточность. Сначала выведем формулы (3.2) и (3.3) формального решения задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . Затем установим его дважды непрерывную дифференцируемость, единственность и устойчивость в нормах (3.29) и (3.30).

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@ . Множество G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ Уравнение (2.1) для любых функций u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@394A@  умножаем на любые функции v C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@394B@  и, используя очевидные равенства

u tt v=( u t v ) t u t v t =( u t v ) t (u v t ) t +u v tt , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadshacaWG0b aabeaakiaayIW7caWG2bGaaGypaiaaiIcacaWG1bWaaSbaaSqaaiaa dshaaeqaaOGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaadshaaeqaaO GaeyOeI0IaamyDamaaBaaaleaacaWG0baabeaakiaayIW7caWG2bWa aSbaaSqaaiaadshaaeqaaOGaaGypaiaaiIcacaWG1bWaaSbaaSqaai aadshaaeqaaOGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaadshaaeqa aOGaeyOeI0IaaGikaiaadwhacaaMi8UaamODamaaBaaaleaacaWG0b aabeaakiaaiMcadaWgaaWcbaGaamiDaaqabaGccqGHRaWkcaWG1bGa aGjcVlaadAhadaWgaaWcbaGaamiDaiaadshaaeqaaOGaaGilaaaa@5DD8@

a 2 u xx v=( u x a 2 v ) x u x ( a 2 v) x =( u x a 2 v ) x (u ( a 2 v) x ) x +u ( a 2 v) xx , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaWbaaSqabeaacaaIYaaaaO GaamyDamaaBaaaleaacaWG4bGaamiEaaqabaGccaaMi8UaamODaiaa i2dacaaIOaGaamyDamaaBaaaleaacaWG4baabeaakiaayIW7caWGHb WaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWgaaWcbaGaamiE aaqabaGccqGHsislcaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGjcVl aaiIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWg aaWcbaGaamiEaaqabaGccaaI9aGaaGikaiaadwhadaWgaaWcbaGaam iEaaqabaGccaaMi8UaamyyamaaCaaaleqabaGaaGOmaaaakiaadAha caaIPaWaaSbaaSqaaiaadIhaaeqaaOGaeyOeI0IaaGikaiaadwhaca aMi8UaaGikaiaadggadaahaaWcbeqaaiaaikdaaaGccaWG2bGaaGyk amaaBaaaleaacaWG4baabeaakiaaiMcadaWgaaWcbaGaamiEaaqaba GccqGHRaWkcaWG1bGaaGjcVlaaiIcacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaamODaiaaiMcadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaG ilaaaa@6D4D@

b u t v=(ubv ) t u (bv) t ,c u x v=(ucv ) x u (cv) x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaamyDamaaBaaaleaacaWG0b aabeaakiaayIW7caWG2bGaaGypaiaaiIcacaWG1bGaamOyaiaadAha caaIPaWaaSbaaSqaaiaadshaaeqaaOGaeyOeI0IaamyDaiaayIW7ca aIOaGaamOyaiaadAhacaaIPaWaaSbaaSqaaiaadshaaeqaaOGaaGil aiaaysW7caaMe8Uaam4yaiaadwhadaWgaaWcbaGaamiEaaqabaGcca aMi8UaamODaiaai2dacaaIOaGaamyDaiaadogacaWG2bGaaGykamaa BaaaleaacaWG4baabeaakiabgkHiTiaadwhacaaMi8UaaGikaiaado gacaWG2bGaaGykamaaBaaaleaacaWG4baabeaakiaaiYcaaaa@5DD4@

приходим к тождеству

(Lu)vu(Mv)= H(u,v) t + K(u,v) x u,v C 2 ( G ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiqaacqWFsectcaaMi8UaamyDaiaaiMcacaaM i8UaamODaiabgkHiTiaadwhacaaMi8UaaGikaiab=ntinjaayIW7ca WG2bGaaGykaiaai2dadaWcaaqaaiabgkGi2kaadIeacaaIOaGaamyD aiaaiYcacaWG2bGaaGykaaqaaiabgkGi2kaadshaaaGaey4kaSYaaS aaaeaacqGHciITcaWGlbGaaGikaiaadwhacaaISaGaamODaiaaiMca aeaacqGHciITcaWG4baaaiaaywW7cqGHaiIicaWG1bGaaGilaiaadA hacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadEea daWgaaWcbaGaeyOeI0cabeaakiaaiMcacaaISaaaaa@6ABB@  (3.4)

где

Mv= v tt (x,t) ( a 2 (x,t)v(x,t)) xx (b(x,t)v(x,t)) t (c(x,t)v(x,t)) x +q(x,t)v(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinjaayIW7caWG2bGaaGypaiaadAhadaWg aaWcbaGaamiDaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacqGHsislcaaIOaGaamyyamaaCaaaleqabaGaaGOmaaaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGykamaaBaaaleaacaWG4bGaamiEaaqabaGc cqGHsislcaaIOaGaamOyaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamODaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykamaaBaaa leaacaWG0baabeaakiabgkHiTiaaiIcacaWGJbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG2bGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaIPaWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamyCaiaaiI cacaWG4bGaaGilaiaadshacaaIPaGaamODaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaaGilaaaa@7D25@

H(u,v)= u t vu v t +buv=(uv ) t u[2 v t bv], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiaadwhacaaISaGaam ODaiaaiMcacaaI9aGaamyDamaaBaaaleaacaWG0baabeaakiaayIW7 caWG2bGaeyOeI0IaamyDaiaayIW7caWG2bWaaSbaaSqaaiaadshaae qaaOGaey4kaSIaamOyaiaadwhacaWG2bGaaGypaiaaiIcacaWG1bGa amODaiaaiMcadaWgaaWcbaGaamiDaaqabaGccqGHsislcaWG1bGaaG 4waiaaikdacaWG2bWaaSbaaSqaaiaadshaaeqaaOGaeyOeI0IaamOy aiaadAhacaaIDbGaaGilaaaa@54E4@  (3.5)

K(u,v)= u x a 2 v+u ( a 2 v) x +cuv= ( a 2 uv) x +u[2( a 2 v ) x +cv]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbGaaGikaiaadwhacaaISaGaam ODaiaaiMcacaaI9aGaeyOeI0IaamyDamaaBaaaleaacaWG4baabeaa kiaayIW7caWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiabgUcaRi aadwhacaaMi8UaaGikaiaadggadaahaaWcbeqaaiaaikdaaaGccaWG 2bGaaGykamaaBaaaleaacaWG4baabeaakiabgUcaRiaadogacaWG1b GaamODaiaai2dacqGHsislcaaIOaGaamyyamaaCaaaleqabaGaaGOm aaaakiaadwhacaWG2bGaaGykamaaBaaaleaacaWG4baabeaakiabgU caRiaadwhacaaIBbGaaGOmaiaaiIcacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaamODaiaaiMcadaWgaaWcbaGaamiEaaqabaGccqGHRaWkca WGJbGaamODaiaai2facaaIUaaaaa@60E2@  (3.6)

Дифференциальный оператор M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinbaa@3C6C@ , который является сопряженным оператором к оператору L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimbaa@3C4A@  в смысле численнозначных распределений Шварца D'( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=nq8ejaaiEcacaaIOaGaam4ramaaBaaaleaa cqGHsislaeqaaOGaaGykaaaa@4108@  (см. [2, 22]), обычно называют формально сопряженным оператором к оператору L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimbaa@3C4A@ . В силу левой ориентации плоскости Oτs MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqNaam4Caaaa@354E@  на рис. 1 по известной формуле Грина двойной интеграл от тождества (3.4) по характеристическому треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  с любой вершиной M(x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgkHiTaqabaaaaa@3A09@  и вершинами его основания P( h 2 { g 2 (x,t),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadIgadaWgaaWcba GaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaaaaa@40B1@  и Q( h 1 { g 1 (x,t),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIgadaWgaaWcba GaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaaaaa@40B0@  равен

ΔMPQ [(Lu)vu(Mv)]dsdτ= ΔMPQ [ H(u,v) τ + K(u,v) s ]dsdτ= l + [K(u,v)dτH(u,v)ds], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiabgs5aejaad2eaca WGqbGaamyuaaqab0Gaey4kIipakiaaiUfacaaIOaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiqaacqWFsectcaWG1bGaaGykai aayIW7caWG2bGaeyOeI0IaamyDaiaayIW7caaIOaGae83mH0KaamOD aiaaiMcacaaIDbGaamizaiaadohacaaMi8Uaamizaiabes8a0jaai2 dadaWdrbqabSqaaiabgs5aejaad2eacaWGqbGaamyuaaqab0Gaey4k IipakiaaiUfadaWcaaqaaiabgkGi2kaadIeacaaIOaGaamyDaiaaiY cacaWG2bGaaGykaaqaaiabgkGi2kabes8a0baacqGHRaWkdaWcaaqa aiabgkGi2kaadUeacaaIOaGaamyDaiaaiYcacaWG2bGaaGykaaqaai abgkGi2kaadohaaaGaaGyxaiaadsgacaWGZbGaaGjcVlaadsgacqaH epaDcaaI9aWaa8quaeqaleaacaWGSbWaaWbaaeqabaGaey4kaScaaa qab0Gaey4kIipakiaaiUfacaWGlbGaaGikaiaadwhacaaISaGaamOD aiaaiMcacaWGKbGaeqiXdqNaeyOeI0IaamisaiaaiIcacaWG1bGaaG ilaiaadAhacaaIPaGaamizaiaadohacaaIDbGaaGilaaaa@8F24@  (3.7)

где l + =QMMPPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGSbWaaWbaaSqabeaacqGHRaWkaa GccaaI9aGaamyuaiaad2eacqGHQicYcaWGnbGaamiuaiabgQIiilaa dcfacaWGrbaaaa@3CC8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  контур криволинейного треугольника ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с положительным направлением обхода.

 

Рис. 1. Криволинейный характеристический треугольник ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ .

 

В криволинейном интеграле (3.7) с помощью выражений (3.5), (3.6), дифференциального уравнения характеристики из (2.6) при i=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdaaaa@342D@  и очевидных равенств

(uv) τ a=(auv ) τ a τ uv, ( a 2 uv) s (1/a)=(auv ) s a 2 uv (1/a) s =(auv ) s + a s uv MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaayIW7caWG2bGaaG ykamaaBaaaleaacqaHepaDaeqaaOGaamyyaiaai2dacaaIOaGaamyy aiaayIW7caWG1bGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiabes8a0b qabaGccqGHsislcaWGHbWaaSbaaSqaaiabes8a0bqabaGccaWG1bGa aGjcVlaadAhacaaISaGaaGzbVlaaiIcacaWGHbWaaWbaaSqabeaaca aIYaaaaOGaamyDaiaayIW7caWG2bGaaGykamaaBaaaleaacaWGZbaa beaakiaaiIcacaaIXaGaaG4laiaadggacaaIPaGaaGypaiaaiIcaca WGHbGaaGjcVlaadwhacaaMi8UaamODaiaaiMcadaWgaaWcbaGaam4C aaqabaGccqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamyDai aayIW7caWG2bGaaGikaiaaigdacaaIVaGaamyyaiaaiMcadaWgaaWc baGaam4CaaqabaGccaaI9aGaaGikaiaadggacaaMi8UaamyDaiaayI W7caWG2bGaaGykamaaBaaaleaacaWGZbaabeaakiabgUcaRiaadgga daWgaaWcbaGaam4CaaqabaGccaWG1bGaaGjcVlaadAhaaaa@7D59@

 вычисляем интеграл вдоль характеристики QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  уравнения g 1 (s,τ)= g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F27@ :

Q M [K(u,v)dτH(u,v)ds]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadgfaaeaacaWGnb aaniabgUIiYdGccaaIBbGaam4saiaaiIcacaWG1bGaaGilaiaadAha caaIPaGaamizaiabes8a0jabgkHiTiaadIeacaaIOaGaamyDaiaaiY cacaWG2bGaaGykaiaadsgacaWGZbGaaGyxaiaai2daaaa@47A5@

= Q M [(uv ) τ adτ+ ( a 2 uv) s (1/a)ds]+ Q M (u[2 v τ bv]ds+u[2( a 2 v ) s +cv]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaWGrbaaba GaamytaaqdcqGHRiI8aOGaaG4waiaaiIcacaWG1bGaaGjcVlaadAha caaIPaWaaSbaaSqaaiabes8a0bqabaGccaaMi8UaamyyaiaayIW7ca WGKbGaeqiXdqNaey4kaSIaaGikaiaadggadaahaaWcbeqaaiaaikda aaGccaWG1bGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaaigdacaaIVaGaamyyaiaaiMcacaaMi8Uaamizaiaadoha caaIDbGaey4kaSYaa8qCaeqaleaacaWGrbaabaGaamytaaqdcqGHRi I8aOGaaGikaiaadwhacaaIBbGaaGOmaiaadAhadaWgaaWcbaGaeqiX dqhabeaakiabgkHiTiaadkgacaWG2bGaaGyxaiaayIW7caWGKbGaam 4CaiabgUcaRiaadwhacaaIBbGaaGOmaiaaiIcacaWGHbWaaWbaaSqa beaacaaIYaaaaOGaamODaiaaiMcadaWgaaWcbaGaam4CaaqabaGccq GHRaWkcaWGJbGaamODaiaai2facaWGKbGaeqiXdqNaaGykaiaai2da aaa@792E@

= Q M d(auv)+ Q M (u[2 v τ +( a s b)v]ds+u[2( a 2 v ) s +(c a τ )v]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaWGrbaaba GaamytaaqdcqGHRiI8aOGaamizaiaaiIcacaWGHbGaaGjcVlaadwha caaMi8UaamODaiaaiMcacqGHRaWkdaWdXbqabSqaaiaadgfaaeaaca WGnbaaniabgUIiYdGccaaIOaGaamyDaiaayIW7caaIBbGaaGOmaiaa dAhadaWgaaWcbaGaeqiXdqhabeaakiabgUcaRiaaiIcacaWGHbWaaS baaSqaaiaadohaaeqaaOGaeyOeI0IaamOyaiaaiMcacaWG2bGaaGyx aiaayIW7caWGKbGaam4CaiabgUcaRiaadwhacaaIBbGaaGOmaiaaiI cacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWgaaWc baGaam4CaaqabaGccqGHRaWkcaaIOaGaam4yaiabgkHiTiaadggada WgaaWcbaGaeqiXdqhabeaakiaaiMcacaWG2bGaaGyxaiaadsgacqaH epaDcaaIPaGaaGypaaaa@6D2B@

=(auv)(M)(auv)(Q) 0 t u{4a v τ [ab4 a τ +c]v}dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiaadggacaaMi8Uaam yDaiaayIW7caWG2bGaaGykaiaaiIcacaWGnbGaaGykaiabgkHiTiaa iIcacaWGHbGaaGjcVlaadwhacaaMi8UaamODaiaaiMcacaaIOaGaam yuaiaaiMcacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG0baaniab gUIiYdGccaWG1bGaaG4EaiaaisdacaWGHbGaaGjcVlaadAhadaWgaa WcbaGaeqiXdqhabeaakiabgkHiTiaaiUfacaWGHbGaamOyaiabgkHi TiaaisdacaWGHbWaaSbaaSqaaiabes8a0bqabaGccqGHRaWkcaWGJb GaaGyxaiaadAhacaaI9bGaaGjcVlaadsgacqaHepaDcaaIUaaaaa@65BA@  (3.8)

Здесь на характеристике QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  при i=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdaaaa@342D@  мы воспользовались характеристическим дифференциальным уравнением из (2.6) и для функций w C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CF@  новым представлением из

w s (s,τ)=( 1) i w τ (s,τ) a(s,τ) ,i=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaaIOaGaeyOe I0IaaGymaiaaiMcadaahaaWcbeqaaiaadMgaaaGccaaMi8+aaSaaae aacaWG3bWaaSbaaSqaaiabes8a0bqabaGccaaIOaGaam4CaiaaiYca cqaHepaDcaaIPaaabaGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0j aaiMcaaaGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOm aiaai6caaaa@53C4@

Поскольку на каждой из характеристик QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  и MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  переменные s= s i (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadohadaWgaaWcba GaamyAaaqabaGccaaIOaGaeqiXdqNaaGykaaaa@38C2@ , τ= τ i (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeqiXdq3aaSbaaS qaaiaadMgaaeqaaOGaaGikaiaadohacaaIPaaaaa@398F@  являются взаимно зависимыми, т.е. соответственно при i=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdaaaa@342D@  и i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  переменные s= h i { g i (x,t),τ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadIgadaWgaaWcba GaamyAaaqabaGccaaI7bGaam4zamaaBaaaleaacaWGPbaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabes8a0jaai2haaa a@4035@ , τ= h (i) [s, g i (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaamiAamaaCaaale qabaGaaGikaiaadMgacaaIPaaaaOGaaG4waiaadohacaaISaGaam4z amaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaaaa@415B@  согласно формулам обращения (2.7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.9), то эти представления вытекают из очевидных формул первых частных производных:

w s (s,τ(s))= w s (s,τ )| τ=τ(s) + w τ (s,τ )| τ=τ(s) τ (s)= w s (s,τ )| τ=τ(s) + (1) i w τ (s,τ )| τ=τ(s) /a(s,τ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGikaiaadohacaaIPaGaaGyk aiaai2dacaWG3bWaaSbaaSqaaiaadohaaeqaaOGaaGikaiaadohaca aISaGaeqiXdqNaaGykaiaaiYhadaWgaaWcbaGaeqiXdqNaaGypaiab es8a0jaaiIcacaWGZbGaaGykaaqabaGccqGHRaWkcaWG3bWaaSbaaS qaaiabes8a0bqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa aGiFamaaBaaaleaacqaHepaDcaaI9aGaeqiXdqNaaGikaiaadohaca aIPaaabeaakiqbes8a0zaafaGaaGikaiaadohacaaIPaGaaGypaiaa dEhadaWgaaWcbaGaam4CaaqabaGccaaIOaGaam4CaiaaiYcacqaHep aDcaaIPaGaaGiFamaaBaaaleaacqaHepaDcaaI9aGaeqiXdqNaaGik aiaadohacaaIPaaabeaakiabgUcaRiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaamyAaaaakiaadEhadaWgaaWcbaGaeqiXdqha beaakiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI8bWaaSbaaS qaaiabes8a0jaai2dacqaHepaDcaaIOaGaam4CaiaaiMcaaeqaaOGa aG4laiaadggacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGilaa aa@8B45@

w τ (s(τ),τ)= w τ (s,τ )| s=s(τ) + w s (s,τ )| s=s(τ) s (τ)= w τ (s,τ )| s=s(τ) + (1) i w s (s,τ )| s=s(τ) a(s,τ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiabes8a0bqaba GccaaIOaGaam4CaiaaiIcacqaHepaDcaaIPaGaaGilaiabes8a0jaa iMcacaaI9aGaam4DamaaBaaaleaacqaHepaDaeqaaOGaaGikaiaado hacaaISaGaeqiXdqNaaGykaiaaiYhadaWgaaWcbaGaam4Caiaai2da caWGZbGaaGikaiabes8a0jaaiMcaaeqaaOGaey4kaSIaam4DamaaBa aaleaacaWGZbaabeaakiaaiIcacaWGZbGaaGilaiabes8a0jaaiMca caaI8bWaaSbaaSqaaiaadohacaaI9aGaam4CaiaaiIcacqaHepaDca aIPaaabeaakiqadohagaqbaiaaiIcacqaHepaDcaaIPaGaaGypaiaa dEhadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGilaiabes 8a0jaaiMcacaaI8bWaaSbaaSqaaiaadohacaaI9aGaam4CaiaaiIca cqaHepaDcaaIPaaabeaakiabgUcaRiaaiIcacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaamyAaaaakiaadEhadaWgaaWcbaGaam4Caaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGiFamaaBaaale aacaWGZbGaaGypaiaadohacaaIOaGaeqiXdqNaaGykaaqabaGccaWG HbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaaiYcaaaa@88F2@

так как τ (s)=( 1) i /a(s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaqbaiaaiIcacaWGZbGaaG ykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dMgaaaGccaaIVaGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiM caaaa@415B@ , s (τ)=( 1) i a(s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGZbGbauaacaaIOaGaeqiXdqNaaG ykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dMgaaaGccaWGHbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@40A2@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , также ввиду формул (2.6). В последнем равенстве (3.8) для сведения криволинейного интеграла второго типа вдоль QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  к обыкновенному определенному интегралу мы применили параметрическое представление кривой QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@ : s= s 1 (τ)= h 1 { g 1 (x,t),τ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadohadaWgaaWcba GaaGymaaqabaGccaaIOaGaeqiXdqNaaGykaiaai2dacaWGObWaaSba aSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI 9baaaa@45A9@ , τ=τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeqiXdqhaaa@360E@ , 0τt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiXdqNaeyizIm QaamiDaaaa@389F@ .

Используя характеристическое уравнение из (2.6) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ , в (3.7) аналогично берем интеграл вдоль характеристики MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  с уравнением g 2 (s,τ)= g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F29@ :

M P [K(u,v)dτH(u,v)ds]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaad2eaaeaacaWGqb aaniabgUIiYdGccaaIBbGaam4saiaaiIcacaWG1bGaaGilaiaadAha caaIPaGaamizaiabes8a0jabgkHiTiaadIeacaaIOaGaamyDaiaaiY cacaWG2bGaaGykaiaadsgacaWGZbGaaGyxaiaai2daaaa@47A4@

= M P [(uv ) τ adτ+ ( a 2 uv) s (1/a)ds]+ M P (u[2 v τ bv]ds+u[2( a 2 v ) s +cv]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Yaa8qCaeqaleaaca WGnbaabaGaamiuaaqdcqGHRiI8aOGaaG4waiaaiIcacaWG1bGaaGjc VlaadAhacaaIPaWaaSbaaSqaaiabes8a0bqabaGccaaMi8Uaamyyai aayIW7caWGKbGaeqiXdqNaey4kaSIaaGikaiaadggadaahaaWcbeqa aiaaikdaaaGccaWG1bGaaGjcVlaadAhacaaIPaWaaSbaaSqaaiaado haaeqaaOGaaGikaiaaigdacaaIVaGaamyyaiaaiMcacaaMi8Uaamiz aiaadohacaaIDbGaey4kaSYaa8qCaeqaleaacaWGnbaabaGaamiuaa qdcqGHRiI8aOGaaGikaiaadwhacaaIBbGaaGOmaiaadAhadaWgaaWc baGaeqiXdqhabeaakiabgkHiTiaadkgacaWG2bGaaGyxaiaayIW7ca WGKbGaam4CaiabgUcaRiaadwhacaaIBbGaaGOmaiaaiIcacaWGHbWa aWbaaSqabeaacaaIYaaaaOGaamODaiaaiMcadaWgaaWcbaGaam4Caa qabaGccqGHRaWkcaWGJbGaamODaiaai2facaWGKbGaeqiXdqNaaGyk aiaai2daaaa@7A19@

= M P d(auv)+ M P (u[2 v τ ( a s +b)v]ds+u[2( a 2 v ) s +(c+ a τ )v]dτ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0Yaa8qCaeqaleaaca WGnbaabaGaamiuaaqdcqGHRiI8aOGaamizaiaaiIcacaWGHbGaaGjc VlaadwhacaaMi8UaamODaiaaiMcacqGHRaWkdaWdXbqabSqaaiaad2 eaaeaacaWGqbaaniabgUIiYdGccaaIOaGaamyDaiaayIW7caaIBbGa aGOmaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiabgkHiTiaaiIcaca WGHbWaaSbaaSqaaiaadohaaeqaaOGaey4kaSIaamOyaiaaiMcacaWG 2bGaaGyxaiaayIW7caWGKbGaam4CaiabgUcaRiaadwhacaaIBbGaaG OmaiaaiIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamODaiaaiMca daWgaaWcbaGaam4CaaqabaGccqGHRaWkcaaIOaGaam4yaiabgUcaRi aadggadaWgaaWcbaGaeqiXdqhabeaakiaaiMcacaWG2bGaaGyxaiaa dsgacqaHepaDcaaIPaGaaGypaaaa@6E0B@

=(auv)(M)(auv)(P) 0 t u{4a v τ [ab4 a τ c]v}dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiaadggacaaMi8Uaam yDaiaayIW7caWG2bGaaGykaiaaiIcacaWGnbGaaGykaiabgkHiTiaa iIcacaWGHbGaaGjcVlaadwhacaaMi8UaamODaiaaiMcacaaIOaGaam iuaiaaiMcacqGHsisldaWdXbqabSqaaiaaicdaaeaacaWG0baaniab gUIiYdGccaWG1bGaaG4EaiaaisdacaWGHbGaaGjcVlaadAhadaWgaa WcbaGaeqiXdqhabeaakiabgkHiTiaaiUfacaWGHbGaamOyaiabgkHi TiaaisdacaWGHbWaaSbaaSqaaiabes8a0bqabaGccqGHsislcaWGJb GaaGyxaiaadAhacaaI9bGaaGjcVlaadsgacqaHepaDcaaIUaaaaa@65C4@  (3.9)

Здесь при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  мы применили характеристическое дифференциальное уравнение из (2.6) и указанное выше представление w s (s,τ)= w τ (s,τ)/a(s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaadohaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG3bWaaSba aSqaaiabes8a0bqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPa GaaG4laiaadggacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@47CC@ . В последнем равенстве из (3.9) для сведения криволинейного интеграла второго типа вдоль характеристики MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  к обыкновенному определенному интегралу мы также воспользовались параметрическим представлением кривой MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ : s= s 2 (τ)= h 2 { g 2 (x,t),τ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadohadaWgaaWcba GaaGOmaaqabaGccaaIOaGaeqiXdqNaaGykaiaai2dacaWGObWaaSba aSqaaiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI 9baaaa@45AC@ , τ=τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeqiXdqhaaa@360E@ , 0τt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqiXdqNaeyizIm QaamiDaaaa@389F@ .

Пусть функция v(s,τ)=v(s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaai2dacaWG2bGaaGikaiaadohacaaISaGaeqiXdqNa aG4oaiaadIhacaaISaGaamiDaiaaiMcaaaa@419B@  с параметрами (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@35CE@  является классическим решением однородного формально сопряженного дифференциального уравнения

Mv(s,τ)=0,(s,τ)ΔMPQ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinjaayIW7caWG2bGaaGikaiaadohacaaI SaGaeqiXdqNaaGykaiaai2dacaaIWaGaaGilaiaaysW7caaIOaGaam 4CaiaaiYcacqaHepaDcaaIPaGaeyicI4SaeyiLdqKaamytaiaadcfa caWGrbGaaGilaaaa@528A@  (3.10)

с условиями на характеристиках QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  и MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ :

4a(s,τ) v τ (s,τ)[a(s,τ)b(s,τ)4 a τ (s,τ)+c(s,τ)]v(s,τ)=0, 4a(s,τ) v τ (s,τ)[a(s,τ)b(s,τ)4 a τ (s,τ)c(s,τ)]v(s,τ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGabaaabaGaaGinaiaadggaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamODamaaBaaaleaacqaH epaDaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgkHiTi aaiUfacaWGHbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadkga caaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaeyOeI0IaaGinaiaadg gadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGilaiabes8a 0jaaiMcacqGHRaWkcaWGJbGaaGikaiaadohacaaISaGaeqiXdqNaaG ykaiaai2facaWG2bGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaaIWaGaaGilaaqaaiaaisdacaWGHbGaaGikaiaadohacaaISa GaeqiXdqNaaGykaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiaaiIca caWGZbGaaGilaiabes8a0jaaiMcacqGHsislcaaIBbGaamyyaiaaiI cacaWGZbGaaGilaiabes8a0jaaiMcacaWGIbGaaGikaiaadohacaaI SaGaeqiXdqNaaGykaiabgkHiTiaaisdacaWGHbWaaSbaaSqaaiabes 8a0bqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaeyOeI0Ia am4yaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaIDbGaamODai aaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI9aGaaGimaaaaaaa@9A3E@  (3.11)

соответственно из определенных интегралов в (3.8) и (3.9) и условием согласования

v(M)=1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaad2eacaaIPaGaaG ypaiaaigdacaaIUaaaaa@3729@  (3.12)

Условия (3.11), (3.12)) равносильны двум уже согласованным условиям Гурса

v(s,τ) =exp{ t τ k 1 ( h 1 { g 1 (x,t),ρ},ρ)dρ}, g 1 (s,τ)= g 1 (x,t), v(s,τ) =exp{ t τ k 2 ( h 2 { g 2 (x,t),ρ},ρ)dρ}, g 2 (s,τ)= g 2 (x,t),τ[0,t], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWG2bGaaGikai aadohacaaISaGaeqiXdqNaaGykaaqaaiaai2daciGGLbGaaiiEaiaa cchacaaI7bWaa8qCaeqaleaacaWG0baabaGaeqiXdqhaniabgUIiYd GccaWGRbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIgadaWgaaWc baGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaaki aaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabeg8aYjaai2ha caaISaGaeqyWdiNaaGykaiaayIW7caWGKbGaeqyWdiNaaGyFaiaaiY caaeaacaaMf8oabaGaam4zamaaBaaaleaacaaIXaaabeaakiaaiIca caWGZbGaaGilaiabes8a0jaaiMcacaaI9aGaam4zamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaaqa aiaadAhacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaabaGaaGypai GacwgacaGG4bGaaiiCaiaaiUhadaWdXbqabSqaaiaadshaaeaacqaH epaDa0Gaey4kIipakiaadUgadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiAamaaBaaaleaacaaIYaaabeaakiaaiUhacaWGNbWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISa GaeqyWdiNaaGyFaiaaiYcacqaHbpGCcaaIPaGaaGjcVlaadsgacqaH bpGCcaaI9bGaaGilaaqaaiaaywW7aeaacaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaaGzbVlabes8a0jabgIGiolaaiUfacaaIWaGaaGil aiaadshacaaIDbGaaGilaaaaaaa@AA4F@  (3.13)

где

k 1 (s,τ) ={a(s,τ)b(s,τ)4 a τ (s,τ)+c(s,τ)}/4a(s,τ) на кривой QM, k 2 (s,τ) ={a(s,τ)b(s,τ)4 a τ (s,τ)c(s,τ)}/4a(s,τ) на кривой MP. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacaWGRbWaaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaqa aiaai2dacaaI7bGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiM cacaWGIbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgkHiTiaa isdacaWGHbWaaSbaaSqaaiabes8a0bqabaGccaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaey4kaSIaam4yaiaaiIcacaWGZbGaaGilaiab es8a0jaaiMcacaaI9bGaaG4laiaaisdacaWGHbGaaGikaiaadohaca aISaGaeqiXdqNaaGykaaqaaiaaywW7aeaacaqG9qGaaeimeiaabcca caqG6qGaaeiqeiaabIdbcaqGYqGaaeOpeiaabMdbcaqGGaGaaeyuai aab2eacaaISaaabaGaam4AamaaBaaaleaacaaIYaaabeaakiaaiIca caWGZbGaaGilaiabes8a0jaaiMcaaeaacaaI9aGaaG4Eaiaadggaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamOyaiaaiIcacaWGZbGa aGilaiabes8a0jaaiMcacqGHsislcaaI0aGaamyyamaaBaaaleaacq aHepaDaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgkHi TiaadogacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGyFaiaai+ cacaaI0aGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaaeaa caaMf8oabaGaaeypeiaabcdbcaqGGaGaaeOoeiaabcebcaqG4qGaae Omeiaab6dbcaqG5qGaaeiiaiaab2eacaqGqbGaaeOlaaaaaaa@A0BC@

Общеизвестно, что задача Гурса (3.10), (3.13) с коэффициентами a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , b,c,q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacaaISaGaam yCaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaam4r amaaBaaaleaacqGHsislaeqaaOGaaGykaaaa@3C80@  всегда имеет единственное классическое решение v C 2 ( G ΔMPQ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc cqGHPiYXcqGHuoarcaWGnbGaamiuaiaadgfacaaIPaaaaa@3ECD@ , которое общепринято называть функцией Римана для задачи Коши (2.1), (2.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ . В общем случае функция Римана однозначно находится методом последовательных приближений (см. [11, c. 129–135].

В формуле (3.7) полагаем Lu(s,τ)=f(s,τ),Mv(s,τ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jrimjaayIW7caWG1bGaaGikaiaadohacaaI SaGaeqiXdqNaaGykaiaai2dacaWGMbGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaaiYcacaaMe8Uae83mH0KaaGjcVlaadAhacaaIOaGa am4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaaicdaaaa@5685@  на треугольнике ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@ , и в силу соотношений (3.10) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.13) согласно (3.8) и (3.9) получаем формулу решения

u (x,t)= (auv)(P)+(auv)(Q) 2a(x,t) + 1 2a(x,t) P Q [H(u,v)dsK(u,v)dτ]+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2dadaWcaaqaaiaa iIcacaWGHbGaamyDaiaadAhacaaIPaGaaGikaiaadcfacaaIPaGaey 4kaSIaaGikaiaadggacaWG1bGaamODaiaaiMcacaaIOaGaamyuaiaa iMcaaeaacaaIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPa aaaiaayIW7cqGHRaWkcaaMi8+aaSaaaeaacaaIXaaabaGaaGOmaiaa dggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWdXbqabSqaai aadcfaaeaacaWGrbaaniabgUIiYdGccaaIBbGaamisaiaaiIcacaWG 1bGaaGilaiaadAhacaaIPaGaaGjcVlaadsgacaWGZbGaeyOeI0Iaam 4saiaaiIcacaWG1bGaaGilaiaadAhacaaIPaGaamizaiabes8a0jaa i2facqGHRaWkaaa@6E65@

+ 1 2a(x,t) ΔMPQ f(s,τ)v(s,τ;x,t)dsdτ,(x,t) G . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapefa beWcbaGaeyiLdqKaamytaiaadcfacaWGrbaabeqdcqGHRiI8aOGaam OzaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaWG2bGaaGikaiaa dohacaaISaGaeqiXdqNaaG4oaiaadIhacaaISaGaamiDaiaaiMcaca aMi8UaamizaiaadohacaaMi8Uaamizaiabes8a0jaaiYcacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaWgaaWcbaGaey OeI0cabeaakiaai6caaaa@5F00@  (3.14)

Здесь в интеграле по отрезку PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@ , где a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , b,c C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacqGHiiIZca WGdbWaaWbaaSqabeaacaaIXaaaaOGaaGikaiaadEeadaWgaaWcbaGa eyOeI0cabeaakiaaiMcaaaa@3AD4@  и dτ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiXdqNaaGypaiaaicdaaa a@35EC@ , подынтегральные функции H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328A@  и K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbaaaa@328D@  однозначно определяются начальными условиями (2.2) (см. рис. 1). Если ещё двойной интеграл по треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  записать в виде повторных интегралов, то в (3.14) сумма этих двух интегралов будет равна

1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWcbaGa amiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqaaiaaik daaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicda caaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgada WgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGilaiaaicdacaaI9baaniabgUIiYdGccaaIBbGaeqiYdKNaaGikai aadohacaaIPaGaamODaiaaiIcacaWGZbGaaGilaiaaicdacaaIPaGa eyOeI0IaeqOXdOMaaGikaiaadohacaaIPaGaamODamaaBaaaleaacq aHepaDaeqaaOGaaGikaiaadohacaaISaGaaGimaiaaiMcacqGHRaWk caWGIbGaaGikaiaadohacaaISaGaaGimaiaaiMcacqaHgpGAcaaIOa Gaam4CaiaaiMcacaWG2bGaaGikaiaadohacaaISaGaaGimaiaaiMca caaIDbGaaGjcVlaadsgacaWGZbGaey4kaScaaa@7A42@

+ 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f(s,τ)v(s,τ;x,t)ds,(x,t) G . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc caWGMbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadAhacaaIOa Gaam4CaiaaiYcacqaHepaDcaaI7aGaamiEaiaaiYcacaWG0bGaaGyk aiaayIW7caWGKbGaam4CaiaaiYcacaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiabgIGiolaadEeadaWgaaWcbaGaeyOeI0cabeaakiaai6ca aaa@77B6@  (3.15)

Первое слагаемое из (3.14) содержит значения

u( h 2 { g 2 (x,t),0},0)=φ( h 2 { g 2 (x,t),0}),u( h 1 { g 1 (x,t),0},0)=φ( h 1 { g 1 (x,t),0}). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIgadaWgaaWcba GaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaGaaGypaiabeA8aQjaaiIcacaWGObWaaSbaaSqa aiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyFaiaa iMcacaaISaGaaGzbVlaadwhacaaIOaGaamiAamaaBaaaleaacaaIXa aabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaISaGaaGimaiaai2hacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIgadaWgaaWcbaGaaGym aaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9bGaaGykaiaa i6caaaa@714D@

Формула (3.14) с интегралами (3.15) вместо двух последних интегралов становится формулой (3.2), которая обобщает формулу Римана из [11, c. 139] со скорости a=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaaigdaaaa@3425@  на скорость a(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B4@  волны на полупрямой x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@  носителя данных φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@  и ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ .

Теперь убедимся в дважды непрерывной дифференцируемости функции (3.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ . Если коэффициенты a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , b C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc caaIPaaaaa@3936@ , то требований φ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C91@ , ψ C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3CA1@  из (2.4) достаточно для дважды непрерывной дифференцируемости первых двух слагаемых с интегралом по отрезку PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  в (3.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ , так как существует единственная функция Римана v C 2 ( G ΔMPQ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabgkHiTaqabaGc cqGHPiYXcqGHuoarcaWGnbGaamiuaiaadgfacaaIPaaaaa@3ECD@  (см. [11, c. 129--135]. Для fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  достаточность гладкости (3.1) для дважды непрерывной дифференцируемости на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  последнего интеграла в (3.2) следует, например, из достаточности требований (3.1) на f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  для существования единственного классического решения задачи Коши (2.1), (2.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  в теореме 2 из [5].

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaaaaa@3279@ . Множество G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ Пусть a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , f ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaaaaa@32B8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  чётные продолжения и c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  нечётное продолжение по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  коэффициентов a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@  и правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  уравнения (2.1) на все x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ . В верхней полуплоскости G ˜ =× 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaiaai2 datuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1ri sjabgEna0oaajmcabaGaaGimaiaaiYcacqGHRaWkcqGHEisPaiaaw2 facaGLBbaaaaa@46BB@  ищем решение u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaaaaa@32C6@  задачи Коши

L ^ u ˜ (x,t) u ˜ tt a ^ 2 (x,t) u ˜ xx + b ^ (x,t) u ˜ t + c ˜ (x,t) u ˜ x (x,t)+ q ^ (x,t) u ˜ = f ^ (x,t),(x,t) G ˜ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=jrimzaajaGaaGjcVlqadwhagaacaiaaiIca caWG4bGaaGilaiaadshacaaIPaGaeyyyIORabmyDayaaiaWaaSbaaS qaaiaadshacaWG0baabeaakiabgkHiTiqadggagaqcamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGabmyDay aaiaWaaSbaaSqaaiaadIhacaWG4baabeaakiabgUcaRiqadkgagaqc aiaaiIcacaWG4bGaaGilaiaadshacaaIPaGabmyDayaaiaWaaSbaaS qaaiaadshaaeqaaOGaey4kaSIabm4yayaaiaGaaGikaiaadIhacaaI SaGaamiDaiaaiMcaceWG1bGbaGaadaWgaaWcbaGaamiEaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiqadghagaqcaiaa iIcacaWG4bGaaGilaiaadshacaaIPaGabmyDayaaiaGaaGypaiqadA gagaafgaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaa ywW7caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiopaaGaaaba Gaam4raaGaay5adaGaaGilaaaa@7D84@  (3.16)

u ˜ | t=0 = φ ˜ (x), u ˜ t | t=0 = ψ ˜ (x),x,= ,+ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaacaaI8bWaaSbaaSqaai aadshacaaI9aGaaGimaaqabaGccaaI9aWaaacaaeaacqaHgpGAaiaa woWaaiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UabmyDayaaiaWaaS baaSqaaiaadshaaeqaaOGaaGiFamaaBaaaleaacaWG0bGaaGypaiaa icdaaeqaaOGaaGypamaaGaaabaGaeqiYdKhacaGLdmaacaaIOaGaam iEaiaaiMcacaaISaGaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiYcacaaMf8Uae8 xhHiLaaGypamaajmcabaGaeyOeI0IaeyOhIuQaaGilaiabgUcaRiab g6HiLcGaayzxaiaawUfaaiaaiYcaaaa@65E0@  (3.17)

где φ ˜ , ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG ilamaaGaaabaGaeqiYdKhacaGLdmaaaaa@3782@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  нечётные продолжения соответственно φ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C91@ , ψ C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3CA1@  на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ ,

f ^ (x,t)= f ^ (x,t) f ^ μ (x,t)+ f ^ (0) (x,t), L ^ μ(t)= f ^ μ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqHbaKaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaai2daceWGMbGbaKaacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiabgkHiTiqadAgagaqcamaaBaaaleaacqaH8o qBaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkceWG MbGbaKaadaahaaWcbeqaaiaaiIcacaaIWaGaaGykaaaakiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGilaiaaywW7tuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGabaiqb=jrimzaajaGaeqiVd0MaaG ikaiaadshacaaIPaGaaGypaiqadAgagaqcamaaBaaaleaacqaH8oqB aeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@6593@

и правило выбора чётной по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  функции f ^ (0) (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaa aa@391F@  будет указано ниже. Если fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@ , то, очевидно, f ^ C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@37F7@ . В формуле решения u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) этих продолжений не будет.

Если из обеих частей уравнения (3.16) вычесть слагаемое c ˜ (x,t) u ˜ x (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiqadwhagaacamaaBaaaleaacaWG4baabeaakiaa iIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3D12@ , то придём к уравнению вида (3.16) с коэффициентом c ˜ (x,t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiabggMi6kaaicdaaaa@3948@  и новой правой частью

f ¯ ^ (x,t)= f ^ (x,t) c ˜ (x,t) u ˜ x (x,t)C( G ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaai2daceWGMbGbaqHbaKaacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgkHiTiqadogagaacaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGabmyDayaaiaWaaSbaaSqaaiaadIhaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGdbGaaG ikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcacaaISaaaaa@4FE9@

в котором вычитаемое c(x,t) u x (x,t) C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIha caaISaGaamiDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqabeaacaaIXa aaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@440A@  непрерывно дифференцируемо и поэтому оно удовлетворяет интегральным требованиям гладкости (3.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . Благодаря линейности этой задачи Коши её решение представимо в виде суммы u (x,t)= u ˜ 0 (x,t)+ u ^ 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2daceWG1bGbaGaadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiqadwhaga qcamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaaaaa@44A2@  решения u ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaaaaa@33AC@  задачи Коши (3.16), (3.17) при f ¯ ^ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacaaI9aGaaGimaa aa@3450@ , φ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey iyIKRaaGimaaaa@36BD@ , ψ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey iyIKRaaGimaaaa@36CE@  и решения u ^ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaaaaa@33AE@  задачи Коши (3.16) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.17) при f ¯ ^ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacqGHGjsUcaaIWa aaaa@3550@ , φ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey yyIORaaGimaaaa@36BF@ , ψ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey yyIORaaGimaaaa@36D0@ . Первая задача Коши на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  с граничным режимом (2.3) при μ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaI9aGaaGimaaaa@34F4@  становится первой смешанной задачей (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . С одной стороны, по теореме 2 статьи [5] существует единственное классическое решение u ˜ 0 C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaa dEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3ACD@  этой первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . Первая задача Коши на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  равносильна этой первой смешанной задаче на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ , так как решение первой задачи Коши по формуле (4) из [20], т.е. по формуле (3.2) из теоремы 3.1, но с крышками над a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32B8@ , равно u ˜ 0 (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2dacaaIWaaa aa@3905@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@  (см. [11, c. 68 – 69]. Ниже перед леммой 3.1 показано, что характеристические треугольники ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с вершинами M(0,t),t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaISaGaamiDaiabgwMiZkaaicdaaaa@3A8C@ , на оси Ot MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiDaaaa@338A@  являются <<криволинейными>> равнобедренными. Следовательно, вершины P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbaaaa@3292@  и Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  основания PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  треугольника ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  симметричны относительно оси Ot MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiDaaaa@338A@ , начальные данные φ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaaaaa@343C@  и ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaaaaa@344D@  нечётны по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , функции a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  чётны по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  и поэтому первые два слагаемых в (3.2) обращаются в ноль. Третье слагаемое в формуле (3.2) вида двойного повторного интеграла по ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  при f= f ¯ ^ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaqegaqcai aai2dacaaIWaaaaa@3602@  тоже равно нулю.

Из условий согласования (2.5) при c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHHjIUcaaIWaaaaa@3537@ , f ¯ ^ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacaaI9aGaaGimaa aa@3450@ , μ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaI9aGaaGimaaaa@34F4@  для u ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaaaaa@33AC@  на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  выводим условия

φ(0)=0, φ (0)=0,ψ(0)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaaGimaiaaiMcaca aI9aGaaGimaiaaiYcacaaMf8UafqOXdOMbauGbauaacaaIOaGaaGim aiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaeqiYdKNaaGikaiaaic dacaaIPaGaaGypaiaaicdacaaIUaaaaa@473C@  (3.18)

Известно, что начальные данные φ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C91@ , ψ C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIXaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3CA1@  с условиями (3.18) всегда допускают на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@  гладкие нечётные продолжения φ ˜ C 2 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@4397@ , ψ ˜ C 1 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@43A7@ . Это следует из [1, лемма 1]. Действительно, из нечётности по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  продолжений φ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaaaaa@343C@ , ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaaaaa@344D@  следует их непрерывность при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ , так как φ(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaaGimaiaaiMcaca aI9aGaaGimaaaa@371A@ , ψ(0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaaGimaiaaiMcaca aI9aGaaGimaaaa@372B@  в (3.18). Производные φ ˜ '(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG 4jaiaaiIcacaWG4bGaaGykaaaa@374F@ , ψ ˜ '(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaaG 4jaiaaiIcacaWG4bGaaGykaaaa@3760@  от этих нечётных начальных данных чётны и, следовательно, непрерывны при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ . Непрерывность второй производной φ ˜ ' (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGabG 4jayaafaGaaGikaiaadIhacaaIPaaaaa@375B@  при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  обеспечивает её нечётность по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и значение φ (0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaqbgaqbaiaaiIcacaaIWa GaaGykaiaai2dacaaIWaaaaa@3731@  из (3.18). Поэтому, с другой стороны, первая задача Коши для уравнения (3.16)) с c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHHjIUcaaIWaaaaa@3537@  и f ¯ ^ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacqGHHjIUcaaIWa aaaa@3552@  при начальных данных φ ˜ C 2 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@4397@ , ψ ˜ C 1 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIcatuuDJXwAK1uy 0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risjaaiMcaaaa@43A7@  в (3.17) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  имеет единственное решение u ˜ 0 C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIXaaaaOGaaGikamaa GaaabaGaam4raaGaay5adaGaaGykaaaa@39E7@  (см. [20]). Действительно, нечётная по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  функция u ˜ 0 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@37C7@  непрерывна на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ , так как u ˜ 0 (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaadaWgaaWcbaGaaGimaa qabaGccaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaai2dacaaIWaaa aa@3905@ , и чётная по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  её производная ( u ˜ 0 ) x (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmyDayaaiaWaaSbaaSqaai aaicdaaeqaaOGaaGykamaaBaaaleaacaWG4baabeaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaaaa@3A5F@  всегда непрерывна на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Для сокращения доказательства теоремы 3.1 можно было бы положить коэффициент c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHHjIUcaaIWaaaaa@3537@  в (3.16).

Другая задача Коши при f ¯ ^ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaacqGHGjsUcaaIWa aaaa@3550@ , φ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey yyIORaaGimaaaa@36BF@ , ψ ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey yyIORaaGimaaaa@36D0@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ , очевидно, имеет единственным классическим решением двойной интеграл u ^ 1 (x,t)= F ^ (x,t) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWGgbGb aKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadoeada ahaaWcbeqaaiaaikdaaaGccaaIOaGaam4ramaaBaaaleaacqGHEisP aeqaaOGaaGykaaaa@4493@  из [20] при f= f ¯ ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaqegaqcaa aa@3481@ :

F ^ (x,t)= 1 2 a ^ (x,t) ΔMPQ f ¯ ^ (s,τ) v ^ (s,τ)dsdτ= 1 2 a ^ (x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ¯ ^ (s,τ) v ^ (s,τ)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGabmyy ayaajaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaWaa8quaeqale aacqGHuoarcaWGnbGaamiuaiaadgfaaeqaniabgUIiYdGcceWGMbGb aeHbaKaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaadsgacaWGZbGaaGjc VlaadsgacqaHepaDcaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiqadg gagaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWc baGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDdaWdXb qabSqaaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSba aeaacaaIYaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiY cacqaHepaDcaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4E aiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGilaiabes8a0jaai2haa0Gaey4kIipakiqadAgagaqe gaqcaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamizaiaadohacaaISaaa aa@8D7A@

удовлетворяющий однородным начальным данным φ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG ypaiaaicdaaaa@35BD@ , ψ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaaG ypaiaaicdaaaa@35CE@ , потому что этот двойной интеграл и его первая производная по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  при t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  равны F ^ (x,0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaacaaIOaGaamiEaiaaiY cacaaIWaGaaGykaiaai2dacaaIWaaaaa@37EB@ , F ^ t (x,0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaadaWgaaWcbaGaamiDaa qabaGccaaIOaGaamiEaiaaiYcacaaIWaGaaGykaiaai2dacaaIWaaa aa@391A@ . Чётность по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  этого интеграла F ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaaaaa@3298@  подтверждается чётностью по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  коэффициента a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , чётностью по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  его подинтегральной функции и равнобедренностью <<криволинейных>> характеристических треугольников ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с вершинами M(0,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaaicdacaaISaGaam iDaiaaiMcaaaa@365D@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , на оси Ot MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiDaaaa@338A@ . Ниже в лемме 3.1 будет показана чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции Римана v ^ = v ^ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaI9aGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3972@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Таким образом, четное по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  решение u ^ 1 (x,t)= F ^ (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWGgbGb aKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@3D7C@  всегда непрерывно по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ , т.е. u ^ 1 C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39DC@ . Более того, согласно теореме 2 из [5] при φ=ψ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI9aGaeqiYdKNaaGypai aaicdaaaa@3790@ , μ(t)= F ^ (0,t) C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaca aI9aGabmOrayaajaGaaGikaiaaicdacaaISaGaamiDaiaaiMcacqGH iiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaG ilaiabgUcaRiabg6HiLcGaay5waiaawUfaaaaa@4458@  решение F ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGgbGbaKaaaaa@3298@  дважды непрерывно дифференцируемо в первой четверти u ^ 1 (x,t)= F ^ (x,t) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWGgbGb aKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGiolaadoeada ahaaWcbeqaaiaaikdaaaGccaaIOaGaam4ramaaBaaaleaacqGHEisP aeqaaOGaaGykaaaa@4493@ , а в силу его четности по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и во второй четверти плоскости (см. ниже предисловие к замечанию 3.1). Здесь применение теоремы 2 на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  из [5] основано на справедливости не только первых двух, но и третьего условия согласования из (2.5) при φ=ψ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI9aGaeqiYdKNaaGypai aaicdaaaa@3790@ , f= f 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaafaiabgc Mi5kaaicdaaaa@36F6@ , c0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaeyiyIKRaaGimaaaa@3526@  и μ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHGjsUcaaIWaaaaa@35F4@ , а также интегральных требований гладкости (3.1) на f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ . От переноса слагаемого c ˜ u ˜ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaceWG1bGbaGaadaWgaa WcbaGaamiEaaqabaaaaa@34E6@  из левой части уравнения (3.16) в его правую часть это уравнение фактически не меняется. В дальнейшем мы увидим, что на гладкость правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  уравнения (2.1) дополнительные слагаемые f μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGMbWaaSbaaSqaaiabeY 7aTbqabaaaaa@3577@ , f (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaWbaaSqabeaacaaIOaGaaG imaiaaiMcaaaaaaa@34F4@  правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbaaaa@32C3@  уравнения (3.16) фактически не влияют, потому что в процессе решения смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) нашим новым методом компенсации они сокращаются (аннулируются).

В итоге, мы нашли суммарное решение u (x,t)= u ˜ 0 (x,t)+ u ^ 1 (x,t)C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2daceWG1bGbaGaadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiqadwhaga qcamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaeyicI4Saam4qaiaaiIcadaaiaaqaaiaadEeaaiaawoWaai aaiMcaaaa@49E1@ , C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3750@  вспомогательной задачи Коши (3.16), (3.17) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Отсюда и из чётности по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  продолжений коэффициентов a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@  и правой части f ¯ ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaeHbaKaaaaa@32CF@  на все x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@  также следует, что во второй четверти плоскости это классическое решение u C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aiixaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3C57@  (см. ниже замечание 3.2).

Интегрируя аналог тождества (3.4) для любых u ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaaaaa@32C6@ , v ^ C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39DF@ , C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaam4raaGaay5adaGaaiixaiaadEeadaWgaaWc baGaeyOhIukabeaakiaaiMcaaaa@39BE@ , C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaaGaaabaGaam4raa Gaay5adaGaaGykaaaa@3578@  по треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  с любой вершиной M(x,t) G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgUcaRaqabaaaaa@39FE@  в верхней полуплоскости Osτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaam4Caiabes8a0baa@354E@ , мы имеем аналог формулы (3.4) решения задачи Коши (3.16), (3.17):

u (x,t)= ( a ^ u ˜ v ^ )(P)+( a ^ u ˜ v ^ )(Q) 2 a ^ (x,t) + 1 2 a ^ (x,t) P Q [H( u ˜ , v ^ )dsK( u ˜ , v ^ )dτ]+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaiIcaceWGHbGbaKaaceWG 1bGbaGaaceWG2bGbaKaacaaIPaGaaGikaiaadcfacaaIPaGaey4kaS IaaGikaiqadggagaqcaiqadwhagaacaiqadAhagaqcaiaaiMcacaaI OaGaamyuaiaaiMcaaeaacaaIYaGabmyyayaajaGaaGikaiaadIhaca aISaGaamiDaiaaiMcaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOm aiqadggagaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaape habeWcbaGaamiuaaqaaiaadgfaa0Gaey4kIipakiaaiUfacaWGibGa aGikaiqadwhagaacaiaaiYcaceWG2bGbaKaacaaIPaGaaGjcVlaads gacaWGZbGaeyOeI0Iaam4saiaaiIcaceWG1bGbaGaacaaISaGabmOD ayaajaGaaGykaiaadsgacqaHepaDcaaIDbGaey4kaScaaa@6AF7@

+ 1 2 a ^ (x,t) ΔMPQ f ^ (s,τ) v ^ (s,τ;x,t)dsdτ,(x,t) G ˜ =× 0,+ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGabmyyayaajaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaWa a8quaeqaleaacqGHuoarcaWGnbGaamiuaiaadgfaaeqaniabgUIiYd GcceWGMbGbaqHbaKaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa bmODayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaG4oaiaayIW7ca WG4bGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWGZbGaaGjcVlaa dsgacqaHepaDcaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshaca aIPaGaeyicI48aaacaaeaacaWGhbaacaGLdmaacaaI9aWefv3ySLgz nfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIucqGHxdaTda qcJaqaaiaaicdacaaISaGaey4kaSIaeyOhIukacaGLDbGaay5waaGa aGOlaaaa@7578@  (3.19)

В силу единственности решения задачи Коши (2.1), (2.2) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  функция (3.19) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  равна классическому решению (3.2). Аналогично множеству G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  в криволинейном интеграле по PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  формулы (3.19) подынтегральные функции H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibaaaa@328A@  и K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbaaaa@328D@  однозначно определяются начальными данными φ ˜ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcadaaiaaqaaiaa dEeaaiaawoWaaiaaiMcaaaa@3A6E@ , ψ ˜ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeI8a5bGaay5adaGaey icI4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcadaaiaaqaaiaa dEeaaiaawoWaaiaaiMcaaaa@3A7F@  и функцией Римана v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  (см. рис. 2).

 

Рис. 2. Криволинейные характеристический и критический треугольники ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  и Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

 

Эта функция Римана на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  является решением задачи Гурса:

M ^ v ^ (s,τ) v ^ ττ (s,τ) ( a ^ 2 (s,τ) v ^ (s,τ)) ss ( b ^ (s,τ) v ^ (s,τ)) τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83mH0eacaGLcmaacaaMi8UabmOD ayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabggMi6kqadA hagaqcamaaBaaaleaacqaHepaDcqaHepaDaeqaaOGaaGikaiaadoha caaISaGaeqiXdqNaaGykaiabgkHiTiaaiIcaceWGHbGbaKaadaahaa WcbeqaaiaaikdaaaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa bmODayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaaiMcada WgaaWcbaGaam4CaiaadohaaeqaaOGaeyOeI0IaaGikaiqadkgagaqc aiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaacaaIOa Gaam4CaiaaiYcacqaHepaDcaaIPaGaaGykamaaBaaaleaacqaHepaD aeqaaOGaeyOeI0caaa@7216@

( c ˜ (s,τ) v ^ (s,τ)) s + q ^ (s,τ) v ^ (s,τ)=0,(s,τ)ΔMPQ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaaIOaGabm4yayaaiaGaaG ikaiaadohacaaISaGaeqiXdqNaaGykaiqadAhagaqcaiaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcacaaIPaWaaSbaaSqaaiaadohaaeqaaO Gaey4kaSIabmyCayaajaGaaGikaiaadohacaaISaGaeqiXdqNaaGyk aiqadAhagaqcaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcacaaI9a GaaGimaiaaiYcacaaMf8UaaGikaiaadohacaaISaGaeqiXdqNaaGyk aiabgIGiolabgs5aejaad2eacaWGqbGaamyuaiaaiYcaaaa@5C4D@  (3.20)

v ^ (s,τ) =exp{ t τ k ˜ 1 ( h 1 { g 1 (x,t),ρ},ρ)dρ}, g 1 (s,τ)= g 1 (x,t), v ^ (s,τ) =exp{ t τ k ˜ 2 ( h 2 { g 2 (x,t),ρ},ρ)dρ}, g 2 (s,τ)= g 2 (x,t),τ[0,t], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaceWG2bGbaKaaca aIOaGaam4CaiaaiYcacqaHepaDcaaIPaaabaGaaGypaiGacwgacaGG 4bGaaiiCaiaaiUhadaWdXbqabSqaaiaadshaaeaacqaHepaDa0Gaey 4kIipakiqadUgagaacamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG ObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaG ymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaH bpGCcaaI9bGaaGilaiabeg8aYjaaiMcacaaMi8Uaamizaiabeg8aYj aai2hacaaISaaabaGaaGzbVdqaaiaadEgadaWgaaWcbaGaaGymaaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaadEgada WgaaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiYcaaeaaceWG2bGbaKaacaaIOaGaam4CaiaaiYcacqaHepaDca aIPaaabaGaaGypaiGacwgacaGG4bGaaiiCaiaaiUhadaWdXbqabSqa aiaadshaaeaacqaHepaDa0Gaey4kIipakiqadUgagaacamaaBaaale aacaaIYaaabeaakiaaiIcacaWGObWaaSbaaSqaaiaaikdaaeqaaOGa aG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiYcacqaHbpGCcaaI9bGaaGilaiabeg8aYjaa iMcacaaMi8Uaamizaiabeg8aYjaai2hacaaISaaabaGaaGzbVdqaai aadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4CaiaaiYcacqaH epaDcaaIPaGaaGypaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaMf8UaeqiXdqNaeyic I4SaaG4waiaaicdacaaISaGaamiDaiaai2facaaISaaaaaaa@AA8D@  (3.21)

аналогичной задаче Гурса (3.10), (3.13) и с функциями k ˜ 1 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@3885@  на кривой QM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamytaaaa@3365@  и k ˜ 2 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGOmaa qabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@3886@  на кривой MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ , соответственно равными функциям k 1 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3876@  и k 2 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3877@ , в которых коэффициенты a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@  заменены на их четные продолжения a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , а коэффициент c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  на нечетное продолжение c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  c x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@  на x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ . Формально сопряженный дифференциальный оператор M ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83mH0eacaGLcmaaaaa@3D2E@  равен оператору M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ntinbaa@3C6C@  с коэффициентами a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@  вместо коэффициентов a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@ . Задача Гурса (3.20), (3.21) имеет единственное решение v ^ (s,τ)= v ^ (s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiqadAhagaqcaiaaiIcacaWGZbGaaGil aiabes8a0jaaiUdacaWG4bGaaGilaiaadshacaaIPaaaaa@41BB@ , непрерывное на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  и дважды непрерывно дифференцируемое на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. [11, c. 129–135] (см. ниже замечание 3.2).

Ввиду (2.6) в каждой фиксированной точке M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@  тангенсы углов наклона касательных прямых к характеристикам двух семейств g i (x,t)= C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaaaaa@3A87@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , отличаются лишь противоположными знаками dx/dt=( 1) i a(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaamiEaiaai+cacaWGKbGaam iDaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaa dMgaaaGccaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@402E@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , в силу чётности продолжения a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ . Следовательно, для любых вершин M(0,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaaicdacaaISaGaam iDaiaaiMcaaaa@365D@ , t>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaaicdaaaa@3438@ , на оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , треугольники ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  и, в частности, треугольники Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  являются криволинейными <<равнобедренными>>. Поэтому на рис. 2 характеристики g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaikdaaeqaaaaa@3AEA@  и g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaigdaaeqaaaaa@3AE8@  при s<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGipaiaaicdaaaa@3435@  соответственно симметричны характеристикам g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaigdaaeqaaaaa@3AE8@  и g 2 (s,τ)= C 2 , C 1 , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaikdaaeqaaOGaaGilaiaadoeadaWgaaWcbaGaaGymaaqaba GccaaISaGaam4qamaaBaaaleaacaaIYaaabeaakiabgIGioprr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHifaaa@4C0E@ , при s>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGOpaiaaicdaaaa@3437@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ .

Покажем, что функция Римана v ^ = v ^ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaI9aGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaa@3972@  является чётной по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функцией в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

Лемма 3.1. Пусть выполняются предположения теоремы 3.1. Тогда для любой вершины M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@   G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHiiIZcaWGhbWaaSbaaSqaaiabgU caRaqabaaaaa@351B@  характеристического треугольника ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  решение v ^ (s,τ)= v ^ (s,τ;x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiqadAhagaqcaiaaiIcacaWGZbGaaGil aiabes8a0jaaiUdacaaMi8UaamiEaiaaiYcacaWG0bGaaGykaaaa@434C@  задачи Гурса (3.20), (3.21) на ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  является чётной по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функцией.

Доказательство. Главные дифференциальные части общего телеграфного уравнения (3.16) и его формально сопряженного уравнения (3.20), а ниже также модельного телеграфного уравнения (4.1) и его формально сопряженного уравнения одинаковые. Поэтому им соответствуют одни и те же дифференциальные уравнения характеристик (2.6) и, значит, одинаковые семейства характеристик g i (x,t)= C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4qamaaBaaa leaacaWGPbaabeaaaaa@3A87@ , C i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FE4@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

Для любой точки M(x,t) G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGhbWaaSbaaSqaaiabgUcaRaqabaaaaa@39FE@  строим характеристический треугольник Δ M ˜ P P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoardaaiaaqaaiaad2eaaiaawo WaaiqadcfagaqbamaaGaaabaGaamiuaaGaay5adaaaaa@3730@  с симметричной относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  вершиной M ˜ (x,t) G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiaaiI cacqGHsislcaWG4bGaaGilaiaadshacaaIPaGaeyicI48aaacaaeaa caWGhbaacaGLdmaaaaa@3B61@ , вершинами основания P ( h 2 { g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaaIOaGaeyOeI0Iaam iAamaaBaaaleaacaaIYaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3D10@ , 0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGyFaiaaiYcacaaIWaGaaG ykaaaa@35A1@ , P ˜ ( h 2 { g 2 (x,t),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadcfaaiaawoWaaiaaiI cacaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWc baGaaGOmaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYcacaWG0bGaaG ykaiaaiYcacaaIWaGaaGyFaiaaiYcacaaIWaGaaGykaaaa@4260@  и криволинейными сторонами g 1 (s,τ)= g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISaGaamiDai aaiMcaaaa@4014@ , g 2 (s,τ)= g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISaGaamiDai aaiMcaaaa@4016@  (см. рис. 2). Докажем симметричность криволинейного треугольника Δ M ˜ P P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoardaaiaaqaaiaad2eaaiaawo WaaiqadcfagaqbamaaGaaabaGaamiuaaGaay5adaaaaa@3730@  треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  строго математически. Визуально это очевидно из рис. 2. Симметричность этих треугольников относительно Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  не вызывает сомнений только для прямых характеристик, так как в этом случае симметричность вершины P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadcfaaiaawoWaaaaa@3354@  вершине Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  вытекает из замечания 2.1, а вершина P' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaG4jaaaa@3343@  очевидно симметрична вершине P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbaaaa@3292@  и для кривых характеристик.

Во-первых, из указанной выше <<равнобедренности>> криволинейных треугольников с вершинами на оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , τ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI+aGaaGimaaaa@3504@ , следует взаимозаменяемость уравнений сторон-характеристик таких треугольников семейства g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaikdaaeqaaaaa@3AEA@ , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB2@ , на характеристики семейства g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaigdaaeqaaaaa@3CC2@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ , и уравнений сторон-характеристик семейства g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGdbWaaSba aSqaaiaaigdaaeqaaaaa@3AE8@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ , на характеристики семейства g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaikdaaeqaaaaa@3CC4@ , C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB2@ , в верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Характеристику MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  уравнения g 2 (s,τ)= g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F29@  ищем в виде g 1 (s,τ)= C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaigdaaeqaaaaa@3CC2@ , C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFDeIuaaa@3FB1@ . Подставляем сюда координаты точки M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@  и находим значение постоянной g 1 (s,τ)= C 1 = g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTiaadE gadaWgaaWcbaGaaGymaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYca caWG0bGaaGykaaaa@455B@ . Отсюда для характеристик MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@ , M ˜ P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiqadc fagaqbaaaa@3432@  соответственно имеем два уравнения

g 1 (s,τ)= g 1 (x,t), g 1 (s,τ)= g 1 (x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISa GaamiDaiaaiMcacaaISaGaaGzbVlaadEgadaWgaaWcbaGaaGymaaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaadEgada WgaaWcbaGaaGymaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYcacaWG 0bGaaGykaiaaiYcaaaa@5252@

из которых вытекает равенство g 1 (s,τ)= g 1 (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdq NaaGykaaaa@40DB@ , s0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyyzImRaaGimaaaa@3535@ , т.е. чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции g 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaa aa@3390@ . Иначе говоря, характеристика M ˜ P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiqadc fagaqbaaaa@3432@  симметрична характеристике MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  (см. рис. 2). Согласно уравнениям характеристик MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  и M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@  существуют их продолжения до пересечения с осью Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ . Если характеристику MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  уравнения g 1 (s,τ)= g 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaa a@3F27@  искать в виде g 2 (s,τ)= C 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaikdaaeqaaaaa@3CC4@ , то подставляя сюда координаты точки M(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A0@ , имеем значение постоянной g 2 (s,τ)= C 2 = g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGNbWaaSbaaSqaaiaaik daaeqaaOGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaa i2dacaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiabgkHiTiaadE gadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYca caWG0bGaaGykaaaa@455E@ . Поэтому для характеристик MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  и M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@  соответственно имеем два уравнения

g 2 (s,τ)= g 2 (x,t), g 2 (s,τ)= g 2 (x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISa GaamiDaiaaiMcacaaISaGaaGzbVlaadEgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaaGypaiaadEgada WgaaWcbaGaaGOmaaqabaGccaaIOaGaeyOeI0IaamiEaiaaiYcacaWG 0bGaaGykaiaai6caaaa@5258@

Из них следует равенство g 2 (s,τ)= g 2 (s,τ),s0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdq NaaGykaiaaiYcacaWGZbGaeyyzImRaaGimaaaa@450B@ , т.е. чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции g 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaa aa@3391@ . Итак, характеристика M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@  симметрична характеристике MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  в G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  (см. рис. 2). В итоге, мы обосновали чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  характеристик уравнения (3.20) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ :

g 1 (s,τ)= g 1 (s,τ), g 2 (s,τ)= g 2 (s,τ),s,τ0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWG NbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaISaGaeqiXdq NaaGykaiaaiYcacaaMf8Uaam4zamaaBaaaleaacaaIYaaabeaakiaa iIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiMcacaaI9aGaam4zam aaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbGaaGilaiabes8a0jaa iMcacaaISaGaaGzbVlaadohacaaISaGaeqiXdqNaeyyzImRaaGimai aai6caaaa@5B2E@  (3.22)

Во-вторых, в (3.21) нечётность c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  меняет знак слагаемого в c ˜ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaaaaa@378C@  из k ˜ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaaaaa@33A3@  на противоположный для выражения c ˜ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislceWGJbGbaGaacaaIOaGaam 4CaiaaiYcacqaHepaDcaaIPaaaaa@3879@  из k ˜ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGOmaa qabaaaaa@33A4@  и наоборот. Взаимная чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  одной из функций k ˜ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaaaaa@33A3@ , k ˜ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGOmaa qabaaaaa@33A4@ , указанных после (3.13) (см. уравнения (3.11) и (3.21), по отношению к другой из них, вытекает из чётности a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , нечётности c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  в (3.21) и чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  характеристик (3.22) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ :

k ˜ 1 (s,τ)= k ˜ 2 (s,τ), k ˜ 2 (s,τ)= k ˜ 1 (s,τ),(s,τ)ΔMPQ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGRbGbaGaadaWgaaWcbaGaaGymaa qabaGccaaIOaGaeyOeI0Iaam4CaiaaiYcacqaHepaDcaaIPaGaaGyp aiqadUgagaacamaaBaaaleaacaaIYaaabeaakiaaiIcacaWGZbGaaG ilaiabes8a0jaaiMcacaaISaGaaGzbVlqadUgagaacamaaBaaaleaa caaIYaaabeaakiaaiIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiM cacaaI9aGabm4AayaaiaWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa dohacaaISaGaeqiXdqNaaGykaiaaiYcacaaMf8UaaGikaiaadohaca aISaGaeqiXdqNaaGykaiabgIGiolabgs5aejaad2eacaWGqbGaamyu aiaai6caaaa@5FC7@  (3.23)

Из симметрии характеристик M ˜ P ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaamaaGa aabaGaamiuaaGaay5adaaaaa@34E8@ , M ˜ P' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaad2eaaiaawoWaaiaadc facaaINaaaaa@34D7@  соответственно характеристикам MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@ , MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@  ввиду (3.22) и (3.23) имеем чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  данных Гурса (3.21).

В-третьих, известен факт: производная от нечётной (чётной) функции является (чётной) нечётной функцией. Если функция v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  чётна по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@ , то в уравнении (3.20) дифференциальный оператор M ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae83mH0eacaGLcmaaaaa@3D2E@  чётен по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  на верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , так как его коэффициенты a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@  чётны, коэффициент c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@  нечётен по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  и

( c ˜ (s,τ) v ^ (s,τ)) s = c ˜ s (s,τ) v ^ (s,τ)+ c ˜ (s,τ) v ^ s (s,τ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabm4yayaaiaGaaGikaiabgk HiTiaadohacaaISaGaeqiXdqNaaGykaiqadAhagaqcaiaaiIcacqGH sislcaWGZbGaaGilaiabes8a0jaaiMcacaaIPaWaaSbaaSqaaiaado haaeqaaOGaaGypaiqadogagaacamaaBaaaleaacaWGZbaabeaakiaa iIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaaca aIOaGaeyOeI0Iaam4CaiaaiYcacqaHepaDcaaIPaGaey4kaSIabm4y ayaaiaGaaGikaiabgkHiTiaadohacaaISaGaeqiXdqNaaGykaiqadA hagaqcamaaBaaaleaacaWGZbaabeaakiaaiIcacqGHsislcaWGZbGa aGilaiabes8a0jaaiMcacaaI9aaaaa@61C0@

= c ˜ s (s,τ) v ^ (s,τ) c ˜ (s,τ) v ^ s (s,τ)= c ˜ s (s,τ) v ^ (s,τ)+ c ˜ (s,τ) v ^ s (s,τ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGabm4yayaaiaWaaSbaaSqaai aadohaaeqaaOGaaGikaiaadohacaaISaGaeqiXdqNaaGykaiqadAha gaqcaiaaiIcacqGHsislcaWGZbGaaGilaiabes8a0jaaiMcacqGHsi slceWGJbGbaGaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGabmOD ayaajaWaaSbaaSqaaiaadohaaeqaaOGaaGikaiabgkHiTiaadohaca aISaGaeqiXdqNaaGykaiaai2daceWGJbGbaGaadaWgaaWcbaGaam4C aaqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGabmODayaaja GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiabgUcaRiqadogagaac aiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaadaWgaa WcbaGaam4CaaqabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGa aGypaaaa@6B3B@

=( c ˜ (s,τ) v ^ (s,τ )) s ,s>0,τ0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGikaiqadogagaacaiaaiI cacaWGZbGaaGilaiabes8a0jaaiMcaceWG2bGbaKaacaaIOaGaam4C aiaaiYcacqaHepaDcaaIPaGaaGykamaaBaaaleaacaWGZbaabeaaki aaiYcacaaMf8Uaam4Caiaai6dacaaIWaGaaGilaiabes8a0jabgwMi ZkaaicdacaaIUaaaaa@4B3A@

Чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  уравнения (3.20) и данных Гурса (3.21) влечёт чётность по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  единственного достаточно гладкого решения задачи Гурса (3.20), (3.21). Отсутствие чётности решения задачи Гурса (3.20), (3.21) во внутренних точках из ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  и на основании PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  противоречит чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  уравнения (3.20), а на боковых сторонах MP MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamiuaaaa@3364@  и MQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaamyuaaaa@3365@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  установленной чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  данных Гурса (3.21).

На рис. 2 в критическом треугольнике Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  уравнениями пунктирной линии Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@ , симметричной куску характеристики Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaacaWGqbaaaa@3374@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , очевидно, служат уравнения

g 1 (s,τ)= g 1 (x,t),s= h 1 { g 1 (x,t),τ}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiabgkHiTiaadIhacaaISaGaamiDai aaiMcacaaISaGaaGzbVlaadohacaaI9aGaamiAamaaBaaaleaacaaI XaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikai abgkHiTiaadIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyF aiaai6caaaa@520F@

Существуют другие равносильные уравнения кривой Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@  в терминах g 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaa aa@3390@  и h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaa aa@3391@ . В плоскости Osτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaam4Caiabes8a0baa@354E@  неявное уравнение g 1 (s,τ)= g 1 (0, h (2) [0, g 2 (x,t)]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadohacaaISaGaeqiXdqNaaGykaiaai2dacaWGNbWaaSba aSqaaiaaigdaaeqaaOGaaGikaiaaicdacaaISaGaamiAamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4z amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaiaaiMcaaaa@4A5B@ , конечно, описывает кривую Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@ , проходящую через точку Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaaaa@329F@  (см. рис. 2). Таким образом, по определению обратной функции кривая Q P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbauaaceWGqbGbauaaaaa@3380@  также задается явным уравнением

s= h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),τ},0τ h (2) [0, g 2 (x,t)]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypaiaadIgadaWgaaWcba GaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaa iIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcacaaIYaGaaG ykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGaaGOmaaqa baGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2facaaIPaGaaG ilaiabes8a0jaai2hacaaISaGaaGzbVlaaicdacqGHKjYOcqaHepaD cqGHKjYOcaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMcaaaGcca aIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGOlaaaa@6058@  (3.24)

Отсюда мы находим другой вид тех же координат точек P ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaaIOaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaaicdacaaISaGaamiAamaaCaaaleqabaGaaGikaiaaik dacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4zamaaBaaaleaacaaI YaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGyxaiaaiM cacaaISaGaaGimaiaai2hacaaISaGaaGimaiaaiMcaaaa@4BEF@  и P( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiabgkHiTiaadIgada WgaaWcbaGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaa beaakiaaiIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcaca aIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2faca aIPaGaaGilaiaaicdacaaI9bGaaGilaiaaicdacaaIPaaaaa@4CD0@ .

Выше показано, что функция (3.19) является решением u C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@3811@ , C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3750@ , C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaam4raaGaay5adaGaaiixaiaadEeadaWgaaWc baGaeyOhIukabeaakiaaiMcaaaa@39BE@  задачи Коши (3.16), (3.17), а функция Римана v ^ C( G ˜ ), C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaiaaiYcacaWGdbWaaWba aSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIukabe aakiaaiMcaaaa@3E50@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  чётным по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  решением задачи Гурса (3.20), (3.21) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  (см. [11, c. 129–135]). Из её чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  следует v ^ C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aiixaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3C4D@ . Из решения (3.19) задачи Коши на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  выведем решение смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ .

В формуле (3.19) за счёт нечетности начального данного φ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaaaaa@343C@  и чётности произведения a ^ v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacaaMi8UabmODayaaja aaaa@354F@  по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  значение произведения a ^ u ˜ v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacaaMi8UabmyDayaaia GaaGjcVlqadAhagaqcaaaa@37E9@  в точке P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbaaaa@3292@  равно его значению в симметричной точке P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaaaaa@329E@  относительно оси Oτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaeqiXdqhaaa@3456@ , взятому с противоположным знаком. Поэтому согласно (3.24) первое слагаемое из (3.21) совпадает с первым слагаемым формулы (3.3), в котором берутся значения функции

u ˜ ( h 1 { g 1 (x,t),0},0)=φ( h 1 { g 1 (x,t),0}), u ˜ ( h 2 { g 2 (x,t),0},0)=φ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0}), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaacaaIOaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaGimaiaai2 hacaaISaGaaGimaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIgadaWg aaWcbaGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabe aakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI 9bGaaGykaiaaiYcacaaMf8UabmyDayaaiaGaaGikaiaadIgadaWgaa WcbaGaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9b GaaGilaiaaicdacaaIPaGaaGypaiabgkHiTiabeA8aQjaaiIcacaWG ObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaG ymaaqabaGccaaIOaGaaGimaiaaiYcacaWGObWaaWbaaSqabeaacaaI OaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI DbGaaGykaiaaiYcacaaIWaGaaGyFaiaaiMcacaaISaaaaa@7D88@

т.е. в первом слагаемом из (3.3) подразумевается значение функции

u ˜ ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0},0)=φ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0}). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaGaacaaIOaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaaicdacaaISaGaamiAamaaCaaaleqabaGaaGikaiaaik dacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4zamaaBaaaleaacaaI YaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGyxaiaaiM cacaaISaGaaGimaiaai2hacaaISaGaaGimaiaaiMcacaaI9aGaeqOX dOMaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7bGaam4zam aaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaadIgadaah aaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaaIWaGaaGilai aadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai2facaaIPaGaaGilaiaaicdacaaI9bGaaGykaiaai6 caaaa@6734@

В формуле (3.19) интеграл по основанию PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  треугольника равен сумме трёх интегралов по отрезкам PO MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaam4taaaa@3366@ , O P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGabmiuayaafaaaaa@3372@  и P Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaWGrbaaaa@3374@ , первые два из которых сокращаются из-за нечетности обоих начальных данных φ ˜ , ψ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabeA8aQbGaay5adaGaaG ilamaaGaaabaGaeqiYdKhacaGLdmaaaaa@3782@ , чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  коэффициентов a ^ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacaaISaGabmOyayaaja aaaa@3460@  и, согласно обоснованной выше лемме 3.1, чётности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@  функции Римана v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@ . Таким образом, интеграл по PQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyuaaaa@3368@  формулы (3.19) при dτ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeqiXdqNaaGypaiaaicdaaa a@35EC@  равен интегралу по P Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaacaWGrbaaaa@3374@  от H( u ˜ , v ^ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiqadwhagaacaiaaiY caceWG2bGbaKaacaaIPaaaaa@36B9@  и, следовательно, второе слагаемое из (3.19) становится вторым слагаемым из (3.3) благодаря координатам точки P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGqbGbauaaaaa@329E@  из (3.24). Сужением на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  последнего слагаемого из (3.19) с двойным интегралом имеем следующее слагаемое, за указанными выше, решения (3.3), так как двойной интеграл по треугольнику ΔMPQ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadgfaaa a@35A1@  из (3.19) совпадает с двойным повторным интегралом от произведения правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbaaaa@32C3@  уравнения (3.16) на функцию Римана v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32B8@  с модулем |s| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4CaiaaiYhaaaa@34C1@  их первой переменной s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@ . В нём вместо двойного интеграла по треугольнику Δ Q P P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGqbGabm iuayaafaaaaa@35BC@  от произведения функций f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbaaaa@32C3@  и v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32B8@  фактически дважды берётся двойной интеграл по треугольнику Δ Q O P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarceWGrbGbauaacaWGpbGaaG jcVlqadcfagaqbaaaa@374C@  из G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  благодаря их четности по s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbaaaa@32B5@ .

Существование единственного классического решения u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbaaaa@32D2@  задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  взято из теоремы 2 статьи [5], где для него обоснована достаточность гладкости на φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  из (2.4), (3.1). В доказательстве теоремы 2 из [5] о корректности задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) для общего телеграфного уравнения (2.1) используются теорема 1 из [5] для модельного телеграфного уравнения (см. ниже (4.1)), обобщение метода продолжения по параметру Шаудера (см. [4, 8, 21]) и теоремы повышения гладкости сильных решений из [8]. Метод продолжения по параметру основан на том, что линейное общее телеграфное уравнение (2.1) отличается от линейного модельного телеграфного уравнения (4.1) младшими членами, т.е. слагаемыми с первыми производными u t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadshaaeqaaa aa@33DC@ , u x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIhaaeqaaa aa@33E0@  и u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ . Поэтому при коэффициентах a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , b,c,q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbGaaGilaiaadogacaaISaGaam yCaiabgIGiolaadoeadaahaaWcbeqaaiaaigdaaaGccaaIOaGaam4r amaaBaaaleaacqGHEisPaeqaaOGaaGykaaaa@3D04@  гладкости (2.4), (3.1) на φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  хватает для дважды непрерывной дифференцируемости решения (3.19) задачи Коши (3.16), (3.17) и первых трех слагаемых из (3.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  при x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ , так как функция Римана v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  тоже дважды непрерывно дифференцируема на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  при x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@  (см. 11, c. 129–135] (см. ниже замечание 3.2). В формуле (3.3) классического решения нашей задачи на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  отсутствуют значения продолжений a ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaaaaa@32B3@ , b ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaaaaa@32B4@ , c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaaaaa@32B4@ , q ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaaaaa@32C3@ , f ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqHbaKaaaaa@32D2@  для x<0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGipaiaaicdaaaa@343A@ , потому что эти продолжения оказались формальными благодаря знаку модуля |s| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4CaiaaiYhaaaa@34C1@  в функциях f (|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbacaaIOaGaaGiFaiaado hacaaI8bGaaGilaiabes8a0jaaiMcaaaa@39A7@  и v(|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaaaaa@399C@ .

Из установленной выше гладкости решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39E9@  вида (3.19) задачи Коши (3.16), (3.17) на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  следует дважды непрерывная дифференцируемость по t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@  следа справа u (0,t)= lim x+0 u (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaai2dadaGfqbqabSqaaiaadIhacqGHsgIRcqGH RaWkcaaIWaaabeGcbaGaciiBaiaacMgacaGGTbaaaiqadwhagaafai aaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4467@  решения (3.19) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  при x0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyyzImRaaGimaaaa@353A@ . Поскольку решение (3.19) этой задачи Коши на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  совпадает с суммой первых трёх слагаемых из (3.3), то этот след равен

u (0,t)= (auv)( h 1 { g 1 (0,t),0},0)(auv)( h 1 { g 1 (0, h (2) [0, g 2 (0,t)]),0},0) 2a(0,t) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaiIcacaWGHbGaaGjcVlaa dwhacaaMi8UaamODaiaaiMcacaaIOaGaamiAamaaBaaaleaacaaIXa aabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaaISaGaaGimaiaai2hacaaISaGaaG imaiaaiMcacqGHsislcaaIOaGaamyyaiaayIW7caWG1bGaaGjcVlaa dAhacaaIPaGaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7b Gaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGilaiaa dIgadaahaaWcbeqaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaaIWa GaaGilaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiaai2facaaIPaGaaGilaiaaicdacaaI9bGaaG ilaiaaicdacaaIPaaabaGaaGOmaiaadggacaaIOaGaaGimaiaaiYca caWG0bGaaGykaaaacqGHRaWkaaa@7462@

+ 1 2a(0,t) h 1 { g 1 (0, h (2) [0, g 2 (0,t)]),0} h 1 { g 1 (0,t),0} [ψ(s)v(s,0)φ(s) v τ (s,0)+b(s,0)φ(s)v(s,0)]ds+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaa qaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadIgadaahaaqabeaa caaIOaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBa aabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI DbGaaGykaiaaiYcacaaIWaGaaGyFaaqaaiaadIgadaWgaaqaaiaaig daaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGim aiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyFaaqdcqGHRiI8aO GaaG4waiabeI8a5jaaiIcacaWGZbGaaGykaiaadAhacaaIOaGaam4C aiaaiYcacaaIWaGaaGykaiabgkHiTiabeA8aQjaaiIcacaWGZbGaaG ykaiaadAhadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGaaGil aiaaicdacaaIPaGaey4kaSIaamOyaiaaiIcacaWGZbGaaGilaiaaic dacaaIPaGaeqOXdOMaaGikaiaadohacaaIPaGaamODaiaaiIcacaWG ZbGaaGilaiaaicdacaaIPaGaaGyxaiaayIW7caWGKbGaam4CaiabgU caRaaa@8563@

+ 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f (|s|,τ)v(|s|,τ;0,t)ds,(x,t) G + . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaGaamyyaiaaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeq iXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDai aaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigda aeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGimai aaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGc ceWGMbGbaqbacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0j aaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaD caaI7aGaaGimaiaaiYcacaWG0bGaaGykaiaayIW7caWGKbGaam4Cai aaiYcacaaMf8UaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZ caWGhbWaaSbaaSqaaiabgUcaRaqabaGccaaIUaaaaa@7C60@

В этом следе два первых слагаемых обращаются в ноль, потому что в них h (2) [0, g 2 (0,t)]=t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaIDbGaaG ypaiaadshaaaa@3FAA@  согласно второй формуле обращения из (3.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ . Запишем его в виде суммы

u (0,t)= Ψ ˜ (t)+ F ˜ (0) (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacaaIOaGaaGimaiaaiY cacaWG0bGaaGykaiaai2dadaaiaaqaaiabfI6azbGaay5adaGaaGik aiaadshacaaIPaGaey4kaSYaaacaaeaacaWGgbaacaGLdmaadaahaa WcbeqaaiaaiIcacaaIWaGaaGykaaaakiaaiIcacaWG0bGaaGykaiaa iYcaaaa@43EF@  (3.25)

где функции

Ψ ˜ (t)= 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} [ f ^ (s,τ) f ^ μ (s,τ)] v ^ (s,τ;0,t)ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabfI6azbGaay5adaGaaG ikaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikdacaWG HbGaaGikaiaaicdacaaISaGaamiDaiaaiMcaaaWaa8qCaeqaleaaca aIWaaabaGaamiDaaqdcqGHRiI8aOGaaGjcVlaadsgacqaHepaDdaWd XbqabSqaaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaS baaeaacaaIYaaabeaacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaa iYcacqaHepaDcaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG 4EaiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaa dshacaaIPaGaaGilaiabes8a0jaai2haa0Gaey4kIipakiaaiUface WGMbGbaKaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaeyOeI0Ia bmOzayaajaWaaSbaaSqaaiabeY7aTbqabaGccaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGyxaiqadAhagaqcaiaaiIcacaWGZbGaaGil aiabes8a0jaaiUdacaaIWaGaaGilaiaadshacaaIPaGaaGjcVlaads gacaWGZbGaaGilaaaa@7D9A@

F ˜ (0) (t)= 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f ^ (0) (s,τ) v ^ (s,τ;0,t)ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaCa aaleqabaGaaGikaiaaicdacaaIPaaaaOGaaGikaiaadshacaaIPaGa aGypamaalaaabaGaaGymaaqaaiaaikdacaWGHbGaaGikaiaaicdaca aISaGaamiDaiaaiMcaaaWaa8qCaeqaleaacaaIWaaabaGaamiDaaqd cqGHRiI8aOGaaGjcVlaadsgacqaHepaDdaWdXbqabSqaaiaadIgada WgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIYaaabeaa caaIOaGaaGimaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9b aabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaaqa aiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadshacaaIPaGaaGilai abes8a0jaai2haa0Gaey4kIipakiqadAgagaqcamaaCaaaleqabaGa aGikaiaaicdacaaIPaaaaOGaaGikaiaadohacaaISaGaeqiXdqNaaG ykaiqadAhagaqcaiaaiIcacaWGZbGaaGilaiabes8a0jaaiUdacaaI WaGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWGZbGaaGOlaaaa@770C@

В (3.3) в качестве чётной по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  функции f ^ (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaaaaa@3504@  берем значение оператора L ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=jrimzaajaaaaa@3C5A@  на следе:

L ^ u (0,t) u tt (0,t)+ b ^ (x,t) u t (0,t)+ q ^ (x,t) u (0,t)= f ^ (0) (x,t),(x,t) G ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=jrimzaajaGaaGjcVlqadwhagaafaiaaiIca caaIWaGaaGilaiaadshacaaIPaGaeyyyIORabmyDayaauaWaaSbaaS qaaiaadshacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaadshacaaI PaGaey4kaSIabmOyayaajaGaaGikaiaadIhacaaISaGaamiDaiaaiM caceWG1bGbaqbadaWgaaWcbaGaamiDaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiabgUcaRiqadghagaqcaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGabmyDayaauaGaaGikaiaaicdacaaISaGaamiD aiaaiMcacaaI9aGabmOzayaajaWaaWbaaSqabeaacaaIOaGaaGimai aaiMcaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaM f8UaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZdaaiaaqaai aadEeaaiaawoWaaiaai6caaaa@74C2@  (3.26)

Согласно представлению (3.25) функция f ˜ (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaaaaa@3503@  должна удовлетворять уравнению

f ^ (0) (x,t) F ˜ tt (0) (t) b ^ (x,t) F ˜ t (0) (t) q ^ (x,t) F ˜ (0) (t)= L ^ Ψ ˜ (t),(x,t) G ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa eyOeI0YaaacaaeaacaWGgbaacaGLdmaadaqhaaWcbaGaamiDaiaads haaeaacaaIOaGaaGimaiaaiMcaaaGccaaIOaGaamiDaiaaiMcacqGH sislceWGIbGbaKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykamaaGa aabaGaamOraaGaay5adaWaa0baaSqaaiaadshaaeaacaaIOaGaaGim aiaaiMcaaaGccaaIOaGaamiDaiaaiMcacqGHsislceWGXbGbaKaaca aIOaGaamiEaiaaiYcacaWG0bGaaGykamaaGaaabaGaamOraaGaay5a daWaaWbaaSqabeaacaaIOaGaaGimaiaaiMcaaaGccaaIOaGaamiDai aaiMcacaaI9aWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iqaacuWFsectgaqcamaaGaaabaGaeuiQdKfacaGLdmaacaaIOaGaam iDaiaaiMcacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaI PaGaeyicI48aaacaaeaacaWGhbaacaGLdmaacaaIUaaaaa@75E5@

Здесь полагаем

F ˜ tt (0) (t)= Y ˜ (t), F ˜ t (0) (t)= 0 t Y ˜ (δ)dδ, F ˜ t (0) (t)= 0 t (tδ) Y ˜ (δ)dδ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaDa aaleaacaWG0bGaamiDaaqaaiaaiIcacaaIWaGaaGykaaaakiaaiIca caWG0bGaaGykaiaai2daceWGzbGbaGaacaaIOaGaamiDaiaaiMcaca aISaGaaGzbVpaaGaaabaGaamOraaGaay5adaWaa0baaSqaaiaadsha aeaacaaIOaGaaGimaiaaiMcaaaGccaaIOaGaamiDaiaaiMcacaaI9a Waa8qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGabmywayaa iaGaaGikaiabes7aKjaaiMcacaWGKbGaeqiTdqMaaGilaiaaywW7da aiaaqaaiaadAeaaiaawoWaamaaDaaaleaacaWG0baabaGaaGikaiaa icdacaaIPaaaaOGaaGikaiaadshacaaIPaGaaGypamaapedabeWcba GaaGimaaqaaiaadshaa0Gaey4kIipakiaaiIcacaWG0bGaeyOeI0Ia eqiTdqMaaGykaiqadMfagaacaiaaiIcacqaH0oazcaaIPaGaamizai abes7aKbaa@6C54@

и получаем систему интегрального уравнения Вольтерра второго рода и алгебраического уравнения

Y ˜ (t)= 0 t [(δt) q ^ (x,t) b ^ (x,t)] Y ˜ (δ)dδ+ Z ˜ (x,t), f ^ (0) (x,t) Z ˜ (x,t)= L ^ Ψ ˜ (t),x,t0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGabmywayaaiaGaaG ikaiaadshacaaIPaGaaGypamaapehabeWcbaGaaGimaaqaaiaadsha a0Gaey4kIipakiaaiUfacaaIOaGaeqiTdqMaeyOeI0IaamiDaiaaiM caceWGXbGbaKaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHi TiqadkgagaqcaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGyxai qadMfagaacaiaaiIcacqaH0oazcaaIPaGaamizaiabes7aKjabgUca RiqadQfagaacaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaa qaaiqadAgagaqcamaaCaaaleqabaGaaGikaiaaicdacaaIPaaaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislceWGAbGbaGaaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2datuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGabaiqb=jrimzaajaWaaacaaeaacq qHOoqwaiaawoWaaiaaiIcacaWG0bGaaGykaiaaiYcacaWG4bGaeyic I48efv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39gaiuaacqGFDe IucaaISaGaamiDaiabgwMiZkaaicdacaaIUaaaaaaa@891E@  (3.27)

Непрерывность функции f ^ (0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaaaaa@3504@  на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@  вытекает из уравнения (3.26) и непрерывности его коэффициентов на G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ . Из теории интегральных уравнений хорошо известно, что для непрерывной Z ˜ C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@37EA@  существует единственное непрерывное решение Y ˜ C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGzbGbaGaacqGHiiIZcaWGdbGaaG ikamaaGaaabaGaam4raaGaay5adaGaaGykaaaa@37E9@  уравнения Вольтерра второго рода системы (3.27). По значению Y ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGzbGbaGaaaaa@32AA@  единственным образом выводятся сначала дважды непрерывно дифференцируемая функция F ˜ (0) (t) C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaCa aaleqabaGaaGikaiaaicdacaaIPaaaaOGaaGikaiaadshacaaIPaGa eyicI4Saam4qamaaCaaaleqabaGaaGOmaaaakmaajicabaGaaGimai aaiYcacqGHRaWkcqGHEisPaiaawUfacaGLBbaaaaa@4115@ , как решение задачи Коши для уравнения F ˜ tt (0) (t)= Y ˜ (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaDa aaleaacaWG0bGaamiDaaqaaiaaiIcacaaIWaGaaGykaaaakiaaiIca caWG0bGaaGykaiaai2daceWGzbGbaGaacaaIOaGaamiDaiaaiMcaaa a@3E02@  с очевидными начальными условиями F ˜ (0) (0)= F ˜ t (0) (0)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAeaaiaawoWaamaaCa aaleqabaGaaGikaiaaicdacaaIPaaaaOGaaGikaiaaicdacaaIPaGa aGypamaaGaaabaGaamOraaGaay5adaWaa0baaSqaaiaadshaaeaaca aIOaGaaGimaiaaiMcaaaGccaaIOaGaaGimaiaaiMcacaaI9aGaaGim aaaa@4102@ , и затем единственная функция f ^ (0) C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaKaadaahaaWcbeqaaiaaiI cacaaIWaGaaGykaaaakiabgIGiolaadoeacaaIOaWaaacaaeaacaWG hbaacaGLdmaacaaIPaaaaa@3A4D@ . Находим функцию Z ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGAbGbaGaaaaa@32AB@  из второго алгебраического уравнения системы (3.27) и имеем её единственное решение { Y ˜ , Z ˜ } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGabmywayaaiaGaaGilaiqadQ fagaacaiaai2haaaa@365A@ .

Итак, выше мы преобразовали все слагаемые из (3.19) в первые три слагаемые из (3.3). Вычитаем след формулы (3.19) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  из формулы (3.19), прибавляем граничное данное μ C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcqGHiiIZcaWGdbWaaWbaaS qabeaacaaIYaaaaOWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6Hi LcGaay5waiaawUfaaaaa@3C8A@  и получаем классическое решение исходной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  вида

u + (x,t)= u (x,t) u (0,t)+μ(t) C 2 ( G + ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2daceWG1bGbaqba caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTiqadwhagaafai aaiIcacaaIWaGaaGilaiaadshacaaIPaGaey4kaSIaeqiVd0MaaGik aiaadshacaaIPaGaeyicI4Saam4qamaaCaaaleqabaGaaGOmaaaaki aaiIcacaWGhbWaaSbaaSqaaiabgUcaRaqabaGccaaIPaGaaGilaaaa @4FD1@  (3.28)

 которое совпадает с решением (3.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  из теоремы 3.1. Выражение (3.28), очевидно, удовлетворяет уравнению (2.1) и граничному режиму (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . Единственные решения краевых задач могут иметь разные виды и формы записи.

Мы убедились в дважды непрерывной дифференцируемости функций (3.2) в G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и (3.3) в G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . В теореме 1 из [5] непрерывность решений на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  и их частных производных до второго порядка включительно на характеристике g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@  подробно и строго обоснована в случае модельного телеграфного уравнения (см. ниже уравнение (4.1)). В нашей первой смешанной задаче для общего телеграфного уравнения (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) достаточность условий согласования (2.5) для дважды непрерывной дифференцируемости функции u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba aaaa@33D0@  вида (3.2) в замыкании G ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqdaaqaaiaadEeadaWgaaWcbaGaey OeI0cabeaaaaaaaa@33B3@  множества G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и функции u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  вида (3.3) в G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  на характеристике g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@  можно вывести из достаточности условий согласования для модельного уравнения в теореме 1 из [5]. Во-первых, первые два наших условия согласования из (2.5) и теоремы 1 из [5] совпадают. Во-вторых, для общего телеграфного уравнения (2.1), из левой и правой частей которого вычитаем слагаемые

a 1 (x,t) a t (x,t) u t (x,t)+a(x,t) a x (x,t) u x (x,t),b(x,t) u t (x,t)+c(x,t) u x (x,t)+q(x,t)u(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaWbaaSqabeaacqGHsislca aIXaaaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGHbWaaSba aSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca WG1bWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHRaWkcaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaadkgacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiDaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadogacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaaqaba GccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgUcaRiaadghacaaI OaGaamiEaiaaiYcacaWG0bGaaGykaiaadwhacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaaiYcaaaa@7C6D@

записываем третье условие согласования из теоремы 1 статьи [5] для правой части

f ˜ (x,t)=f(x,t) a 1 (x,t) a t (x,t) u t (x,t)a(x,t) a x (x,t) u x (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaiaai2dacaWGMbGaaGikaiaadIhacaaISaGaamiD aiaaiMcacqGHsislcaWGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGHbWaaSbaaSqaaiaa dshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaS baaSqaaiaadshaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMca cqGHsislcaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaWGHb WaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISa GaamiDaiaaiMcacqGHsislaaa@63E7@

b(x,t) u t (x,t)c(x,t) u x (x,t)q(x,t)u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGIbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGJbGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGXbGaaGikai aadIhacaaISaGaamiDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGa amiDaiaaiMcaaaa@54FF@

и получаем третье условие согласования из (2.5) для смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3):

μ (0)= S ˜ f ˜ (0,0)+ a 2 (0,0) φ (0)+ a 1 (0,0) a t (0,0)ψ(0)+a(0,0) a x (0,0) φ (0)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH8oqBgaqbgaqbaiaaiIcacaaIWa GaaGykaiaai2daceWGtbGbaGaacqGHHjIUceWGMbGbaGaacaaIOaGa aGimaiaaiYcacaaIWaGaaGykaiabgUcaRiaadggadaahaaWcbeqaai aaikdaaaGccaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiqbeA8aQzaa fyaafaGaaGikaiaaicdacaaIPaGaey4kaSIaamyyamaaCaaaleqaba GaeyOeI0IaaGymaaaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGa amyyamaaBaaaleaacaWG0baabeaakiaaiIcacaaIWaGaaGilaiaaic dacaaIPaGaeqiYdKNaaGikaiaaicdacaaIPaGaey4kaSIaamyyaiaa iIcacaaIWaGaaGilaiaaicdacaaIPaGaamyyamaaBaaaleaacaWG4b aabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGafqOXdOMbauaa caaIOaGaaGimaiaaiMcacaaI9aaaaa@685B@

=f(0,0)+ a 2 (0,0) φ (0)b(0,0)ψ(0)c(0,0) φ (0)q(0,0)φ(0)S. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamOzaiaaiIcacaaIWaGaaG ilaiaaicdacaaIPaGaey4kaSIaamyyamaaCaaaleqabaGaaGOmaaaa kiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGafqOXdOMbauGbauaaca aIOaGaaGimaiaaiMcacqGHsislcaWGIbGaaGikaiaaicdacaaISaGa aGimaiaaiMcacqaHipqEcaaIOaGaaGimaiaaiMcacqGHsislcaWGJb GaaGikaiaaicdacaaISaGaaGimaiaaiMcacuaHgpGAgaqbaiaaiIca caaIWaGaaGykaiabgkHiTiaadghacaaIOaGaaGimaiaaiYcacaaIWa GaaGykaiabeA8aQjaaiIcacaaIWaGaaGykaiabggMi6kaadofacaaI Uaaaaa@607E@

В доказательстве теоремы 2 статьи [5] единственность классического решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  обоснована от противного с помощью энергетического неравенства для её обобщенного сильного решения (см. [8]). Более того, в настоящей статье единственность этого классического решения задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) также следует из способа получения формул Римана (3.14) и (3.19) также, как в [11, с. 139] (см. замечание 3.2).

Устойчивость классического решения u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgkHiTaqaba aaaa@33D0@  вида (3.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  вида (3.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  по φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) подробно описана в [5]. При любом 0<T<+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadsfacaaI8aGaey 4kaSIaeyOhIukaaa@372F@  решение (3.2) непрерывно зависит в банаховом пространстве X (1) = C 2 ( G T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaGccaaI9aGaam4qamaaCaaaleqabaGaaGOmaaaakiaa iIcacaWGhbWaa0baaSqaaiaadsfaaeaacqGHsislaaGccaaIPaaaaa@3BA1@  от φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  в произведении Y (1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiMcaaaaaaa@34E8@  банаховых пространств C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO WaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfa aaaa@3950@ , C 1 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO WaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfa aaaa@394F@ , C ^ ( G T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadoeaaiaawkWaaiaaiI cacaWGhbWaa0baaSqaaiaadsfaaeaacqGHsislaaGccaaIPaaaaa@3775@ , где множества G T = G T G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaa0baaSqaaiaadsfaaeaacq GHsislaaGccaaI9aGaam4ramaaBaaaleaacaWGubaabeaakiabgMIi hlaadEeadaWgaaWcbaGaeyOeI0cabeaaaaa@3AAB@ , G T ={(x,t) G :0x<+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaadsfaaeqaaO GaaGypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGi olaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiQdacaaIWaGaeyizIm QaamiEaiaaiYdacqGHRaWkcqGHEisPaaa@44B5@ , 0tT} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiDaiabgsMiJk aadsfacaaI9baaaa@38BA@ , с нормами из [5]:

u (x,t) C 2 ( G T ) = sup (x,t) G T 0p+j2 p+j u(x,t) p x j t , φ(x) C 2 0,+ = sup 0x<+ m=0 2 d m φ(x) d x m ,ψ(x) C 1 0,+ = sup 0x<+ m=0 1 d m ψ(x) d x m , f(x,t) C ^ ( G T ) = sup (x,t) G T |f(x,t)|+ i=1 2 0p+j1 p+j H i (x,t) p x j t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeWabaaabaqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamyDamaaBaaaleaacqGHsislaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam4qam aaCaaabeqaaiaaikdaaaGaaGikaiaadEeadaqhaaqaaiaadsfaaeaa cqGHsislaaGaaGykaaqabaGccaaI9aWaaybuaeqaleaacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaqhaaqaaiaadsfa aeaacqGHsislaaaabeGcbaGaci4CaiaacwhacaGGWbaaamaaqafabe WcbaGaaGimaiabgsMiJkaadchacqGHRaWkcaWGQbGaeyizImQaaGOm aaqab0GaeyyeIuoakmaaemaabaWaaSaaaeaacqGHciITdaahaaWcbe qaaiaadchacqGHRaWkcaWGQbaaaOGaamyDaiaaiIcacaWG4bGaaGil aiaadshacaaIPaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbaaaOGaam iEaiabgkGi2oaaCaaaleqabaGaamOAaaaakiaadshaaaaacaGLhWUa ayjcSdGaaGilaaqaaiab=vIiqjabeA8aQjaaiIcacaWG4bGaaGykai ab=vIiqnaaBaaaleaacaWGdbWaaWbaaeqabaGaaGOmaaaadaqcIaqa aiaaicdacaaISaGaey4kaSIaeyOhIukacaGLBbGaay5waaaabeaaki aai2dadaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaaGipaiabgUca Riabg6HiLcqabOqaaiGacohacaGG1bGaaiiCaaaadaaeWbqabSqaai aad2gacaaI9aGaaGimaaqaaiaaikdaa0GaeyyeIuoakmaaemaabaWa aSaaaeaacaWGKbWaaWbaaSqabeaacaWGTbaaaOGaeqOXdOMaaGikai aadIhacaaIPaaabaGaamizaiaadIhadaahaaWcbeqaaiaad2gaaaaa aaGccaGLhWUaayjcSdGaaGilaiaaywW7cqWFLicucqaHipqEcaaIOa GaamiEaiaaiMcacqWFLicudaWgaaWcbaGaam4qamaaCaaabeqaaiaa igdaaaWaaKGiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5wai aawUfaaaqabaGccaaI9aWaaybuaeqaleaacaaIWaGaeyizImQaamiE aiaaiYdacqGHRaWkcqGHEisPaeqakeaaciGGZbGaaiyDaiaacchaaa WaaabCaeqaleaacaWGTbGaaGypaiaaicdaaeaacaaIXaaaniabggHi LdGcdaabdaqaamaalaaabaGaamizamaaCaaaleqabaGaamyBaaaaki abeI8a5jaaiIcacaWG4bGaaGykaaqaaiaadsgacaWG4bWaaWbaaSqa beaacaWGTbaaaaaaaOGaay5bSlaawIa7aiaaiYcaaeaacqWFLicuca WGMbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWc baWaaecaaeaacaWGdbaacaGLcmaacaaIOaGaam4ramaaDaaabaGaam ivaaqaaiabgkHiTaaacaaIPaaabeaakiaai2dadaGfqbqabSqaaiaa iIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI4Saam4ramaaDaaaba GaamivaaqaaiabgkHiTaaaaeqakeaaciGGZbGaaiyDaiaacchaaaWa aeWaaeaacaaI8bGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGiFaiabgUcaRmaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGa aGOmaaqdcqGHris5aOGaaGjcVpaaqafabeWcbaGaaGimaiabgsMiJk aadchacqGHRaWkcaWGQbGaeyizImQaaGymaaqab0GaeyyeIuoakmaa emaabaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadchacqGHRaWkca WGQbaaaOGaamisamaaBaaaleaacaWGPbaabeaakiaaiIcacaWG4bGa aGilaiaadshacaaIPaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbaaaO GaamiEaiabgkGi2oaaCaaaleqabaGaamOAaaaakiaadshaaaaacaGL hWUaayjcSdaacaGLOaGaayzkaaGaaGOlaaaaaaa@112C@  (3.29)

При любом 0<T<+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadsfacaaI8aGaey 4kaSIaeyOhIukaaa@372F@  решение (3.3) непрерывно зависит в банаховом пространстве X (2) = C 2 ( G T + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaI9aGaam4qamaaCaaaleqabaGaaGOmaaaakiaa iIcacaWGhbWaa0baaSqaaiaadsfaaeaacqGHRaWkaaGccaaIPaaaaa@3B97@  от φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  в произведении Y (2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaaaaa@34E9@  банаховых пространств C 2 [0, ϒ T ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaG4waiaaicdacaaISaGaeuO0de6aaSbaaSqaaiaadsfaaeqaaOGa aGyxaaaa@39C4@ , C 1 [0, ϒ T ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO GaaG4waiaaicdacaaISaGaeuO0de6aaSbaaSqaaiaadsfaaeqaaOGa aGyxaaaa@39C3@ , C 2 [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaG4waiaaicdacaaISaGaamivaiaai2faaaa@378D@ , C ^ ( G T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiaadoeaaiaawkWaaiaaiI cacaWGhbWaaWbaaSqabeaacaWGubaaaOGaaGykaaaa@3688@  с нормами из [5]:

u + (x,t) C 2 ( G T + ) = max (x,t) G T + 0p+j2 p+j u(x,t) p x j t ,φ(x) C 2 [0, ϒ T ] = max 0x ϒ T m=0 2 d m φ(x) d x m , ψ(x) C 1 [0, ϒ T ] = max 0x ϒ T m=0 1 d m ψ(x) d x m ,μ(t) C 2 [0,T] = max 0tT m=0 2 d m μ(t) d t m , f(x,t) C ^ ( G T ) = max (x,t) G T |f(x,t)|+ i=1 2 0p+j1 p+j H i (x,t) p x j t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeWabaaabaqeeuuDJXwAKbsr4r NCHbaceaGae8xjIaLaamyDamaaBaaaleaacqGHRaWkaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam4qam aaCaaabeqaaiaaikdaaaGaaGikaiaadEeadaqhaaqaaiaadsfaaeaa cqGHRaWkaaGaaGykaaqabaGccaaI9aWaaybuaeqaleaacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaqhaaqaaiaadsfa aeaacqGHRaWkaaaabeGcbaGaciyBaiaacggacaGG4baaamaaqafabe WcbaGaaGimaiabgsMiJkaadchacqGHRaWkcaWGQbGaeyizImQaaGOm aaqab0GaeyyeIuoakmaaemaabaWaaSaaaeaacqGHciITdaahaaWcbe qaaiaadchacqGHRaWkcaWGQbaaaOGaamyDaiaaiIcacaWG4bGaaGil aiaadshacaaIPaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbaaaOGaam iEaiabgkGi2oaaCaaaleqabaGaamOAaaaakiaadshaaaaacaGLhWUa ayjcSdGaaGilaiaaywW7cqWFLicucqaHgpGAcaaIOaGaamiEaiaaiM cacqWFLicudaWgaaWcbaGaam4qamaaCaaabeqaaiaaikdaaaGaaG4w aiaaicdacaaISaGaeuO0de6aaSbaaeaacaWGubaabeaacaaIDbaabe aakiaai2dadaGfqbqabSqaaiaaicdacqGHKjYOcaWG4bGaeyizImQa euO0de6aaSbaaeaacaWGubaabeaaaeqakeaaciGGTbGaaiyyaiaacI haaaWaaabCaeqaleaacaWGTbGaaGypaiaaicdaaeaacaaIYaaaniab ggHiLdGcdaabdaqaamaalaaabaGaamizamaaCaaaleqabaGaamyBaa aakiabeA8aQjaaiIcacaWG4bGaaGykaaqaaiaadsgacaWG4bWaaWba aSqabeaacaWGTbaaaaaaaOGaay5bSlaawIa7aiaaiYcaaeaacqWFLi cucqaHipqEcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaam4q amaaCaaabeqaaiaaigdaaaGaaG4waiaaicdacaaISaGaeuO0de6aaS baaeaacaWGubaabeaacaaIDbaabeaakiaai2dadaGfqbqabSqaaiaa icdacqGHKjYOcaWG4bGaeyizImQaeuO0de6aaSbaaeaacaWGubaabe aaaeqakeaaciGGTbGaaiyyaiaacIhaaaWaaabCaeqaleaacaWGTbGa aGypaiaaicdaaeaacaaIXaaaniabggHiLdGcdaabdaqaamaalaaaba GaamizamaaCaaaleqabaGaamyBaaaakiabeI8a5jaaiIcacaWG4bGa aGykaaqaaiaadsgacaWG4bWaaWbaaSqabeaacaWGTbaaaaaaaOGaay 5bSlaawIa7aiaaiYcacaaMf8Uae8xjIaLaeqiVd0MaaGikaiaadsha caaIPaGae8xjIa1aaSbaaSqaaiaadoeadaahaaqabeaacaaIYaaaai aaiUfacaaIWaGaaGilaiaadsfacaaIDbaabeaakiaai2dadaGfqbqa bSqaaiaaicdacqGHKjYOcaWG0bGaeyizImQaamivaaqabOqaaiGac2 gacaGGHbGaaiiEaaaadaaeWbqabSqaaiaad2gacaaI9aGaaGimaaqa aiaaikdaa0GaeyyeIuoakmaaemaabaWaaSaaaeaacaWGKbWaaWbaaS qabeaacaWGTbaaaOGaeqiVd0MaaGikaiaadshacaaIPaaabaGaamiz aiaadshadaahaaWcbeqaaiaad2gaaaaaaaGccaGLhWUaayjcSdGaaG ilaaqaaiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiab=vIiqnaaBaaaleaadaqiaaqaaiaadoeaaiaawkWaaiaaiIcaca WGhbWaaWbaaeqabaGaamivaaaacaaIPaaabeaakiaai2dadaGfqbqa bSqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI4Saam4ram aaCaaabeqaaiaadsfaaaaabeGcbaGaciyBaiaacggacaGG4baaamaa bmaabaGaaGiFaiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYhacqGHRaWkdaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaa ikdaa0GaeyyeIuoakiaayIW7daaeqbqabSqaaiaaicdacqGHKjYOca WGWbGaey4kaSIaamOAaiabgsMiJkaaigdaaeqaniabggHiLdGcdaab daqaamaalaaabaGaeyOaIy7aaWbaaSqabeaacaWGWbGaey4kaSIaam OAaaaakiaadIeadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaaqaaiabgkGi2oaaCaaaleqabaGaamiCaaaaki aadIhacqGHciITdaahaaWcbeqaaiaadQgaaaGccaWG0baaaaGaay5b SlaawIa7aaGaayjkaiaawMcaaiaai6caaaaaaa@3D4A@  (3.30)

Здесь

G T + = G T G + , ϒ T = h 1 { g 1 ( h 2 { g 2 (0,0),T},T),0}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaa0baaSqaaiaadsfaaeaacq GHRaWkaaGccaaI9aGaam4ramaaCaaaleqabaGaamivaaaakiabgMIi hlaadEeadaWgaaWcbaGaey4kaScabeaakiaaiYcacaaMf8UaeuO0de 6aaSbaaSqaaiaadsfaaeqaaOGaaGypaiaadIgadaWgaaWcbaGaaGym aaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcaca WGObWaaSbaaSqaaiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaaGimaiaaiYcacaaIWaGaaGykaiaaiYcaca WGubGaaGyFaiaaiYcacaWGubGaaGykaiaaiYcacaaIWaGaaGyFaiaa iYcaaaa@5683@

G T ={(x,t) G : g 1 (x,t) g 1 ( h 2 { g 2 (0,0),T},T),0tT}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaWbaaSqabeaacaWGubaaaO GaaGypaiaaiUhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgIGi olaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiQdacaWGNbWaaSbaaS qaaiaaigdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH KjYOcaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIgadaWgaa WcbaGaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaabeaa kiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaaGilaiaadsfacaaI9b GaaGilaiaadsfacaaIPaGaaGilaiaaysW7caaIWaGaeyizImQaamiD aiabgsMiJkaadsfacaaI9bGaaGOlaaaa@5F84@

Кроме того, устойчивость решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  по данным φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@ , f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  вытекает из его существования и единственности в силу теоремы Банаха о замкнутом графике.

Необходимость требований гладкости (2.4) и условий согласования (2.5) установлена нами перед теоремой 3.1. В [5] для зависящих от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  функций f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@  доказана необходимость (обязательность) гладкости (3.1) для дважды непрерывной дифференцируемости интеграла F(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3699@ , которым в теореме 3.1 становятся интегралы в третьих слагаемых из (3.2) и (3.3) при функциях va1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyyyIORaamyyaiabggMi6k aaigdaaaa@37EB@  на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ . Дважды непрерывная дифференцируемость интегралов из (3.2) и (3.3), содержащих правую часть f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@  не зависит от непрерывно дифференцируемых решений v C 1 ( G ΔMPQ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc cqGHPiYXcqGHuoarcaWGnbGaamiuaiaadgfacaaIPaaaaa@3F50@  задач Гурса (3.10), (3.13) и (3.20), (3.21) и от дважды непрерывно дифференцируемого коэффициента a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , и функций g i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaa aa@33C3@ , h i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaa aa@33C4@ , h (i) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaam yAaiaaiMcaaaaaaa@352A@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@  (см. ниже замечание 3.1). Доказательство того, что для функций f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@  требования (3.1) гарантируют дважды непрерывную дифференцируемость интеграла F C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@399F@  имеется в [5]. Поэтому необходимость гладкости (3.1) на непрерывные fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  следует из дважды непрерывной дифференцируемости функции F C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@399F@  (см. [10, 15, 16]).

Для непрерывной правой части fC 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaajicaba GaaGimaiaaiYcacqGHRaWkcqGHEisPaiaawUfacaGLBbaaaaa@3ACC@ , зависящей только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , интегральные требования гладкости (3.1) автоматически выполняются (см. [10, 15, 16]).

Следствие 3.1. Если непрерывная правая часть f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  зависит только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , то утверждение теоремы 3.1 справедливо без требований гладкости (3.1).

Исследования автора минимальной гладкости правой части f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  модельного телеграфного уравнения (см. ниже уравнение (4.1)) для дважды непрерывной дифференцируемости его частного решения F(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3699@  в [15, 16] указывают на то, что требования гладкости (3.1) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  выполняются для непрерывно дифференцируемых f C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BE@  и даже тех непрерывных f(x,t)C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadEeadaWgaaWcbaGaeyOh IukabeaakiaaiMcaaaa@3CDD@ , у которых частные производные интегралов H i (x,t)/x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWGibWaaSbaaSqaaiaadM gaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeyOa IyRaamiEaaaa@3C41@  по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или H i (x,t)/t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWGibWaaSbaaSqaaiaadM gaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeyOa IyRaamiDaaaa@3C3D@  по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , из (3.1) непрерывны на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. следствие 3.2). Поэтому такая же справедливость гладкости (3.1) распространяется на коэффициент a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , функции g i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaa aa@33C3@ , h i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaa aa@33C4@ , h (i) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaam yAaiaaiMcaaaGccqGHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOGa aGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@3C4B@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ , и функцию Римана v(s,τ) C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaI OaGaam4ramaaBaaaleaacqGHEisPaeqaaOGaaGykaaaa@3EA7@ .

Замечание 3.1. В теореме 3.1 для непрерывной правой части fC( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4qaiaaiIcaca WGhbWaaSbaaSqaaiabg6HiLcqabaGccaaIPaaaaa@38CC@  гладкость (3.1) равносильна гладкости (см. [5, 15, 16]):

0 t f(| h i { g i (x,t),τ}|,τ)dτ C 1 ( G ),i=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGccaaMi8UaamOzaiaaiIcacaaI8bGaamiAamaaBaaa leaacaWGPbaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyF aiaaiYhacaaISaGaeqiXdqNaaGykaiaayIW7caWGKbGaeqiXdqNaey icI4Saam4qamaaCaaaleqabaGaaGymaaaakiaaiIcacaWGhbWaaSba aSqaaiabg6HiLcqabaGccaaIPaGaaGilaiaaywW7caWGPbGaaGypai aaigdacaaISaGaaGOmaiaai6caaaa@5D38@  (3.31)

Следствие 3.2. В теореме 3.1 принадлежность интегралов (3.1) и интегралов (3.31) из предыдущего замечания 3.1 множеству C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@374F@  равносильна их принадлежности множеству C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  или множеству C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@ , где C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ( C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  множества непрерывных (непрерывно дифференцируемых) по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и непрерывно дифференцируемых (непрерывных) по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  функций в первой четверти плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  (см. [15, 16]).

Замечание 3.2. Используя соответственно чётность и нечётность по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  продолжений коэффициентов a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@ , c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@ , q C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaeyicI4Saam4qamaaCaaale qabaGaaGymaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39C9@  уравнения (2.1) и дополнительные предположения a x (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3925@ , b x (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3926@ , c(0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaaGimaaaa@37F4@ , q x (0,t)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadIhaaeqaaO GaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaI9aGaaGimaaaa@3935@ , t0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyyzImRaaGimaaaa@3536@ , можно аналогичными рассуждениями из доказательства теоремы 3.1 показать a ^ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGHbGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38E5@ , b ^ C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIXaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38E5@ , c ˜ C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIXaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38E5@ , q ^ C 1 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIXaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38F4@ . При таких коэффициентах вспомогательная задача Коши (3.16), (3.17) имеет единственное классическое решение u C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@3904@  и задача Гурса (3.20), (3.21) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функцию Римана v ^ C 2 ( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikamaaGaaabaGaam4raaGaay5adaGa aGykaaaa@38FA@ . Такая гладкость функций u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaqbaaaa@32D2@ , v ^ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaaaaa@32C8@  избыточна для решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@ .

4. Модельная первая смешанная задача. Из теоремы 3.1 вывести классическое решение и критерий корректности первой смешанной задачи для модельного телеграфного уравнения:

L ˜ u(x,t) u tt (x,t) a 2 (x,t) u xx (x,t) a 1 (x,t) a t (x,t) u t (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaamrr1ngBPrwtHrhAXaqegu uDJXwAKbstHrhAG8KBLbaceaGae8NeHWeacaGLdmaacaaMi8UaamyD aiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyyyIORaamyDamaaBa aaleaacaWG0bGaamiDaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiabgkHiTiaadggadaahaaWcbeqaaiaaikdaaaGccaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaadwhadaWgaaWcbaGaamiEaiaadIha aeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGHb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadshaaeqaaOGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislaaa@6FC6@

a(x,t) a x (x,t) u x (x,t)= f ˜ (x,t),(x,t) G ˙ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWGHbGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaWG1bWaaSbaaSqaaiaadIhaae qaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGabmOzayaa iaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaGzbVlaaiI cacaWG4bGaaGilaiaadshacaaIPaGaeyicI4Sabm4rayaacaWaaSba aSqaaiabg6HiLcqabaGccaaISaaaaa@54E6@  (4.1)

при начальных условиях (2.2) и граничном режиме (2.3).

Так же, как и выше, из постановки смешанной задачи (4.1), (2.2), (2.3) и определения 2.1 следуют необходимые условия гладкости (2.4) исходных данных и условия согласования:

φ(0)=μ(0),ψ(0)= μ (0), S ˜ f ˜ (0,0)+ a 2 (0,0) φ (0)+ a 1 (0,0) a t (0,0)ψ(0)+a(0,0) a x (0,0) φ (0)= μ (0). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaeqOXdOMaaGikai aaicdacaaIPaGaaGypaiabeY7aTjaaiIcacaaIWaGaaGykaiaaiYca caaMf8UaeqiYdKNaaGikaiaaicdacaaIPaGaaGypaiqbeY7aTzaafa GaaGikaiaaicdacaaIPaGaaGilaaqaaiqadofagaacaiabggMi6kqa dAgagaacaiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaey4kaSIaam yyamaaCaaaleqabaGaaGOmaaaakiaaiIcacaaIWaGaaGilaiaaicda caaIPaGafqOXdOMbauGbauaacaaIOaGaaGimaiaaiMcacqGHRaWkca WGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaaicdacaaI SaGaaGimaiaaiMcacaWGHbWaaSbaaSqaaiaadshaaeqaaOGaaGikai aaicdacaaISaGaaGimaiaaiMcacqaHipqEcaaIOaGaaGimaiaaiMca cqGHRaWkcaWGHbGaaGikaiaaicdacaaISaGaaGimaiaaiMcacaWGHb WaaSbaaSqaaiaadIhaaeqaaOGaaGikaiaaicdacaaISaGaaGimaiaa iMcacuaHgpGAgaqbaiaaiIcacaaIWaGaaGykaiaai2dacuaH8oqBga qbgaqbaiaaiIcacaaIWaGaaGykaiaai6caaaaaaa@7C60@  (4.2)

Найдём формулы классического решения и критерий корректности по Адамару первой смешанной задачи (4.1), (2.2), (2.3) из формул Римана (3.2), (3.3) и критерия корректности первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3), полученных нами выше в теореме 3.1.

Теорема 4.1 [5]. Пусть коэффициент a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ . Первая смешанная задача (4.1), (2.2), (2.3) в G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  имеет единственное и устойчивое по φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAaaa@337A@ , ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEaaa@338B@ , f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaaaaa@32B7@ , μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBaaa@3373@  классическое решение u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  тогда и только тогда, когда выполняются требования гладкости (2.4), (3.1) при f= f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiqadAgagaacaaaa@3469@  и условия согласования (4.2). Этим классическим решением задачи (4.1), (2.2), (2.3) в G ˙ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGhbGbaiaadaWgaaWcbaGaeyOhIu kabeaaaaa@342F@  является функция

u ^ (x,t)= φ( h 2 { g 2 (x,t),0})+φ( h 1 { g 1 (x,t),0}) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaeyOeI0 cabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaa baGaeqOXdOMaaGikaiaadIgadaWgaaWcbaGaaGOmaaqabaGccaaI7b Gaam4zamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGilaiaaicdacaaI9bGaaGykaiabgUcaRiabeA8aQj aaiIcacaWGObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykai aaiYcacaaIWaGaaGyFaiaaiMcaaeaacaaIYaaaaiabgUcaRaaa@5828@

+ 1 2 h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(ν) a(ν,0) dν+ 1 2 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ) a(s,τ) ds,(x,t) G , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaamaapehabeWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4E aiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGilaiaaicdacaaI9baabaGaamiAamaaBaaabaGaaGym aaqabaGaaG4EaiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaaGilaiaaicdacaaI9baaniabgUIiYdGc daWcaaqaaiabeI8a5jaaiIcacqaH9oGBcaaIPaaabaGaamyyaiaaiI cacqaH9oGBcaaISaGaaGimaiaaiMcaaaGaaGjcVlaadsgacqaH9oGB cqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeqiXdq3aa8qC aeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGaam4zamaaBa aabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI SaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiU hacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGcdaWcaaqaai qadAgagaacaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaaeaacaWG HbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaacaaMi8Uaamizai aadohacaaISaGaaGzbVlaaiIcacaWG4bGaaGilaiaadshacaaIPaGa eyicI4Saam4ramaaBaaaleaacqGHsislaeqaaOGaaGilaaaa@9A9F@  (4.3)

u ^ + (x,t)= φ( h 1 { g 1 (x,t),0})φ( h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0}) 2 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbaKaadaWgaaWcbaGaey4kaS cabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGypamaalaaa baGaeqOXdOMaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7b Gaam4zamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGilaiaaicdacaaI9bGaaGykaiabgkHiTiabeA8aQj aaiIcacaWGObWaaSbaaSqaaiaaigdaaeqaaOGaaG4EaiaadEgadaWg aaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaaiYcacaWGObWaaWbaaS qabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWG NbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaIDbGaaGykaiaaiYcacaaIWaGaaGyFaiaaiMcaaeaacaaI YaaaaiabgUcaRaaa@635A@

+ 1 2 h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),0} h 1 { g 1 (x,t),0} ψ(ν) a(ν,0) dν+ 1 2 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds+μ( h (2) [0, g 2 (x,t)])+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaamaapehabeWcbaGaamiAamaaBaaabaGaaGymaaqabaGaaG4E aiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaaIWaGaaGilaiaadI gadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaI SaGaam4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaIDbGaaGykaiaaiYcacaaIWaGaaGyFaaqaaiaadIga daWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabe aacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyF aaqdcqGHRiI8aOWaaSaaaeaacqaHipqEcaaIOaGaeqyVd4MaaGykaa qaaiaadggacaaIOaGaeqyVd4MaaGilaiaaicdacaaIPaaaaiaayIW7 caWGKbGaeqyVd4Maey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaada WdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaMi8Uaamiz aiabes8a0naapehabeWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG 4EaiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGilaiabes8a0jaai2haaeaacaWGObWaaSbaaeaaca aIXaaabeaacaaI7bGaam4zamaaBaaabaGaaGymaaqabaGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaaqdcqGHRi I8aOWaaSaaaeaaceWGMbGbaGaacaaIOaGaaGiFaiaadohacaaI8bGa aGilaiabes8a0jaaiMcaaeaacaWGHbGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaaaaiaayIW7caWGKbGaam4CaiabgUca RiabeY7aTjaaiIcacaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiM caaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiabgU caRaaa@B090@

+ 1 2 0 h (2) [0, g 2 (x,t)] dτ h 1 { g 1 (0, h (2) [0, g 2 (x,t)]),τ} h 2 { g 2 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds,(x,t) G + . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca aIYaaaamaapehabeWcbaGaaGimaaqaaiaadIgadaahaaqabeaacaaI OaGaaGOmaiaaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBaaaba GaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaa niabgUIiYdGccaaMi8Uaamizaiabes8a0naapehabeWcbaGaamiAam aaBaaabaGaaGymaaqabaGaaG4EaiaadEgadaWgaaqaaiaaigdaaeqa aiaaiIcacaaIWaGaaGilaiaadIgadaahaaqabeaacaaIOaGaaGOmai aaiMcaaaGaaG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqa baGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiaaiY cacqaHepaDcaaI9baabaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4E aiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGilaiabes8a0jaai2haa0Gaey4kIipakmaalaaabaGa bmOzayaaiaGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaDca aIPaaabaGaamyyaiaaiIcacaaI8bGaam4CaiaaiYhacaaISaGaeqiX dqNaaGykaaaacaaMi8UaamizaiaadohacaaISaGaaGzbVlaaiIcaca WG4bGaaGilaiaadshacaaIPaGaeyicI4Saam4ramaaBaaaleaacqGH RaWkaeqaaOGaaGOlaaaa@8B4A@  (4.4)

Доказательство. Сначала выведем формулы (4.3), (4.4) формального решения первой смешанной задачи (4.1), (2.2), (2.3) на множествах G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  из формул Римана (3.2), (3.3).

1 Множество G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ . В случае модельного телеграфного уравнения (4.1) решением v ^ C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacqGHiiIZcaWGdbWaaW baaSqabeaacaaIYaaaaOGaaGikaiaadEeadaWgaaWcbaGaeyOhIuka beaakiaaiMcaaaa@39DF@ , C( G ˜ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikamaaGaaabaGaam4raa Gaay5adaGaaGykaaaa@3578@ , C 2 ( G ˜ \ G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIYaaaaO GaaGikamaaGaaabaGaam4raaGaay5adaGaaiixaiaadEeadaWgaaWc baGaeyOhIukabeaakiaaiMcaaaa@39BE@  соответствующих задач Гурса (3.10), (3.13) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@  и (3.20), (3.21) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  из теоремы 3.1 служит функция Римана из [9]:

v ^ (s,τ)=v(|s|,τ)= v ^ (s,τ;x,t)= a(|x|,t) a(|s|,τ) ,(s,τ) G ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiaadAhacaaIOaGaaGiFaiaadohacaaI 8bGaaGilaiabes8a0jaaiMcacaaI9aGabmODayaajaGaaGikaiaado hacaaISaGaeqiXdqNaaG4oaiaayIW7caWG4bGaaGilaiaadshacaaI PaGaaGypamaalaaabaGaamyyaiaaiIcacaaI8bGaamiEaiaaiYhaca aISaGaamiDaiaaiMcaaeaacaWGHbGaaGikaiaaiYhacaWGZbGaaGiF aiaaiYcacqaHepaDcaaIPaaaaiaaiYcacaaMf8UaaGikaiaadohaca aISaGaeqiXdqNaaGykaiabgIGiopaaGaaabaGaam4raaGaay5adaGa aGOlaaaa@667C@

В этом также можно убедиться подстановкой этой функции Римана в телеграфные уравнения (3.10), (3.20)) и условия Гурса (3.13), (3.21) при коэффициентах b ^ (s,τ)= a ^ 1 (s,τ) a ^ τ (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGIbGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiabgkHiTiqadggagaqcamaaCaaaleqa baGaeyOeI0IaaGymaaaakiaaiIcacaWGZbGaaGilaiabes8a0jaaiM caceWGHbGbaKaadaWgaaWcbaGaeqiXdqhabeaakiaaiIcacaWGZbGa aGilaiabes8a0jaaiMcaaaa@48B6@ , c ˜ (s,τ)= a ^ (s,τ) a ^ s (s,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGJbGbaGaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiabgkHiTiqadggagaqcaiaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcaceWGHbGbaKaadaWgaaWcbaGaam4Caa qabaGccaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaaaaa@460A@  и q ^ (s,τ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaKaacaaIOaGaam4CaiaaiY cacqaHepaDcaaIPaGaaGypaiaaicdaaaa@391C@ . Других функций Римана этих задач Гурса не существует, так как решение каждой задачи Гурса единственно и задача Гурса (3.10), (3.13) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  частный случай задачи Гурса (3.20), (3.21) на верхней полуплоскости G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadEeaaiaawoWaaaaa@334B@ .

Подставляем функцию Римана v(s,τ)=a(|x|,t)/a(|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadohacaaISaGaeq iXdqNaaGykaiaai2dacaWGHbGaaGikaiaaiYhacaWG4bGaaGiFaiaa iYcacaWG0bGaaGykaiaai+cacaWGHbGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaaaaa@47DD@  в решение (3.2):

(auv)( h 2 { g 2 (x,t),0},0)+(auv)( h 1 { g 1 (x,t),0},0) 2a(x,t) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaiIcacaWGHbGaamyDai aadAhacaaIPaGaaGikaiaadIgadaWgaaWcbaGaaGOmaaqabaGccaaI 7bGaam4zamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilai aadshacaaIPaGaaGilaiaaicdacaaI9bGaaGilaiaaicdacaaIPaGa ey4kaSIaaGikaiaadggacaWG1bGaamODaiaaiMcacaaIOaGaamiAam aaBaaaleaacaaIXaaabeaakiaaiUhacaWGNbWaaSbaaSqaaiaaigda aeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaaGimai aai2hacaaISaGaaGimaiaaiMcaaeaacaaIYaGaamyyaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaaaiaai2daaaa@5DE5@

= 1 2a(x,t) a(x,t) a(s,τ) a(s,τ) u(s,τ )| τ=0 s= h 2 { g 2 (x,t),0} +a(x,t) a(s,τ) a(s,τ) u(s,τ )| τ=0 s= h 1 { g 1 (x,t),0} = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWadaqa aiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykamaalaaabaGaam yyaiaaiIcacaWGZbGaaGilaiabes8a0jaaiMcaaeaacaWGHbGaaGik aiaadohacaaISaGaeqiXdqNaaGykaaaacaWG1bGaaGikaiaadohaca aISaGaeqiXdqNaaGykaiaaiYhadaqhaaWcbaGaeqiXdqNaaGypaiaa icdaaeaacaWGZbGaaGypaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiU hacaWGNbWaaSbaaeaacaaIYaaabeaacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaaiYcacaaIWaGaaGyFaaaakiabgUcaRiaadggacaaIOa GaamiEaiaaiYcacaWG0bGaaGykamaalaaabaGaamyyaiaaiIcacaWG ZbGaaGilaiabes8a0jaaiMcaaeaacaWGHbGaaGikaiaadohacaaISa GaeqiXdqNaaGykaaaacaWG1bGaaGikaiaadohacaaISaGaeqiXdqNa aGykaiaaiYhadaqhaaWcbaGaeqiXdqNaaGypaiaaicdaaeaacaWGZb GaaGypaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSba aeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiY cacaaIWaGaaGyFaaaaaOGaay5waiaaw2faaiaai2daaaa@8C09@

= 1 2 u(s,τ )| τ=0 s= h 2 { g 2 (x,t),0} +u(s,τ )| τ=0 s= h 1 { g 1 (x,t),0} = φ( h 2 { g 2 (x,t),0})+φ( h 1 { g 1 (x,t),0}) 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaaaadaWadaqaaiaadwhacaaIOaGaam4CaiaaiYcacqaHepaDcaaI PaGaaGiFamaaDaaaleaacqaHepaDcaaI9aGaaGimaaqaaiaadohaca aI9aGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqa aiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilai aaicdacaaI9baaaOGaey4kaSIaamyDaiaaiIcacaWGZbGaaGilaiab es8a0jaaiMcacaaI8bWaa0baaSqaaiabes8a0jaai2dacaaIWaaaba Gaam4Caiaai2dacaWGObWaaSbaaeaacaaIXaaabeaacaaI7bGaam4z amaaBaaabaGaaGymaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiM cacaaISaGaaGimaiaai2haaaaakiaawUfacaGLDbaacaaI9aWaaSaa aeaacqaHgpGAcaaIOaGaamiAamaaBaaaleaacaaIYaaabeaakiaaiU hacaWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaaISaGaaGimaiaai2hacaaIPaGaey4kaSIaeqOXdO MaaGikaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI7bGaam4zamaa BaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGilaiaaicdacaaI9bGaaGykaaqaaiaaikdaaaGaaGilaaaa@8546@  (4.5)

1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(s)v(s,0)ds= 1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(s) a(x,t) a(s,0) ds= 1 2 h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} ψ(s) a(s,0) ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWcbaGa amiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqaaiaaik daaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaicda caaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4EaiaadEgada WgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGa aGilaiaaicdacaaI9baaniabgUIiYdGccqaHipqEcaaIOaGaam4Cai aaiMcacaWG2bGaaGikaiaadohacaaISaGaaGimaiaaiMcacaaMi8Ua amizaiaadohacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiaadggaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWdXbqabSqaaiaadIga daWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIYaaabe aacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGyF aaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaae aacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYca caaIWaGaaGyFaaqdcqGHRiI8aOGaeqiYdKNaaGikaiaadohacaaIPa WaaSaaaeaacaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaeaa caWGHbGaaGikaiaadohacaaISaGaaGimaiaaiMcaaaGaamizaiaado hacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaaiaa dIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIYa aabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGa aGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaS baaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa iYcacaaIWaGaaGyFaaqdcqGHRiI8aOWaaSaaaeaacqaHipqEcaaIOa Gaam4CaiaaiMcaaeaacaWGHbGaaGikaiaadohacaaISaGaaGimaiaa iMcaaaGaamizaiaadohacaaISaaaaa@B394@

1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} [φ(s) v τ (s,0)b(s,0)φ(s)v(s,0)]ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkHiTiaaigdaaeaaca aIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapeha beWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaa qaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGil aiaaicdacaaI9baabaGaamiAamaaBaaabaGaaGymaaqabaGaaG4Eai aadEgadaWgaaqaaiaaigdaaeqaaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGilaiaaicdacaaI9baaniabgUIiYdGccaaIBbGaeqOXdO MaaGikaiaadohacaaIPaGaamODamaaBaaaleaacqaHepaDaeqaaOGa aGikaiaadohacaaISaGaaGimaiaaiMcacqGHsislcaWGIbGaaGikai aadohacaaISaGaaGimaiaaiMcacqaHgpGAcaaIOaGaam4CaiaaiMca caWG2bGaaGikaiaadohacaaISaGaaGimaiaaiMcacaaIDbGaaGjcVl aadsgacaWGZbGaaGypaaaa@713F@

= 1 2a(x,t) h 2 { g 2 (x,t),0} h 1 { g 1 (x,t),0} φ(s)[ a(x,t) a τ (s,0) a 2 (s,0) a 1 (s,0) a τ (s,0)a(x,t) a(s,0) ]ds=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaiaadggacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaadaWdXbqa bSqaaiaadIgadaWgaaqaaiaaikdaaeqaaiaaiUhacaWGNbWaaSbaae aacaaIYaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYca caaIWaGaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUhaca WGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaaiYcacaaIWaGaaGyFaaqdcqGHRiI8aOGaeqOXdOMaaGikai aadohacaaIPaGaaG4wamaalaaabaGaamyyaiaaiIcacaWG4bGaaGil aiaadshacaaIPaGaamyyamaaBaaaleaacqaHepaDaeqaaOGaaGikai aadohacaaISaGaaGimaiaaiMcaaeaacaWGHbWaaWbaaSqabeaacaaI YaaaaOGaaGikaiaadohacaaISaGaaGimaiaaiMcaaaGaeyOeI0YaaS aaaeaacaWGHbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaa dohacaaISaGaaGimaiaaiMcacaWGHbWaaSbaaSqaaiabes8a0bqaba GccaaIOaGaam4CaiaaiYcacaaIWaGaaGykaiaadggacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaaqaaiaadggacaaIOaGaam4CaiaaiYcaca aIWaGaaGykaaaacaaIDbGaamizaiaadohacaaI9aGaaGimaiaaiYca aaa@84F4@

1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ)v(s,τ)ds= 1 2a(x,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ) a(x,t) a(s,τ) ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaGaam yyaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaamaapehabeWcbaGa aGimaaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeqiXdq3aa8 qCaeqaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGaam4zamaa BaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aISaGaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaa iUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGcceWGMbGb aGaacaaIOaGaam4CaiaaiYcacqaHepaDcaaIPaGaamODaiaaiIcaca WGZbGaaGilaiabes8a0jaaiMcacaWGKbGaam4Caiaai2dadaWcaaqa aiaaigdaaeaacaaIYaGaamyyaiaaiIcacaWG4bGaaGilaiaadshaca aIPaaaamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaa yIW7caWGKbGaeqiXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaIYa aabeaacaaI7bGaam4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIgada WgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaa caaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9b aaniabgUIiYdGcceWGMbGbaGaacaaIOaGaam4CaiaaiYcacqaHepaD caaIPaWaaSaaaeaacaWGHbGaaGikaiaadIhacaaISaGaamiDaiaaiM caaeaacaWGHbGaaGikaiaadohacaaISaGaeqiXdqNaaGykaaaacaWG KbGaam4Caiaai2daaaa@A6A1@

= 1 2 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (s,τ) a(s,τ) ds,(x,t) G . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaaG OmaaaadaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaM i8Uaamizaiabes8a0naapehabeWcbaGaamiAamaaBaaabaGaaGOmaa qabaGaaG4EaiaadEgadaWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGilaiabes8a0jaai2haaeaacaWGObWaaS baaeaacaaIXaaabeaacaaI7bGaam4zamaaBaaabaGaaGymaaqabaGa aGikaiaadIhacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaa qdcqGHRiI8aOWaaSaaaeaaceWGMbGbaGaacaaIOaGaam4CaiaaiYca cqaHepaDcaaIPaaabaGaamyyaiaaiIcacaWGZbGaaGilaiabes8a0j aaiMcaaaGaaGjcVlaadsgacaWGZbGaaGilaiaaywW7caaIOaGaamiE aiaaiYcacaWG0bGaaGykaiabgIGiolaadEeadaWgaaWcbaGaeyOeI0 cabeaakiaai6caaaa@70CB@

Эти равенства указывают на то, что решение (3.2) становится решением (4.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ .

2. Множество G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ . Вывод первых трёх слагаемых решения (4.4) из формулы Римана (3.3) аналогичен равенствам (4.5). Согласно нашему выводу формулы Римана (3.3) классического решения u + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiabgUcaRaqaba aaaa@33C5@  задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  его последний интеграл, равный значению предпоследнего двойного интеграла по ΔMPG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHuoarcaWGnbGaamiuaiaadEeaaa a@3597@  при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ , имеет величину

U(x,t) 1 2a(0,t) 0 t dτ h 2 { g 2 (0,t),τ} h 1 { g 1 (0,t),τ} f ˜ (|s|,τ)v(|s|,τ;0,t)ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHHjIUcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaamyyai aaiIcacaaIWaGaaGilaiaadshacaaIPaaaamaapehabeWcbaGaaGim aaqaaiaadshaa0Gaey4kIipakiaayIW7caWGKbGaeqiXdq3aa8qCae qaleaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGaam4zamaaBaaa baGaaGOmaaqabaGaaGikaiaaicdacaaISaGaamiDaiaaiMcacaaISa GaeqiXdqNaaGyFaaqaaiaadIgadaWgaaqaaiaaigdaaeqaaiaaiUha caWGNbWaaSbaaeaacaaIXaaabeaacaaIOaGaaGimaiaaiYcacaWG0b GaaGykaiaaiYcacqaHepaDcaaI9baaniabgUIiYdGcceWGMbGbaGaa caaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0jaaiMcacaWG2b GaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaDcaaI7aGaaGjc VlaaicdacaaISaGaamiDaiaaiMcacaaMi8UaamizaiaadohacaaI9a aaaa@86BA@

= 1 2a(0,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (|s|,τ)v(|s|,τ;x,t)ds | x=0 ,(x,t) G + , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaiaadggacaaIOaGaaGimaiaaiYcacaWG0bGaaGykaaaa daqadaqaamaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaki aayIW7caWGKbGaeqiXdq3aa8qCaeqaleaacaWGObWaaSbaaeaacaaI YaaabeaacaaI7bGaam4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaISaGaeqiXdqNaaGyFaaqaaiaadIga daWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabe aacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI 9baaniabgUIiYdGcceWGMbGbaGaacaaIOaGaaGiFaiaadohacaaI8b GaaGilaiabes8a0jaaiMcacaWG2bGaaGikaiaaiYhacaWGZbGaaGiF aiaaiYcacqaHepaDcaaI7aGaaGjcVlaadIhacaaISaGaamiDaiaaiM cacaaMi8UaamizaiaadohaaiaawIcacaGLPaaacaaI8bWaaSbaaSqa aiaadIhacaaI9aGaaGimaaqabaGccaaISaGaaGzbVlaaiIcacaWG4b GaaGilaiaadshacaaIPaGaeyicI4Saam4ramaaBaaaleaacqGHRaWk aeqaaOGaaGilaaaa@84C1@

так как в (3.3) функция f = f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaqbacaaI9aGabmOzayaaia aaaa@3484@ , поскольку в [5] решение задачи (4.1), (2.2), (2.3) получено методом характеристик, а не нашим методом компенсации правой частью уравнения. Подставляем функцию v(|s|,τ)=a(|x|,t)/a(|s|,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaaiYhacaWGZbGaaG iFaiaaiYcacqaHepaDcaaIPaGaaGypaiaadggacaaIOaGaaGiFaiaa dIhacaaI8bGaaGilaiaadshacaaIPaGaaG4laiaadggacaaIOaGaaG iFaiaadohacaaI8bGaaGilaiabes8a0jaaiMcaaaa@49E9@  и меняем порядок интегрирования:

a(0,t) 2a(0,t) 0 t dτ h 2 { g 2 (x,t),τ} h 1 { g 1 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds | x=0 = 1 2 0 t dτ h 1 { g 1 (x,t),τ} h 2 { g 2 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds | x=0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaWcaaqaaiaadggacaaIOa GaaGimaiaaiYcacaWG0bGaaGykaaqaaiaaikdacaWGHbGaaGikaiaa icdacaaISaGaamiDaiaaiMcaaaWaaeWaaeaadaWdXbqabSqaaiaaic daaeaacaWG0baaniabgUIiYdGccaaMi8Uaamizaiabes8a0naapeha beWcbaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaa qaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGil aiabes8a0jaai2haaeaacaWGObWaaSbaaeaacaaIXaaabeaacaaI7b Gaam4zamaaBaaabaGaaGymaaqabaGaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaISaGaeqiXdqNaaGyFaaqdcqGHRiI8aOWaaSaaaeaace WGMbGbaGaacaaIOaGaaGiFaiaadohacaaI8bGaaGilaiabes8a0jaa iMcaaeaacaWGHbGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHep aDcaaIPaaaaiaayIW7caWGKbGaam4CaaGaayjkaiaawMcaaiaaiYha daWgaaWcbaGaamiEaiaai2dacaaIWaaabeaakiaai2dadaWcaaqaai aaigdaaeaacaaIYaaaamaabmaabaWaa8qCaeqaleaacaaIWaaabaGa amiDaaqdcqGHRiI8aOGaaGjcVlaadsgacqaHepaDdaWdXbqabSqaai aadIgadaWgaaqaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaI XaaabeaacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHep aDcaaI9baabaGaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEga daWgaaqaaiaaikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaaGilaiabes8a0jaai2haa0Gaey4kIipakmaalaaabaGabmOzayaa iaGaaGikaiaaiYhacaWGZbGaaGiFaiaaiYcacqaHepaDcaaIPaaaba GaamyyaiaaiIcacaaI8bGaam4CaiaaiYhacaaISaGaeqiXdqNaaGyk aaaacaaMi8UaamizaiaadohaaiaawIcacaGLPaaacaaI8bWaaSbaaS qaaiaadIhacaaI9aGaaGimaaqabaGccaaIUaaaaa@B71A@

Сначала во внешнем повторном интеграле делаем замену переменной интегрирования

τ ˜ = h (2) [0, g 2 (x,τ)],τ0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaISaGaaGzbVlabes8a0jabgwMiZkaaicda caaISaaaaa@48D3@  (4.6)

и приходим к повторному двойному интегралу

U(x,t) 1 2 0 h (2) [0, g 2 (x,t)] d τ ˜ h 1 { g 1 (x,t),τ} h 2 { g 2 (x,t),τ} f ˜ (|s|,τ) a(|s|,τ) ds | x=0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHHjIUdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcba GaaGimaaqaaiaadIgadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaaGa aG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqabaGaaGikai aadIhacaaISaGaamiDaiaaiMcacaaIDbaaniabgUIiYdGccaaMi8Ua amizaiqbes8a0zaaiaWaaeWaaeaadaWdXbqabSqaaiaadIgadaWgaa qaaiaaigdaaeqaaiaaiUhacaWGNbWaaSbaaeaacaaIXaaabeaacaaI OaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9baaba GaamiAamaaBaaabaGaaGOmaaqabaGaaG4EaiaadEgadaWgaaqaaiaa ikdaaeqaaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiabes 8a0jaai2haa0Gaey4kIipakmaalaaabaGabmOzayaaiaGaaGikaiaa iYhacaWGZbGaaGiFaiaaiYcacqaHepaDcaaIPaaabaGaamyyaiaaiI cacaaI8bGaam4CaiaaiYhacaaISaGaeqiXdqNaaGykaaaacaaMi8Ua amizaiaadohaaiaawIcacaGLPaaacaaI8bWaaSbaaSqaaiaadIhaca aI9aGaaGimaaqabaGccaaISaaaaa@8D69@  (4.7)

так как внешний нижний предел интегрирования равен τ ˜ = h (2) [0, g 2 (x,τ )]| x=0,τ=0 =τ | τ=0 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaI8bWaaSbaaSqaaiaadIhacaaI9aGaaGim aiaaiYcacqaHepaDcaaI9aGaaGimaaqabaGccaaI9aGaeqiXdqNaaG iFamaaBaaaleaacqaHepaDcaaI9aGaaGimaaqabaGccaaI9aGaaGim aaaa@51D9@  по второму тождеству обращения из (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ , внешний верхний предел интегрирования равен τ ˜ = h (2) [0, g 2 (x,τ )]| τ=t = h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaI8bWaaSbaaSqaaiabes8a0jaai2dacaWG 0baabeaakiaai2dacaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiM caaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@538C@  и из тождества h (2) [0, g 2 (x,τ )]| x=0 =τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaeqiXdqNaaGykaiaai2faca aI8bWaaSbaaSqaaiaadIhacaaI9aGaaGimaaqabaGccaaI9aGaeqiX dqhaaa@453F@ , τ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3602@ , в (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  следует равенство

d τ ˜ = h (2) [0, g 2 (x,τ)] τ | x=0 dτ=dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGafqiXdqNbaGaacaaI9aWaaS aaaeaacqGHciITcaWGObWaaWbaaSqabeaacaaIOaGaaGOmaiaaiMca aaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaeqiXdqNaaGykaiaai2faaeaacqGHciIT cqaHepaDaaGaaGiFamaaBaaaleaacaWG4bGaaGypaiaaicdaaeqaaO Gaamizaiabes8a0jaai2dacaWGKbGaeqiXdqNaaGOlaaaa@51B3@

Здесь производная по τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3382@  и след при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  коммутируют. В функции h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@  уже x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@ , потому что к функции y 2 = g 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaaaa@3A63@  обратной функцией при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  является функция

t= h (2) [x, y 2 ]| x=0 = h (2) [0, y 2 ]= h (2) [0, g 2 (x,t)],t0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadIgadaahaaWcbe qaaiaaiIcacaaIYaGaaGykaaaakiaaiUfacaWG4bGaaGilaiaadMha daWgaaWcbaGaaGOmaaqabaGccaaIDbGaaGiFamaaBaaaleaacaWG4b GaaGypaiaaicdaaeqaaOGaaGypaiaadIgadaahaaWcbeqaaiaaiIca caaIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadMhadaWgaaWcba GaaGOmaaqabaGccaaIDbGaaGypaiaadIgadaahaaWcbeqaaiaaiIca caaIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcba GaaGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2fa caaISaGaaGzbVlaadshacqGHLjYScaaIWaGaaGOlaaaa@5CCF@

Итак, после замены (4.6) в интеграле U(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@426C@  верхний предел интегрирования t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  внешнего повторного интеграла при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  стал равным h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@  в (4.7). Поэтому во внутреннем повторном интеграле из U(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@426C@  замена (4.6) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  равносильна замене t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  на h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@ . Кроме того, во внутреннем повторном интеграле из (4.7) замена (4.6) при x=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGypaiaaicdaaaa@343B@  равносильна замене τ ˜ = h (2) [0, g 2 (x,τ )]| x=0 =τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHepaDgaacaiaai2dacaWGObWaaW baaSqabeaacaaIOaGaaGOmaiaaiMcaaaGccaaIBbGaaGimaiaaiYca caWGNbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaeq iXdqNaaGykaiaai2facaaI8bWaaSbaaSqaaiaadIhacaaI9aGaaGim aaqabaGccaaI9aGaeqiXdqhaaa@47DA@ , τ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHLjYScaaIWaaaaa@3602@ , по второй формуле обращения из (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@ . В результате этих замен находим

U(x,t) 1 2 0 h (2) [0, g 2 (x,t)] d τ ˜ h 1 { g 1 (0, h (2) [0, g 2 (x,t)]), τ ˜ } h 2 { g 2 (x,t), τ ˜ } f ˜ (|s|, τ ˜ ) a(|s|, τ ˜ ) ds,(x,t) G + , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hfWxLaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHHjIUdaWcaaqaaiaaigdaaeaacaaIYaaaamaapehabeWcba GaaGimaaqaaiaadIgadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaaGa aG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqabaGaaGikai aadIhacaaISaGaamiDaiaaiMcacaaIDbaaniabgUIiYdGccaaMi8Ua amizaiqbes8a0zaaiaGaaGjcVpaapehabeWcbaGaamiAamaaBaaaba GaaGymaaqabaGaaG4EaiaadEgadaWgaaqaaiaaigdaaeqaaiaaiIca caaIWaGaaGilaiaadIgadaahaaqabeaacaaIOaGaaGOmaiaaiMcaaa GaaG4waiaaicdacaaISaGaam4zamaaBaaabaGaaGOmaaqabaGaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaIDbGaaGykaiaaiYcacuaHep aDgaacaiaai2haaeaacaWGObWaaSbaaeaacaaIYaaabeaacaaI7bGa am4zamaaBaaabaGaaGOmaaqabaGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaISaGafqiXdqNbaGaacaaI9baaniabgUIiYdGcdaWcaaqa aiqadAgagaacaiaaiIcacaaI8bGaam4CaiaaiYhacaaISaGafqiXdq NbaGaacaaIPaaabaGaamyyaiaaiIcacaaI8bGaam4CaiaaiYhacaaI SaGafqiXdqNbaGaacaaIPaaaaiaayIW7caWGKbGaam4CaiaaiYcaca aMf8UaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGhbWa aSbaaSqaaiabgUcaRaqabaGccaaISaaaaa@9EBA@  (4.8)

так как по первой формуле обращения из (2.8) при i=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaikdaaaa@342E@  пределы интегрирования равны

h 2 { g 2 (0,t),τ}= h 2 { g 2 (0, h (2) [0, g 2 (x,t)]), τ ˜ }= h 2 { g 2 (x,t), τ ˜ }, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaikdaaeqaaO GaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9bGaaGypaiaadIgada WgaaWcbaGaaGOmaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIYaaa beaakiaaiIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcaca aIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2faca aIPaGaaGilaiqbes8a0zaaiaGaaGyFaiaai2dacaWGObWaaSbaaSqa aiaaikdaaeqaaOGaaG4EaiaadEgadaWgaaWcbaGaaGOmaaqabaGcca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacuaHepaDgaacaiaa i2hacaaISaaaaa@640F@

h 1 { g 1 (0,t),τ}= h 1 { g 1 (0, h (2) [0, g 2 (x,t)]), τ ˜ }. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaaigdaaeqaaO GaaG4EaiaadEgadaWgaaWcbaGaaGymaaqabaGccaaIOaGaaGimaiaa iYcacaWG0bGaaGykaiaaiYcacqaHepaDcaaI9bGaaGypaiaadIgada WgaaWcbaGaaGymaaqabaGccaaI7bGaam4zamaaBaaaleaacaaIXaaa beaakiaaiIcacaaIWaGaaGilaiaadIgadaahaaWcbeqaaiaaiIcaca aIYaGaaGykaaaakiaaiUfacaaIWaGaaGilaiaadEgadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai2faca aIPaGaaGilaiqbes8a0zaaiaGaaGyFaiaai6caaaa@56E2@

В граничном данном μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  формулы (3.3) можно тоже заменить t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  на h (2) [0, g 2 (x,t)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaWbaaSqabeaacaaIOaGaaG OmaiaaiMcaaaGccaaIBbGaaGimaiaaiYcacaWGNbWaaSbaaSqaaiaa ikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIDbaaaa@3E2D@ , т.е. μ(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcaaa a@35D1@  на μ( h (2) [0, g 2 (x,t)]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiAamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4z amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaiaaiMcaaaa@4148@ . Граничное данное μ( h (2) [0, g 2 (x,t)]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiAamaaCaaale qabaGaaGikaiaaikdacaaIPaaaaOGaaG4waiaaicdacaaISaGaam4z amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGyxaiaaiMcaaaa@4148@  для μ(t) C 2 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBcaaIOaGaamiDaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaaIYaaaaOWaaKGiaeaacaaIWaGa aGilaiabgUcaRiabg6HiLcGaay5waiaawUfaaaaa@3EE8@  и интеграл (4.8) служат классическими решениями однородного модельного телеграфного уравнения (4.1) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ , так как они имеют вид слагаемого F 2 ( g 2 (x,t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8xbWB0aaSbaaSqaaiaaikdaaeqaaOGaaGik aiaadEgadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaaiMcaaaa@4683@  для всех F 2 C 2 () MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8xbWB0aaSbaaSqaaiaaikdaaeqaaOGaeyic I4Saam4qamaaCaaaleqabaGaaGOmaaaakiaaiIcatuuDJXwAK1uy0H MmaeXbfv3ySLgzG0uy0HgiuD3BaGqbaiab+1risjaaiMcaaaa@4E8B@ , общего интеграла уравнения (4.1) при f ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacaaI9aGaaGimaaaa@3438@  на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  из [5, 15, 16].

Из теоремы 3.1 следует дважды непрерывная дифференцируемость найденных из общих формул Римана (3.2) и (3.3) решений (4.3) на G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgkHiTaqaba aaaa@33A2@ , (4.4) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@  и (4.3), (4.4) на критической характеристике g 2 (x,t)= g 2 (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaam4zamaaBaaa leaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaaaaa@3DE0@  для первой смешанной задачи (4.1), (2.2), (2.3), а также критерий её корректности. Эта гладкость решений (4.3), (4.4) и критерий корректности задачи (4.1), (2.2), (2.3) подробно и конструктивно исследованы в [5]. Теорема доказана.

Замечание 4.1. При доказательстве теорем 1 и 2 в [5] была показана только достаточность требований гладкости (3.1). Их необходимость также подтверждают работы автора [15, 16]. В [1] нет формулы (4.4) решения задачи (4.1), (2.2), (2.3) на G + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabgUcaRaqaba aaaa@3397@ .

Следствие 4.1. Если непрерывная правая часть f ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaaaaa@32B7@  зависит только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , то утверждение теоремы 4.1 справедливо без требований гладкости (3.1).

Для непрерывной правой части f ˜ C 0,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacqGHiiIZcaWGdbWaaK GiaeaacaaIWaGaaGilaiabgUcaRiabg6HiLcGaay5waiaawUfaaaaa @3ADB@ , зависящей только от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  или t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , интегральные требования гладкости (3.1) автоматически выполняются (см. [10, 15, 16]).

Замечание 4.2. В теореме 4.1, где a(x,t) a 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHLjYScaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGOp aiaaicdaaaa@3BD2@ , (x,t) G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadEeadaWgaaWcbaGaeyOhIukabeaaaaa@39BB@ , a C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39BA@ , для зависящей от x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  и непрерывной правой части f ˜ C( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGMbGbaGaacqGHiiIZcaWGdbGaaG ikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@38DB@  гладкость (3.1) равносильна гладкости (3.31) из замечания 3.1 (см. [5, 10, 15, 16]).

Следствие 4.2. В теореме 4.1 принадлежность интегралов (3.1) и равносильных интегралов (3.31)( множеству C 1 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIXaaaaO GaaGikaiaadEeadaWgaaWcbaGaeyOhIukabeaakiaaiMcaaaa@374F@  эквивалентна их принадлежности множеству C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  или множеству C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@ , где C (0,1) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG imaiaaiYcacaaIXaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ( C (1,0) ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaWbaaSqabeaacaaIOaGaaG ymaiaaiYcacaaIWaGaaGykaaaakiaaiIcacaWGhbWaaSbaaSqaaiab g6HiLcqabaGccaaIPaaaaa@3A24@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  множества непрерывных (непрерывно дифференцируемых) по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и непрерывно дифференцируемых (непрерывных) по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@  функций в первой четверти плоскости G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabg6HiLcqaba aaaa@3426@  ([10, 15, 16]).

5. Заключение. Получены формулы Римана (3.2), (3.3) единственного и устойчивого классического решения u C 2 ( G ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaeyicI4Saam4qamaaCaaale qabaGaaGOmaaaakiaaiIcacaWGhbWaaSbaaSqaaiabg6HiLcqabaGc caaIPaaaaa@39CE@  и критерий (2.4), (2.5), (3.31) корректности по Адамару первой смешанной задачи (2.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2.3) для общего линейного неоднородного телеграфного уравнения с переменными коэффициентами в первой четверти плоскости. Эти формулы Римана содержат неявные функции характеристик уравнения (2.1). Из формул Римана (3.2), (3.3) и критерия корректности (2.4), (2.5), (3.31) выведены уже известные формулы классического решения (4.3), (4.4) и критерий корректности (2.4), (3.31), (4.2) первой смешанной задачи (4.1), (2.2), (2.3) для неоднородного модельного телеграфного уравнения со специальными переменными коэффициентами в первой четверти плоскости, которые ранее были установлены автором в [5]. Последние результаты служат подтверждением справедливости полученных формул Римана (3.2), (3.3) и критерия корректности (2.4), (2.5), (3.31) настоящей работы.

×

Об авторах

Федор Егорович Ломовцев

Белорусский государственный университет

Автор, ответственный за переписку.
Email: lomovcev@bsu.by
Белоруссия, Минск

Список литературы

  1. Барановская С. Н. О классическом решении первой смешанной задачи для одномерного гиперболического уравнения/ Дисс. на соиск. уч. степ. канд. физ.-мат. наук. — Минск: БГУ, 1991.
  2. Владимиров В. С. Обобщенные функции в математической физике. — М.: Наука, 1976.
  3. Корнев В. В. Резольвентный подход к методу Фурье в смешанной задаче для неоднородного волнового уравнения// Изв. Саратов. ун-та. Нов. сер. Сер. Мат. Мех. Информ. — 2016. — 16, № 4. — С. 403–412.
  4. Ладыженская О. А. Краевые задачи математической физики. — М.: Наука, 1973.
  5. Ломовцев Ф. Е. Первая смешанная задача для общего телеграфного уравнения с переменными коэффициентами на полупрямой// Ж. Белорус. гос. ун-та. Мат. Информ. — 2021. — № 1. — С. 18–38.
  6. Ломовцев Ф. Е. Метод вспомогательных смешанных задач для полуограниченной струны// Тез. докл. Междунар. мат. конф. ≪VI Богдановские чтения по обыкновенным дифференциальным уравнениям≫ (Минск, 7–10 декабря 2015 г.). — Минск: Ин-т мат. НАН Беларуси, 2015. — 2. — С. 74–75.
  7. Ломовцев Ф. Е. Глобальная теорема корректности по Адамару первой смешанной задачи для волнового уравнения в полуполосе плоскости// Весн. Гродз. дзярж. ˘ун-та iм. Я. Купалы. Сер. 2. — 2021. —11, № 1. — С. 68–82.
  8. Ломовцев Ф. Е. О необходимых и достаточных условиях однозначной разрешимости задачи Коши для гиперболических дифференциальных уравнений второго порядка с переменной областью определения операторных коэффициентов// Диффер. уравн. — 1992. — 28, № 5. — С. 873–886.
  9. Ломовцев Ф. Е. Задача Гурса для сопряжённого модельного телеграфного уравнения со скоростью a(x, t) в верхней полуплоскости// Вестн. Полоцк. гос. ун-та. Сер. С. Фундам. науки. — 2022. — № 4. — С. 92–102.
  10. Новиков Е. Н. Смешанные задачи для уравнения вынужденных колебаний ограниченной струны при нестационарных граничных условиях с первой и второй косыми производными. — Минск: Ин-т мат. НАН Беларуси, 2017.
  11. Тихонов А. Н. Уравнения математической физики. — М.: Наука, 2004.
  12. Хромов А. П. Классическое и обобщенное решения смешанной задачи для неоднородного волнового уравнения// Докл. РАН. — 2019. — 484, № 1. — С. 18–20.
  13. Хромов А. П. Необходимые и достаточные условия существования классического решения смешанной задачи для однородного волнового уравнения в случае суммируемого потенциала// Диффер. уравн. — 2019. — 55, № 5. — С. 717–731.
  14. Чернятин В. А. Обоснование метода Фурье в смешанной задаче для уравнений в частных производных / Препринт. — Киев: Ин-т мат. АН УССР, 1990.
  15. Lomovtsev F. E. Conclusion of the smoothness criterion for the right-hand side of the model telegraph equation with the rate a(x, t) by the correction method// Мат. Междунар. конф. ≪XXXIV Воронежская весенняя математическая школа ≪Понтрягинские чтения-XXХII≫ (Воронеж, 3-9 мая 2021 г.). — Воронеж: Изд. дом ВГУ, 2021. — С. 284–287.
  16. Lomovtsev F. Е. The smoothness criterion for the classical solution to inhomogeneous model telegraph equation at the rate a(x, t) on the half-line// Тр. 10 Междунар. науч. семин. AMADE-2021 (Минск, 13–17 сентября 2021Ёг.). — Минск: БГУ, 2022. — С. 43–53.
  17. Lomovtsev F. E. Global correctness theorem of the first mixed problem for the model telegraph equation at the rate a(x, t) in the half-strip of the plane// Весн. Гродз. дзярж. ˘ун-та iм. Я. Купалы. Сер. 2. — 2021. — 11, № 3. — С. 13–26.
  18. Lomovtsev F. E. Global correctness theorem to the first mixed problem for the general telegraph equation with variable coefficients on the segment// Пробл. физ. мат. техн. — 2022. — № 1 (50). — С. 62–73.
  19. Lomovtsev F. E. Riemann formula of the classical solution to the first mixed problem for the general telegraph equation with variable coefficients on the half-line// Тез. докл. Междунар. мат. конф. ≪VII Богдановские чтения по обыкновенным дифференциальным уравнениям≫ (Минск, 1-4 июня 2021 г.). — Минск: Ин-т мат. НАН Беларуси, 2021. — С. 201–203.
  20. Lomovtsev F. E. Generalized Riemann formula of the classical solution to the Cauchy problem for the general telegraph equation with variable coefficients// Мат. Междунар. конф. ≪XXXIV Воронежская весенняя математическая школа ≪Понтрягинские чтения-XXХII≫ (Воронеж, 3-9 мая 2021 г.). — Воронеж: Изд. дом ВГУ, 2021. — С. 288–289.
  21. Schauder J. Über lineare elliptiche Differentialgleichungen zweiter Ordnung// Math. Z. — 1934. — 38. — P. 257–282.
  22. Schwartz L. Theorie des distributions. — Paris: Hermann, 1950–1951.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Криволинейный характеристический треугольник  в .

Скачать (583KB)
3. Рис. 2. Криволинейные характеристический и критический треугольники  и  в .

Скачать (733KB)

© Ломовцев Ф.Е., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).