О преобразовании, двойственном к преобразованию Радона—Киприянова

Обложка

Цитировать

Полный текст

Аннотация

Преобразование Радона– Киприянова Kγ введено в 1998 г. В теоретических и прикладных исследованиях требуется ввести двойственное (сопряженное) к нему преобразование Kγ#. Доказаны теоремы об ограниченности двойственного преобразования в соответствующем подпространстве Л. Шварца основных функций и Kγ#-преобразовании свертки функции g с Kγ[f]-преобразованием при условии, что обе функции g и f принадлежат соответствующим пространствам основных функций.

Полный текст

1. Некоторые представления преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD1@ Киприянова. В работе И. А. Киприянова и Л. Н. Ляхова [5] было введено <<специальное>> преобразование Радона, которое в дальнейшем получило название преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Киприянова (обозначение K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@  ). Данная работа посвящена нахождению преобразования, двойственного (сопряженного) к K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  преобразованию в одномерном и многомерном случаях.

1.1. Определение преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugGbabaaaaaaaaapeGaa83eGaaa@3A91@ Киприянова K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@ В евклидовом пространстве точек n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@  рассмотрим полупространство

n + ={x=( x 1 , x ): x =( x 2 ,, x n ), x 1 >0}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aOGaaGypaiaaiUhacaWG4bGaaGypaiaaiIcacaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaGilaiqadIhagaqbaiaaiMcacaaI6aGabmiEayaa faGaaGypaiaaiIcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilai ablAciljaaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaa iYcacaaMe8UaamiEamaaBaaaleaacaaIXaaabeaakiaai6dacaaIWa GaaGyFaiaai6caaaa@5930@

Функции f=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGypaiaadAgacaaIOaGaam iEaiaaiMcaaaa@36BC@ , определенные на множестве n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@ , для которых возможно четное продолжение по переменной x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@ , сохраняющее класс своей принадлежности, назовем x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  -четными по Киприянову. В случае непрерывно дифференцируемых функций x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  -четность по Киприянову означает, что

2m1 f(x) x 1 2m1 | x 1 =0 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaiaad2gacqGHsislcaaIXaaaaOGaamOzaiaaiIcacaWG4bGa aGykaaqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaiaaikdaca WGTbGaeyOeI0IaaGymaaaaaaGccaaI8bWaaSbaaSqaaiaadIhadaWg aaqaaiaaigdaaeqaaiaai2dacaaIWaaabeaakiaai2dacaaIWaaaaa@46CF@

для любого натурального числа m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGTbaaaa@32AF@  (см. [4, с.~21]).

Через S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaScaaOGaaGykaa aa@42D8@  обозначим подпространство пространства Л. Шварца основных функций, состоящее из x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  -четных по Киприянову функций.

Следуя [3], будем использовать следующее определение дельта-функции, сосредоточенной на (n1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgkHiTiaaigdaca aIPaaaaa@35BD@  -мерной поверхности P(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadIhacaaIPaGaaG ypaiaaicdaaaa@3675@  в n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@ :

n + f(x)δ(P(x))dx= P(x) f(x)dΓ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaWGUbaa baGaey4kaScaaaqab0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiM cacqaH0oazcaaIOaGaamiuaiaaiIcacaWG4bGaaGykaiaaiMcacaaM i8UaamizaiaadIhacaaI9aWaa8quaeqaleaacaWGqbGaaGikaiaadI hacaaIPaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaa yIW7caWGKbGaeu4KdCKaaGilaaaa@5BFD@

где dΓ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeu4KdCeaaa@340E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  элемент поверхности P(x)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadIhacaaIPaGaaG ypaiaaicdaaaa@3675@ .

Определение 1. Преобразованием Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@ , следуя [5], будем называть следующую конструкцию:

K γ [f](ξ;p)= n + f(x) Π x 1 γ δ(px,ξ) x 1 γ dx,γ>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypamaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWkaaaa beqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaayIW7cqqHGo audaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaabaGaeq4SdCga aOGaaGjcVlabes7aKjaaiIcacaWGWbGaeyOeI0IaeyykJeUaamiEai aaiYcacqaH+oaEcqGHQms8caaIPaGaaGjcVlaadIhadaqhaaWcbaGa aGymaaqaaiabeo7aNbaakiaayIW7caWGKbGaamiEaiaaiYcacaaMf8 Uaeq4SdCMaaGOpaiaaicdacaaISaaaaa@7217@  (1)

где x,ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG4bGaaGilaiabe67a4j abgQYiXdaa@38B6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скалярное произведение n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерных векторов, и мы полагаем, что ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3380@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  единичный вектор нормали к плоскости (при этом |p| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiCaiaaiYhaaaa@34BE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  расстояние от начала координат до плоскости x,ξ=p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG4bGaaGilaiabe67a4j abgQYiXlaai2dacaWGWbaaaa@3A72@  ), а символ Π x 1 γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHGoaudaqhaaWcbaGaamiEamaaBa aabaGaaGymaaqabaaabaGaeq4SdCgaaaaa@36E8@  обозначает действие оператора Пуассона (см. [6]) по переменной x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@ :

Π x 1 γ g(x)= Γ γ+1 2 Γ γ 2 Γ 1 2 0 π g( x 1 cos α 1 , x 2 ,, x n ) sin γ1 αdα. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHGoaudaqhaaWcbaGaamiEamaaBa aabaGaaGymaaqabaaabaGaeq4SdCgaaOGaam4zaiaaiIcacaWG4bGa aGykaiaai2dadaWcaaqaaiabfo5ahnaabmaabaWaaSaaaeaacqaHZo WzcqGHRaWkcaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaacqqH toWrdaqadaqaamaalaaabaGaeq4SdCgabaGaaGOmaaaaaiaawIcaca GLPaaacqqHtoWrdaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaa caGLOaGaayzkaaaaamaapehabeWcbaGaaGimaaqaaiabec8aWbqdcq GHRiI8aOGaam4zaiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGa ci4yaiaac+gacaGGZbGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGil aiaadIhadaWgaaWcbaGaamOBaaqabaGccaaIPaWaaubiaeqaleqaba Gaeq4SdCMaeyOeI0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiab eg7aHjaayIW7caWGKbGaeqySdeMaaGOlaaaa@6EC4@  (2)

1.2. Представление K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@ -преобразования в евклидовом пространстве вращения вокруг весовой оси координат. Раскрывая действие оператора Пуассона, получим

K γ [f](ξ;p)= n + f(x)C(γ) 0 π δ(p( x 1 cosα, x 2 ,, x n ),( ξ 1 , ξ 2 ,, ξ n )) sin γ1 αdα x 1 γ dx, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypamaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWkaaaa beqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaadoeacaaIOa Gaeq4SdCMaaGykamaapehabeWcbaGaaGimaaqaaiabec8aWbqdcqGH RiI8aOGaeqiTdqMaaGikaiaadchacqGHsislcqGHPms4caaIOaGaam iEamaaBaaaleaacaaIXaaabeaakiGacogacaGGVbGaai4Caiabeg7a HjaaiYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAcilj aaiYcacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcacaaI OaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabe67a4naaBa aaleaacaaIYaaabeaakiaaiYcacqWIMaYscaaISaGaeqOVdG3aaSba aSqaaiaad6gaaeqaaOGaaGykaiabgQYiXlaaiMcadaqfGaqabSqabe aacqaHZoWzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGa eqySdeMaaGjcVlaadsgacqaHXoqycaaMi8UaamiEamaaDaaaleaaca aIXaaabaGaeq4SdCgaaOGaamizaiaadIhacaaISaaaaa@910F@

где

C(γ)= Γ γ+1 2 Γ γ 2 Γ 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabeo7aNjaaiMcaca aI9aWaaSaaaeaacqqHtoWrdaqadaqaamaalaaabaGaeq4SdCMaey4k aSIaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaabaGaeu4KdC0aae WaaeaadaWcaaqaaiabeo7aNbqaaiaaikdaaaaacaGLOaGaayzkaaGa eu4KdC0aaeWaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaGaayjkai aawMcaaaaacaaIUaaaaa@47FD@

Рассмотрим евклидово полупространство n+1 + ={( z 1 , z 2 , x 2 ,, x n ), z 2 >0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaakiaai2dacaaI7bGaaGikaiaadQhadaWgaaWcba GaaGymaaqabaGccaaISaGaamOEamaaBaaaleaacaaIYaaabeaakiaa iYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiY cacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcacaaMe8Ua amOEamaaBaaaleaacaaIYaaabeaakiaai6dacaaIWaGaaGyFaaaa@55FB@ , которое получается из исходного полупространства n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  вращением x 1 z 1 2 + z 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaeyOKH46aaOaaaeaacaWG6bWaa0baaSqaaiaaigdaaeaacaaIYaaa aOGaey4kaSIaamOEamaaDaaaleaacaaIYaaabaGaaGOmaaaaaeqaaa aa@3BDB@  на угол π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHapaCaaa@337A@ . Следуя [8], функции f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaaaaa@350A@ , определенной на множестве n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@ , поставим в соответствие функцию от вращения

f ˜ (z)= f ˜ ( z 1 , z 2 , x )=f( z 1 2 + z 2 2 , x 2 ,, x n ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAgaaiaawoWaaiaaiI cacaWG6bGaaGykaiaai2dadaaiaaqaaiaadAgaaiaawoWaaiaaiIca caWG6bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcba GaaGOmaaqabaGccaaISaGabmiEayaafaGaaGykaiaai2dacaWGMbGa aGikamaakaaabaGaamOEamaaDaaaleaacaaIXaaabaGaaGOmaaaaki abgUcaRiaadQhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaabeaakiaa iYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiY cacaWG4bWaaSbaaSqaaiaad6gaaeqaaOGaaGykaiaaiYcaaaa@5170@

где z=( z 1 , z 2 , x ) n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmiEayaafaGaaGykaiabgIGioprr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaSqaaiaad6ga cqGHRaWkcaaIXaaabaGaey4kaScaaaaa@4B18@ , x =( x 2 ,, x n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbauaacaaI9aGaaGikaiaadI hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadIha daWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@3B95@ . Функция f ˜ (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiaadAgaaiaawoWaaiaaiI cacaWG6bGaaGykaaaa@35CE@  определена в области n+1 + ={z: z 2 >0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaakiaai2dacaaI7bGaamOEaiaaiQdacaWG6bWaaS baaSqaaiaaikdaaeqaaOGaaGOpaiaaicdacaaI9baaaa@4826@ . Введем антиполярные координаты

z 1 = x 1 cosα, z 2 = x 1 sinα; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4Baiaa cohacqaHXoqycaaISaGaaGzbVlaadQhadaWgaaWcbaGaaGOmaaqaba GccaaI9aGaamiEamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGa aiOBaiabeg7aHjaaiUdaaaa@46FA@

так как 0<α<π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdacq aHapaCaaa@375F@  и x 1 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaaicdaaaa@352D@ , то < z 1 <+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqGHEisPcaaI8aGaamOEam aaBaaaleaacaaIXaaabeaakiaaiYdacqGHRaWkcqGHEisPaaa@39EA@ , 0< z 2 <+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadQhadaWgaaWcba GaaGOmaaqabaGccaaI8aGaey4kaSIaeyOhIukaaa@3847@ . При этом

x 1 γ1 sin γ1 α= z 2 γ1 , x 1 d x 1 dαd x =dz. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaa0baaSqaaiaaigdaaeaacq aHZoWzcqGHsislcaaIXaaaaOWaaubiaeqaleqabaGaeq4SdCMaeyOe I0IaaGymaaGcbaGaci4CaiaacMgacaGGUbaaaiabeg7aHjaai2daca WG6bWaa0baaSqaaiaaikdaaeaacqaHZoWzcqGHsislcaaIXaaaaOGa aGilaiaaywW7caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGjcVlaads gacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGjcVlaadsgacqaHXoqy caaMi8UaamizaiqadIhagaqbaiaai2dacaWGKbGaamOEaiaai6caaa a@58B9@

Следовательно,

K γ [f](ξ;p)=C(γ) n+1 + f ˜ (z)δ(pz, ξ ˜ ) z 2 γ1 dz. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypaiaadoeacaaIOaGaeq4SdCMaaGykamaapefabeWcbaWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqh aaqaaiaad6gacqGHRaWkcaaIXaaabaGaey4kaScaaaqab0Gaey4kIi pakmaaGaaabaGaamOzaaGaay5adaGaaGikaiaadQhacaaIPaGaeqiT dqMaaGikaiaadchacqGHsislcqGHPms4caWG6bGaaGilaiqbe67a4z aaiaGaeyOkJeVaaGykaiaadQhadaqhaaWcbaGaaGOmaaqaaiabeo7a NjabgkHiTiaaigdaaaGccaaMi8UaamizaiaadQhacaaIUaaaaa@6AB7@  (3)

Здесь z, ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG6bGaaGilaiqbe67a4z aaiaGaeyOkJepaaa@38C7@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  скалярное произведение (n+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaaaaa@35B2@  -мерных векторов z=( z 1 , z 2 , x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmiEayaafaGaaGykaaaa@3B3E@  и ξ ˜ =( ξ 1 ,0, ξ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaacaiaai2dacaaIOaGaeq OVdG3aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaicdacaaISaGafqOV dGNbauaacaaIPaaaaa@3C64@ , где ξ = ξ 2 ,, ξ n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH+oaEgaqbaiaai2dacqaH+oaEda WgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiabe67a4naa BaaaleaacaWGUbaabeaaaaa@3C78@ , а p=z, ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiabgMYiHlaadQhaca aISaGafqOVdGNbaGaacqGHQms8aaa@3A83@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  уравнение гиперплоскости, параллельной координатной оси O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@ .

Представление (3) есть представление преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова в виде специального весового преобразования Радона.

Воспользовавшись определением δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3362@  -функции, сосредоточенной на гиперплоскости p=z, ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGypaiabgMYiHlaadQhaca aISaGafqOVdGNbaGaacqGHQms8aaa@3A83@ , получим

K γ [f](ξ;p)=C(γ) {p=z, ξ ˜ } + f ˜ (z) z 2 γ1 dΓ(z), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaG4oaiaadchacaaI PaGaaGypaiaadoeacaaIOaGaeq4SdCMaaGykamaapefabeWcbaGaaG 4EaiaadchacaaI9aGaeyykJeUaamOEaiaaiYcacuaH+oaEgaacaiab gQYiXlaai2hadaahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaaa caaeaacaWGMbaacaGLdmaacaaIOaGaamOEaiaaiMcacaWG6bWaa0ba aSqaaiaaikdaaeaacqaHZoWzcqGHsislcaaIXaaaaOGaaGjcVlaads gacqqHtoWrcaaIOaGaamOEaiaaiMcacaaISaaaaa@5F17@  (4)

где {z, ξ ˜ =p} + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeyykJeUaamOEaiaaiYcada aiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGypaiaadchacaaI9bWa aWbaaSqabeaacqGHRaWkaaaaaa@3E51@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  часть гиперплоскости в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ , определяемая неравенством z 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaaicdaaaa@3530@ , dΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaeu4KdCKaaGikaiaadQhaca aIPaaaaa@3672@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  элемент этой гиперплоскости. Как обычно (см. [1,2,11]), ориентация гиперплоскости {z, ξ ˜ =p} + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeyykJeUaamOEaiaaiYcaca aMi8+aaacaaeaacqaH+oaEaiaawoWaaiabgQYiXlaai2dacaWGWbGa aGyFamaaCaaaleqabaGaey4kaScaaaaa@3FE2@  выбрана так, чтобы она являлась границей полупространства {z, ξ ˜ <p} + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeyykJeUaamOEaiaaiYcada aiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGipaiaadchacaaI9bWa aWbaaSqabeaacqGHRaWkaaaaaa@3E50@ .

1.3. Представление K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@  -преобразования в локальных координатах касательной плоскости. Важно отметить, что указанное выше вращение евклидова пространства вокруг оси O x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiEamaaBaaaleaacaaIXa aabeaaaaa@3475@  сводит преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова (1) к весовому преобразованию Радона (3) в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ , представляющему собой интеграл по гиперплоскости параллельной координатной оси O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@ .

Принадлежность оси координат O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@  гиперплоскости z, ξ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG6bGaaGilamaaGaaaba GaeqOVdGhacaGLdmaacqGHQms8caaI9aGaaGimaaaa@3AFB@  порождает локальную систему координат, в которой одной из координатных осей является ось O z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOEamaaBaaaleaacaaIYa aabeaaaaa@3478@ . Другие оси декартовой системы координат на этой плоскости выберем лежащими в линии пересечения гиперплоскости z 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@  с гиперплоскостью z, ξ ˜ =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG6bGaaGilamaaGaaaba GaeqOVdGhacaGLdmaacqGHQms8caaI9aGaaGimaaaa@3AFB@ . Этот набор координатных осей обозначим y =( y 2 ,, y n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aGaaGikaiaadM hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadMha daWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@3B98@ . Ясно, что гиперплоскость интегрирования является линейным многообразием размерности n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  в евклидовом пространстве n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ . Точки гиперплоскости интегрирования в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  имеют следующие локальные координаты: ( z 2 , y ,p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEamaaBaaaleaacaaIYa aabeaakiaaiYcaceWG5bGbauaacaaISaGaamiCaiaaiMcaaaa@387E@ , y =( y 2 ,, y n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aGaaGikaiaadM hadaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGSKaaGilaiaadMha daWgaaWcbaGaamOBaaqabaGccaaIPaaaaa@3B98@ , а |p| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiCaiaaiYhaaaa@34BE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  расстояние от гиперплоскости до начала координат.

Множество касательных плоскостей к сфере, проходящих через ее центр, называется касательным расслоением сферы. Каждая плоскость касательного расслоения перпендикулярна соответствующему вектору нормали ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaaaaa@3442@ , лежащему в координатной гиперплоскости z 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaaicdaaaa@352F@ . Мы фиксируем нормаль ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3380@  исходной гиперплоскости интегрирования в определении преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова (1) и (4) и обозначаем исходную гиперплоскость интегрирования символом ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@ . В евклидовом полупространстве <<вращения>> n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  вектором нормали к плоскости интегрирования является вектор ξ ˜ =( ξ 1 ,0, ξ 2 ,, ξ n )=( ξ 1 ,0, ξ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaGaaG ypaiaaiIcacqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaaGim aiaaiYcacqaH+oaEdaWgaaWcbaGaaGOmaaqabaGccaaISaGaeSOjGS KaaGilaiabe67a4naaBaaaleaacaWGUbaabeaakiaaiMcacaaI9aGa aGikaiabe67a4naaBaaaleaacaaIXaaabeaakiaaiYcacaaIWaGaaG ilaiqbe67a4zaafaGaaGykaaaa@4C4C@ . В конструкции (4) эту гиперплоскость в n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  обозначим тем же символом ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@ .

Итак, имеем следующую систему локальных координат в евклидовом полупространстве n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@ :

y=( z 2 , y ,p), y =( z 2 , y ,0), ξ ˜ =(0,0,,0,1), ξ ˜ p=(0,0,,p). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaikdaaeqaaOGaaGilaiqadMhagaqbaiaaiYcacaWGWbGa aGykaiaaiYcacaaMf8UaamyEamaaBaaaleaacqGHLkIxaeqaaOGaaG ypaiaaiIcacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiqadMha gaqbaiaaiYcacaaIWaGaaGykaiaaiYcacaaMf8+aaacaaeaacqaH+o aEaiaawoWaaiaai2dacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiab lAciljaaiYcacaaIWaGaaGilaiaaigdacaaIPaGaaGilaiaaywW7da aiaaqaaiabe67a4bGaay5adaGaeyyXICTaamiCaiaai2dacaaIOaGa aGimaiaaiYcacaaIWaGaaGilaiablAciljaaiYcacaWGWbGaaGykai aai6caaaa@652A@  (5)

Используя эти обозначения переменных, формулы (3) и (4) можем записать в виде интеграла по плоскости ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@ , проходящей через начало координат перпендикулярно вектору ξ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaaaaa@3442@ , в виде

K γ [f](ξ,p)=C(γ) ξ f ˜ ξ ˜ p+ y z 2 γ1 dΓ( y ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaI PaGaaGypaiaadoeacaaIOaGaeq4SdCMaaGykamaapefabeWcbaGaeq OVdG3aaWbaaeqabaGaeyyPI4faaaqab0Gaey4kIipakmaaGaaabaGa amOzaaGaay5adaWaaeWaaeaadaaiaaqaaiabe67a4bGaay5adaGaam iCaiabgUcaRiaadMhadaWgaaWcbaGaeyyPI4fabeaaaOGaayjkaiaa wMcaaiaayIW7caWG6bWaa0baaSqaaiaaikdaaeaacqaHZoWzcqGHsi slcaaIXaaaaOGaaGjcVlaadsgacqqHtoWrcaaIOaGaamyEamaaBaaa leaacqGHLkIxaeqaaOGaaGykaiaai6caaaa@60A7@  (6)

2. Основные результаты. Оператор, двойственный K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@ , получен интегрированием по 1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaaIXaaabaGaey4kaSca aaaa@3E3E@  по переменной p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  (теорема 1) и интегрированием по евклидову полупространству n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  (теорема 2). Последнее получено дополнительным интегрированием по поверхности сферы в n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  при условии, что p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  радиальная переменная. Двойственное преобразование K γ,ξ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaaaa@3787@  определено в следующем утверждении.

Теорема 1. Для функций f S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaamOBaaqaaiabgU caRaaakiaaiMcaaaa@4547@  и g S ev ( 1 + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaaGymaaqaaiabgU caRaaakiaaiMcaaaa@4510@  справедливо равенство

1 K γ [f](ξ,p)g(p)dp= n + f(x) K ξ,γ # g(x) x 1 γ d x 1 d x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacaaIXaaa beaaaeqaniabgUIiYdGccaWGlbWaaSbaaSqaaiabeo7aNbqabaGcca aIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPaGa aGjcVlaadEgacaaIOaGaamiCaiaaiMcacaaMi8Uaamizaiaadchaca aI9aWaa8quaeqaleaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWk aaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaayIW7ca WGlbWaa0baaSqaaiabe67a4jaaiYcacqaHZoWzaeaacaaIJaaaaOGa am4zaiaaiIcacaWG4bGaaGykaiaayIW7caWG4bWaa0baaSqaaiaaig daaeaacqaHZoWzaaGccaWGKbGaamiEamaaBaaaleaacaaIXaaabeaa kiaayIW7caWGKbGabmiEayaafaGaaGilaaaa@7281@

где

K γ,ξ # g(x)= Π x 1 γ (g(ξ,x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaOGaam4zaiaaiIcacaWG4bGaaGykaiaa i2dacqqHGoaudaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaaba Gaeq4SdCgaaOGaaGikaiaadEgacaaIOaGaeyykJeUaeqOVdGNaaGil aiaadIhacqGHQms8caaIPaGaaGykaiaai6caaaa@4C42@  (7)

Равенство (7) равносильно равенству

K γ,ξ # g(x)= Π ξ 1 γ (g(ξ,x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaOGaam4zaiaaiIcacaWG4bGaaGykaiaa i2dacqqHGoaudaqhaaWcbaGaeqOVdG3aaSbaaeaacaaIXaaabeaaae aacqaHZoWzaaGccaaIOaGaam4zaiaaiIcacqGHPms4cqaH+oaEcaaI SaGaamiEaiabgQYiXlaaiMcacaaIPaGaaGOlaaaa@4D08@

Следствие 1. Пусть f S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaamOBaaqaaiabgU caRaaakiaaiMcaaaa@4547@  и g S ev ( 1 + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaeyicI4Saam4uamaaBaaale aacaWGLbGaamODaaqabaGccaaIOaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaaGymaaqaaiabgU caRaaakiaaiMcaaaa@4510@ . Тогда

S 1 (n) 1 K γ [f](ξ,p)g(p)dpdS(ξ)= n + f(x) K γ # g(x) x 1 γ d x 1 dd x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiaadofadaWgaaqaai aaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4kIipakmaapefa beWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacq WFDeIudaWgaaqaaiaaigdaaeqaaaqab0Gaey4kIipakiaadUeadaWg aaWcbaGaeq4SdCgabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+o aEcaaISaGaamiCaiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGyk aiaayIW7caWGKbGaamiCaiaayIW7caWGKbGaam4uaiaaiIcacqaH+o aEcaaIPaGaaGypamaapefabeWcbaGae8xhHi1aa0baaeaacaWGUbaa baGaey4kaScaaaqab0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiM cacaaMi8Uaam4samaaDaaaleaacqaHZoWzaeaacaaIJaaaaOGaam4z aiaaiIcacaWG4bGaaGykaiaayIW7caWG4bWaa0baaSqaaiaaigdaae aacqaHZoWzaaGccaaMi8UaamizaiaadIhadaWgaaWcbaGaaGymaaqa baGccaaMi8UaamizaiaayIW7caWGKbGabmiEayaafaGaaGilaaaa@80EE@

где

K γ # g(x)= S 1 (n) Π x 1 (g(ξ,ξ,x))dS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaGccaWGNbGaaGikaiaadIhacaaIPaGaaGypamaapefabeWc baGaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaaabe qdcqGHRiI8aOGaeuiOda1aaSbaaSqaaiaadIhadaWgaaqaaiaaigda aeqaaaqabaGccaaIOaGaam4zaiaaiIcacqaH+oaEcaaISaGaeyykJe UaeqOVdGNaaGilaiaadIhacqGHQms8caaIPaGaaGykaiaayIW7caWG KbGaam4uaiaaiIcacqaH+oaEcaaIPaGaaGOlaaaa@5775@  (8)

Равенство (8) эквивалентно равенству

K γ # g(x)=C(γ) S 1 (n) Π ξ 1 (g(ξ,ξ,x))dS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaGccaWGNbGaaGikaiaadIhacaaIPaGaaGypaiaadoeacaaI OaGaeq4SdCMaaGykamaapefabeWcbaGaam4uamaaBaaabaGaaGymaa qabaGaaGikaiaad6gacaaIPaaabeqdcqGHRiI8aOGaeuiOda1aaSba aSqaaiabe67a4naaBaaabaGaaGymaaqabaaabeaakiaaiIcacaWGNb GaaGikaiabe67a4jaaiYcacqGHPms4cqaH+oaEcaaISaGaamiEaiab gQYiXlaaiMcacaaIPaGaaGjcVlaadsgacaWGtbGaaGikaiabe67a4j aaiMcacaaIUaaaaa@5C0F@  (9)

Теорема 2. Для функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@ , принадлежащих пространству основных функций S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaScaaOGaaGykaa aa@42D8@ , справедлива следующая формула:

K γ # (g* K γ [f])=( K γ # g*f ) γ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaGccaaIOaGaam4zaiaaiQcacaWGlbWaaSbaaSqaaiabeo7a NbqabaGccaaIBbGaamOzaiaai2facaaIPaGaaGypaiaaiIcacaWGlb Waa0baaSqaaiabeo7aNbqaaiaaiocaaaGccaWGNbGaaGOkaiaadAga caaIPaWaaSbaaSqaaiabeo7aNbqabaGccaaIUaaaaa@4828@  (10)

3. Оператор, двойственный к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugWbabaaaaaaaaapeGaa83eGaaa@3AD1@ Киприянова.

3.1. Доказательство теоремы 1. Пусть g=g(p) S ev ( 1 + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGypaiaadEgacaaIOaGaam iCaiaaiMcacqGHiiIZcaWGtbWaaSbaaSqaaiaadwgacaWG2baabeaa kiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabai ab=1risnaaDaaaleaacaaIXaaabaGaey4kaScaaOGaaGykaaaa@491D@ . Рассмотрим следующую линейную форму от произведения преобразования Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова на функцию g(p) S ev MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadchacaaIPaGaey icI4Saam4uamaaBaaaleaacaWGLbGaamODaaqabaaaaa@3970@ , p 1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaWcbaGaaGym aaqaaiabgUcaRaaaaaa@40B7@ :

1 + K γ [f](ξ,p)g(p)dp=C(γ) 1 + g(p)dp ξ f ˜ ( ξ ˜ p+ y ) z 2 γ1 dΓ( y ); MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaaIXaaa baGaey4kaScaaaqab0Gaey4kIipakiaadUeadaWgaaWcbaGaeq4SdC gabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+oaEcaaISaGaamiC aiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGykaiaayIW7caWGKb GaamiCaiaai2dacaWGdbGaaGikaiabeo7aNjaaiMcadaWdrbqabSqa aiab=1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniabgUIiYd GccaWGNbGaaGikaiaadchacaaIPaGaaGjcVlaadsgacaWGWbWaa8qu aeqaleaacqaH+oaEdaahaaqabeaacqGHLkIxaaaabeqdcqGHRiI8aO WaaacaaeaacaWGMbaacaGLdmaacaaIOaWaaacaaeaacqaH+oaEaiaa woWaaiaayIW7caWGWbGaey4kaSIaamyEamaaBaaaleaacqGHLkIxae qaaOGaaGykaiaayIW7caWG6bWaa0baaSqaaiaaikdaaeaacqaHZoWz cqGHsislcaaIXaaaaOGaamizaiabfo5ahjaaiIcacaWG5bWaaSbaaS qaaiabgwQiEbqabaGccaaIPaGaaG4oaaaa@837F@  (11)

внутренний интеграл записан в локальной системе координат (5). Здесь ξ ˜ p+ y =( z 2 , y ,p)=y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaGaaG jcVlaadchacqGHRaWkcaWG5bWaaSbaaSqaaiabgwQiEbqabaGccaaI 9aGaaGikaiaadQhadaWgaaWcbaGaaGOmaaqabaGccaaISaGabmyEay aafaGaaGilaiaadchacaaIPaGaaGypaiaadMhaaaa@43DC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@   (n+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaaaaa@35B2@  -мерный вектор. Замена переменных

z= ξ ˜ p+ y p=z, ξ ˜ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypamaaGaaabaGaeqOVdG hacaGLdmaacaaMi8UaamiCaiabgUcaRiaadMhadaWgaaWcbaGaeyyP I4fabeaakiaaywW7cqGHshI3caaMf8UaamiCaiaai2dacqGHPms4ca WG6bGaaGilamaaGaaabaGaeqOVdGhacaGLdmaacqGHQms8caaISaaa aa@4BFD@

имеет якобиан, равный D(z) D( y +p ξ ˜ ) = D(z) D(y) =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadseacaaIOaGaamOEai aaiMcaaeaacaWGebGaaGikaiaadMhadaWgaaWcbaGaeyyPI4fabeaa kiabgUcaRiaadchadaaiaaqaaiabe67a4bGaay5adaGaaGykaaaaca aI9aWaaSaaaeaacaWGebGaaGikaiaadQhacaaIPaaabaGaamiraiaa iIcacaWG5bGaaGykaaaacaaI9aGaaGymaaaa@471B@  ), и приводит выражение (11) к виду

1 + K γ [f](ξ,p)g(p)dp=C(γ) 1 + ξ f ˜ (z) z 2 γ1 dΓ( y )g(z, ξ ˜ )dp. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaaIXaaa baGaey4kaScaaaqab0Gaey4kIipakiaadUeadaWgaaWcbaGaeq4SdC gabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+oaEcaaISaGaamiC aiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGykaiaayIW7caWGKb GaamiCaiaai2dacaWGdbGaaGikaiabeo7aNjaaiMcadaWdrbqabSqa aiab=1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniabgUIiYd GcdaWdrbqabSqaaiabe67a4naaCaaabeqaaiabgwQiEbaaaeqaniab gUIiYdGcdaaiaaqaaiaadAgaaiaawoWaaiaaiIcacaWG6bGaaGykai aayIW7caWG6bWaa0baaSqaaiaaikdaaeaacqaHZoWzcqGHsislcaaI XaaaaOGaaGjcVlaadsgacqqHtoWrcaaIOaGaamyEamaaBaaaleaacq GHLkIxaeqaaOGaaGykaiaadEgacaaIOaGaeyykJeUaamOEaiaaiYca daaiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGykaiaayIW7caWGKb GaamiCaiaai6caaaa@83F8@  (12)

Учитывая, что гиперплоскость ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@  определена в евклидовом полупространстве x 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaaicdaaaa@352E@ , выражение (12) запишем в координатах пространства вращений n+1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbGaey4kaSIaaGym aaqaaiabgUcaRaaaaaa@4013@  (имеются в виду первоначальные координаты z=( z 1 , z 2 , x ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmiEayaafaGaaGykaaaa@3B3E@  ), т.е. в следующем виде:

1 K γ [f](ξ,p)g(p)dp=C(γ) n+1 + f ˜ (z)g( ξ ˜ ,z) z 2 γ1 d z 1 d z 2 d x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacaaIXaaa beaaaeqaniabgUIiYdGccaWGlbWaaSbaaSqaaiabeo7aNbqabaGcca aIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPaGa aGjcVlaadEgacaaIOaGaamiCaiaaiMcacaaMi8Uaamizaiaadchaca aI9aGaam4qaiaaiIcacqaHZoWzcaaIPaWaa8quaeqaleaacqWFDeIu daqhaaqaaiaad6gacqGHRaWkcaaIXaaabaGaey4kaScaaaqab0Gaey 4kIipakmaaGaaabaGaamOzaaGaay5adaGaaGikaiaadQhacaaIPaGa aGjcVlaadEgacaaIOaGaeyykJe+aaacaaeaacqaH+oaEaiaawoWaai aaiYcacaWG6bGaeyOkJeVaaGykaiaayIW7caWG6bWaa0baaSqaaiaa ikdaaeaacqaHZoWzcqGHsislcaaIXaaaaOGaamizaiaadQhadaWgaa WcbaGaaGymaaqabaGccaaMi8UaamizaiaadQhadaWgaaWcbaGaaGOm aaqabaGccaaMi8UaamizaiqadIhagaqbaiaai6caaaa@7FBC@

Здесь скалярное произведение (n+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaaaaa@35B2@  -мерных векторов совпадает со скалярным произведением n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерных векторов: ξ ˜ ,z=ξ,x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4daaiaaqaaiabe67a4bGaay 5adaGaaGilaiaadQhacqGHQms8caaI9aGaeyykJeUaeqOVdGNaaGil aiaadIhacqGHQms8aaa@413A@ . Поэтому, введя цилиндрические координаты

z 1 = x 1 cosα, z 2 = x 1 sinα, x = x ,0<α<π,d z 1 d z 2 d x = x 1 d x 1 dαd x , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadIhadaWgaaWcbaGaaGymaaqabaGcciGGJbGaai4Baiaa cohacqaHXoqycaaISaGaaGzbVlaadQhadaWgaaWcbaGaaGOmaaqaba GccaaI9aGaamiEamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGa aiOBaiabeg7aHjaaiYcacaaMf8UabmiEayaafaGaaGypaiqadIhaga qbaiaaiYcacaaMf8UaaGimaiaaiYdacqaHXoqycaaI8aGaeqiWdaNa aGilaiaaywW7caWGKbGaamOEamaaBaaaleaacaaIXaaabeaakiaayI W7caWGKbGaamOEamaaBaaaleaacaaIYaaabeaakiaayIW7caWGKbGa bmiEayaafaGaaGypaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8 UaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8Uaamizaiab eg7aHjaayIW7caWGKbGabmiEayaafaGaaGilaaaa@6FB2@

получим

1 + K γ [f](ξ,p)g(p)dp=C(γ) n + f(x) 0 π g(Bigξ,( x 1 cosα, x )Bnb) sin γ1 αdα x 1 γ d x 1 dd x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aa0baaeaacaaIXaaa baGaey4kaScaaaqab0Gaey4kIipakiaadUeadaWgaaWcbaGaeq4SdC gabeaakiaaiUfacaWGMbGaaGyxaiaaiIcacqaH+oaEcaaISaGaamiC aiaaiMcacaaMi8Uaam4zaiaaiIcacaWGWbGaaGykaiaayIW7caWGKb GaamiCaiaai2dacaWGdbGaaGikaiabeo7aNjaaiMcadaWdrbqabSqa aiab=1risnaaDaaabaGaamOBaaqaaiabgUcaRaaaaeqaniabgUIiYd GccaWGMbGaaGikaiaadIhacaaIPaGaaGjcVpaapehabeWcbaGaaGim aaqaaiabec8aWbqdcqGHRiI8aOGaam4zaiaaiIcacaWGcbGaamyAai aadEgacqGHPms4cqaH+oaEcaaISaGaaGikaiaadIhadaWgaaWcbaGa aGymaaqabaGcciGGJbGaai4BaiaacohacqaHXoqycaaISaGabmiEay aafaGaaGykaiaadkeacaWGUbGaamOyaiabgQYiXlaaiMcadaqfGaqa bSqabeaacqaHZoWzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6 gaaaGaeqySdeMaaGjcVlaadsgacqaHXoqycaaMi8UaamiEamaaDaaa leaacaaIXaaabaGaeq4SdCgaaOGaaGjcVlaadsgacaWG4bWaaSbaaS qaaiaaigdaaeqaaOGaaGjcVlaadsgacaaMi8UaamizaiqadIhagaqb aiaai6caaaa@9A53@

Воспользовавшись определением оператора Пуассона (2) и видом константы C(γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiabeo7aNjaaiMcaaa a@3591@ , это выражение можем записать в сокращенной форме:

1 K γ [f](ξ,p)g(p)dp= n + f(x) Π x 1 γ g(ξ,x) x 1 γ d x 1 d x = n + f(x) Π ξ 1 γ g(ξ,x) x 1 γ d x 1 d x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaSbaaeaacaaIXaaa beaaaeqaniabgUIiYdGccaWGlbWaaSbaaSqaaiabeo7aNbqabaGcca aIBbGaamOzaiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPaGa aGjcVlaadEgacaaIOaGaamiCaiaaiMcacaaMi8Uaamizaiaadchaca aI9aWaa8quaeqaleaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWk aaaabeqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGykaiaayIW7cq qHGoaudaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaabaGaeq4S dCgaaOGaam4zaiaaiIcacqGHPms4cqaH+oaEcaaISaGaamiEaiabgQ YiXlaaiMcacaaMi8UaamiEamaaDaaaleaacaaIXaaabaGaeq4SdCga aOGaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8Uaamizai qadIhagaqbaiaai2dadaWdrbqabSqaaiab=1risnaaDaaabaGaamOB aaqaaiabgUcaRaaaaeqaniabgUIiYdGccaWGMbGaaGikaiaadIhaca aIPaGaaGjcVlabfc6aqnaaDaaaleaacqaH+oaEdaWgaaqaaiaaigda aeqaaaqaaiabeo7aNbaakiaadEgacaaIOaGaeyykJeUaeqOVdGNaaG ilaiaadIhacqGHQms8caaIPaGaaGjcVlaadIhadaqhaaWcbaGaaGym aaqaaiabeo7aNbaakiaadsgacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGjcVlaadsgaceWG4bGbauaacaaIUaaaaa@9DAC@

Теперь, введя обозначения

K γ,ξ # g(x)= Π x 1 γ g(ξ,x)или K γ,ξ # g(x)= Π ξ 1 γ g(ξ,x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaOGaam4zaiaaiIcacaWG4bGaaGykaiaa i2dacqqHGoaudaqhaaWcbaGaamiEamaaBaaabaGaaGymaaqabaaaba Gaeq4SdCgaaOGaam4zaiaaiIcacqGHPms4cqaH+oaEcaaISaGaamiE aiabgQYiXlaaiMcacaaMf8UaaeioeiaabUdbcaqG4qGaaGzbVlaadU eadaqhaaWcbaGaeq4SdCMaaGilaiabe67a4bqaaiaaiocaaaGccaWG NbGaaGikaiaadIhacaaIPaGaaGypaiabfc6aqnaaDaaaleaacqaH+o aEdaWgaaqaaiaaigdaaeqaaaqaaiabeo7aNbaakiaadEgacaaIOaGa eyykJeUaeqOVdGNaaGilaiaadIhacqGHQms8caaIPaGaaGilaaaa@6965@

получим (10).

Определение 2. Двойственным оператором к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Киприянова в 1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaaIXaaabaGaey4kaSca aaaa@3E3E@  называется оператор K γ,ξ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNjaaiY cacqaH+oaEaeaacaaIJaaaaaaa@3787@ .

Доказательство следствия \rom\refc2.1.. Вернемся к равенству (4). Интегрирование по n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерной сфере S 1 (n)={ξ:|ξ|=1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaad6gacaaIPaGaaGypaiaaiUhacqaH+oaEcaaI6aGaaGiF aiabe67a4jaaiYhacaaI9aGaaGymaiaai2haaaa@4089@  приведет к равенству

S 1 (n) 1 + K γ [f](ξ,p)g(p)dpdS(ξ)= n + f(x) Π x 1 γ S 1 (n) g(ξ,x)dS(ξ) x 1 γ d x 1 dd x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdrbqabSqaaiaadofadaWgaaqaai aaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4kIipakmaapefa beWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacq WFDeIudaqhaaqaaiaaigdaaeaacqGHRaWkaaaabeqdcqGHRiI8aOGa am4samaaBaaaleaacqaHZoWzaeqaaOGaaG4waiaadAgacaaIDbGaaG ikaiabe67a4jaaiYcacaWGWbGaaGykaiaayIW7caWGNbGaaGikaiaa dchacaaIPaGaaGjcVlaadsgacaWGWbGaaGjcVlaadsgacaWGtbGaaG ikaiabe67a4jaaiMcacaaI9aWaa8quaeqaleaacqWFDeIudaqhaaqa aiaad6gaaeaacqGHRaWkaaaabeqdcqGHRiI8aOGaamOzaiaaiIcaca WG4bGaaGykaiaayIW7cqqHGoaudaqhaaWcbaGaamiEamaaBaaabaGa aGymaaqabaaabaGaeq4SdCgaaOWaaeWaaeaadaWdrbqabSqaaiaado fadaWgaaqaaiaaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4k IipakiaadEgacaaIOaGaeyykJeUaeqOVdGNaaGilaiaadIhacqGHQm s8caaIPaGaaGjcVlaadsgacaWGtbGaaGikaiabe67a4jaaiMcaaiaa wIcacaGLPaaacaaIGaGaamiEamaaDaaaleaacaaIXaaabaGaeq4SdC gaaOGaamizaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaMi8Uaamiz aiaayIW7caWGKbGabmiEayaafaGaaGOlaaaa@9595@

Остается воспользоваться обозначением (8) или (9).

Определение 3. Двойственным оператором к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ Киприянова в n + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaSca aaaa@3E76@  называется оператор K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@ .

4. K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@  -Преобразование свертки функций с K γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba aaaa@3460@  -преобразованием. Свертка радиальных функций в евклидовом пространстве n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@  определяется по формуле (см. [7, 9])

(f*g)(|x|)= n f(|y|)g(|xy|)dy=| S 1 (n)| 1 f(r) T r g(ρ) ρ n1 dρ,r=|x|,ρ=|y|, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOzaiaaiQcacaWGNbGaaG ykaiaaiIcacaaI8bGaamiEaiaaiYhacaaIPaGaaGypamaapefabeWc baWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDe IudaWgaaqaaiaad6gaaeqaaaqab0Gaey4kIipakiaadAgacaaIOaGa aGiFaiaadMhacaaI8bGaaGykaiaadEgacaaIOaGaaGiFaiaadIhacq GHsislcaWG5bGaaGiFaiaaiMcacaaMi8UaamizaiaadMhacaaI9aGa aGiFaiaadofadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamOBaiaaiM cacaaI8bWaa8quaeqaleaacqWFDeIudaWgaaqaaiaaigdaaeqaaaqa b0Gaey4kIipakiaadAgacaaIOaGaamOCaiaaiMcacaaMi8Uaamivam aaCaaaleqabaGaamOCaaaakiaadEgacaaIOaGaeqyWdiNaaGykaiaa yIW7cqaHbpGCdaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGaaG jcVlaadsgacqaHbpGCcaaISaGaaGzbVlaadkhacaaI9aGaaGiFaiaa dIhacaaI8bGaaGilaiaaywW7cqaHbpGCcaaI9aGaaGiFaiaadMhaca aI8bGaaGilaaaa@8936@

где | S 1 (n)| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4uamaaBaaaleaacaaIXa aabeaakiaaiIcacaWGUbGaaGykaiaaiYhaaaa@37EA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  площадь поверхности единичной сферы в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaBaaaleaacaWGUbaabeaaaaa@3D93@ , T x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacaWG4baaaa aa@33C0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  обобщенный сдвиг Пуассона:

T ρ v(r)=C(γ)= Γ n 2 Γ n1 2 Γ 1 2 0 π g r 2 + ρ 2 2rρcosβ sin n2 βdβ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacqaHbpGCaa GccaWG2bGaaGikaiaadkhacaaIPaGaaGypaiaadoeacaaIOaGaeq4S dCMaaGykaiaai2dadaWcaaqaaiabfo5ahnaabmaabaWaaSaaaeaaca WGUbaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaacqqHtoWrdaqadaqa amaalaaabaGaamOBaiabgkHiTiaaigdaaeaacaaIYaaaaaGaayjkai aawMcaaiabfo5ahnaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa aiaawIcacaGLPaaaaaWaa8qCaeqaleaacaaIWaaabaGaeqiWdahani abgUIiYdGccaWGNbWaaeWaaeaadaGcaaqaaiaadkhadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcqaHbpGCdaahaaWcbeqaaiaaikdaaaGccq GHsislcaaIYaGaamOCaiabeg8aYjaayIW7ciGGJbGaai4Baiaacoha cqaHYoGyaSqabaaakiaawIcacaGLPaaacaaMi8+aaubiaeqaleqaba GaamOBaiabgkHiTiaaikdaaOqaaiGacohacaGGPbGaaiOBaaaacqaH YoGycaaMi8Uaamizaiabek7aIjaai6caaaa@720B@

Для произвольного числа γ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@  обобщенной сверткой Пуассона (сверткой Пуассона) называется выражение (см. [4, 6])

(u*v) γ (ρ)= 1 + u(r) T ρ v(r) r γ dr,γ>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiQcacaWG2bGaaG ykamaaBaaaleaacqaHZoWzaeqaaOGaaGikaiabeg8aYjaaiMcacaaI 9aWaa8quaeqaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD 3BaGabaiab=1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniab gUIiYdGccaWG1bGaaGikaiaadkhacaaIPaGaaGjcVlaadsfadaahaa Wcbeqaaiabeg8aYbaakiaadAhacaaIOaGaamOCaiaaiMcacaaMi8Ua amOCamaaCaaaleqabaGaeq4SdCgaaOGaamizaiaadkhacaaISaGaaG zbVlabeo7aNjaai6dacaaIWaGaaGilaaaa@61D6@

где

T ρ v(r)=C(γ)= Γ γ+1 2 Γ γ 2 Γ 1 2 0 π g r 2 + ρ 2 2rρcosβ sin γ1 βdβ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaWbaaSqabeaacqaHbpGCaa GccaWG2bGaaGikaiaadkhacaaIPaGaaGypaiaadoeacaaIOaGaeq4S dCMaaGykaiaai2dadaWcaaqaaiabfo5ahnaabmaabaWaaSaaaeaacq aHZoWzcqGHRaWkcaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaa cqqHtoWrdaqadaqaamaalaaabaGaeq4SdCgabaGaaGOmaaaaaiaawI cacaGLPaaacqqHtoWrdaqadaqaamaalaaabaGaaGymaaqaaiaaikda aaaacaGLOaGaayzkaaaaamaapehabeWcbaGaaGimaaqaaiabec8aWb qdcqGHRiI8aOGaam4zamaabmaabaWaaOaaaeaacaWGYbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaeqyWdi3aaWbaaSqabeaacaaIYaaaaO GaeyOeI0IaaGOmaiaadkhacqaHbpGCcaaMi8Uaci4yaiaac+gacaGG ZbGaeqOSdigaleqaaaGccaGLOaGaayzkaaGaaGjcVpaavacabeWcbe qaaiabeo7aNjabgkHiTiaaigdaaOqaaiGacohacaGGPbGaaiOBaaaa cqaHYoGycaaMi8Uaamizaiabek7aIjaai6caaaa@741B@

Для цели наших исследований мы используем обобщенный сдвиг смешанного типа, определенный при γ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@  в [4] формулой

T x y f(x)= Γ γ+1 2 Γ γ 2 Γ 1 2 0 π f x 1 2 + y 1 2 2 x 1 y 1 cosα , x 2 y 2 ,, x n y n sin γ1 αdα. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaadIhaaeaaca WG5baaaOGaamOzaiaaiIcacaWG4bGaaGykaiaai2dadaWcaaqaaiab fo5ahnaabmaabaWaaSaaaeaacqaHZoWzcqGHRaWkcaaIXaaabaGaaG OmaaaaaiaawIcacaGLPaaaaeaacqqHtoWrdaqadaqaamaalaaabaGa eq4SdCgabaGaaGOmaaaaaiaawIcacaGLPaaacqqHtoWrdaqadaqaam aalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaamaapeha beWcbaGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamOzamaabmaaba WaaOaaaeaacaWG4bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4k aSIaamyEamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgkHiTiaaik dacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaamyEamaaBaaaleaacaaI XaaabeaakiaayIW7ciGGJbGaai4BaiaacohacqaHXoqyaSqabaGcca aISaGaaGjcVlaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWG 5bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiYcacaWG4b WaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaamyEamaaBaaaleaacaWG UbaabeaaaOGaayjkaiaawMcaaiaaiccadaqfGaqabSqabeaacqaHZo WzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqySdeMa aGjcVlaadsgacqaHXoqycaaIUaaaaa@7F7E@

Преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова обобщенной свертки основных функций S ev MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaaaaa@34A6@  определено в [8] следующим равенством:

K γ [(f*g ) γ ](ξ,p)= 1 K γ [f](ξ,t) K γ [g](ξ,pt)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiabeo7aNbqaba GccaaIBbGaaGikaiaadAgacaaIQaGaam4zaiaaiMcadaWgaaWcbaGa eq4SdCgabeaakiaai2facaaIOaGaeqOVdGNaaGilaiaadchacaaIPa GaaGypamaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPrginfgD Obcv39gaiqaacqWFDeIudaWgaaqaaiaaigdaaeqaaaqab0Gaey4kIi pakiaadUeadaWgaaWcbaGaeq4SdCgabeaakiaaiUfacaWGMbGaaGyx aiaaiIcacqaH+oaEcaaISaGaamiDaiaaiMcacaaMi8Uaam4samaaBa aaleaacqaHZoWzaeqaaOGaaG4waiaadEgacaaIDbGaaGikaiabe67a 4jaaiYcacaWGWbGaeyOeI0IaamiDaiaaiMcacaWGKbGaamiDaiaai6 caaaa@6A09@

Таким образом, преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова свертки Пуассона оказывается одномерной (и обычной) сверткой преобразований Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова свертывателей. Похожее свойство проявляется для преобразования двойственного к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова.

4.1. Доказательство теоремы 2. Пусть функции f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@  принадлежат пространству основных функций S ev ( n + ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaadwgacaWG2b aabeaakiaaiIcatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGabaiab=1risnaaDaaaleaacaWGUbaabaGaey4kaScaaOGaaGykaa aa@42D8@ . Докажем справедливость равенства (10), т.е.

( K γ # g*f) γ = K γ # (g* K γ [f]). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGypaiaadUeadaqhaaWcbaGaeq4SdCgabaGaaG 4iaaaakiaaiIcacaWGNbGaaGOkaiaadUeadaWgaaWcbaGaeq4SdCga beaakiaaiUfacaWGMbGaaGyxaiaaiMcacaaIUaaaaa@4828@

Воспользуемся представлением действия оператора K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@  по формуле (8). Имеем

( K γ # *f) γ = n + T y x K γ # [ Π ξ 1 γ g(ξ;y,ξ)]f(y) y 1 γ dy= n + S 1 (n) T y x Π ξ 1 γ g(ξ;y,ξ)dS(ξ)f(y) y 1 γ dy. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaaGOkaiaadAgacaaIPaWaaSbaaSqaaiabeo7a NbqabaGccaaI9aWaa8quaeqaleaatuuDJXwAK1uy0HMmaeHbfv3ySL gzG0uy0HgiuD3BaGabaiab=1risnaaDaaabaGaamOBaaqaaiabgUca RaaaaeqaniabgUIiYdGccaWGubWaa0baaSqaaiaadMhaaeaacaWG4b aaaOGaam4samaaDaaaleaacqaHZoWzaeaacaaIJaaaaOGaaG4waiab fc6aqnaaDaaaleaacqaH+oaEdaWgaaqaaiaaigdaaeqaaaqaaiabeo 7aNbaakiaadEgacaaIOaGaeqOVdGNaaG4oaiabgMYiHlaadMhacaaI SaGaeqOVdGNaeyOkJeVaaGykaiaai2facaWGMbGaaGikaiaadMhaca aIPaGaamyEamaaDaaaleaacaaIXaaabaGaeq4SdCgaaOGaamizaiaa dMhacaaI9aWaa8quaeqaleaacqWFDeIudaqhaaqaaiaad6gaaeaacq GHRaWkaaaabeqdcqGHRiI8aOWaa8quaeqaleaacqWFsc=udaWgaaqa aiaaigdaaeqaaiaaiIcacaWGUbGaaGykaaqab0Gaey4kIipakiaads fadaqhaaWcbaGaamyEaaqaaiaadIhaaaGccqqHGoaudaqhaaWcbaGa eqOVdG3aaSbaaeaacaaIXaaabeaaaeaacqaHZoWzaaGccaWGNbGaaG ikaiabe67a4jaaiUdacqGHPms4caWG5bGaaGilaiabe67a4jabgQYi XlaaiMcacaaMi8UaamizaiaadofacaaIOaGaeqOVdGNaaGykaiabgw SixlaadAgacaaIOaGaamyEaiaaiMcacaWG5bWaa0baaSqaaiaaigda aeaacqaHZoWzaaGccaWGKbGaamyEaiaai6caaaa@A1BB@

Здесь оператор обобщенного сдвига и оператор Пуассона действуют по разным переменным, поэтому, воспользовавшись перестановочностью обобщенного сдвига в весовой билинейной форме с показателем веса x γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacqaHZoWzaa aaaa@348E@ , имеем

( K γ # g*f) γ = n + K γ # g(y) T x f(y) y 1 γ dy. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGypamaapefabeWcbaWefv3ySLgznfgDOjdary qr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaa cqGHRaWkaaaabeqdcqGHRiI8aOGaam4samaaDaaaleaacqaHZoWzae aacaaIJaaaaOGaam4zaiaaiIcacaWG5bGaaGykaiaayIW7caWGubWa aWbaaSqabeaacaWG4baaaOGaamOzaiaaiIcacaWG5bGaaGykaiaayI W7caWG5bWaa0baaSqaaiaaigdaaeaacqaHZoWzaaGccaaMi8Uaamiz aiaadMhacaaIUaaaaa@619D@

Согласно определению (9) оператора K γ # MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaa0baaSqaaiabeo7aNbqaai aaiocaaaaaaa@350E@  получим

( K γ # g*f) γ = n + T x f(y) S 1 (n) + Π y 1 γ g(ξ,y,ξ)dS(ξ) y 1 γ dy= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaiIcacaWGlbWaa0 baaSqaaiabeo7aNbqaaiaaiocaaaGccaWGNbGaaGOkaiaadAgacaaI PaWaaSbaaSqaaiabeo7aNbqabaGccaaI9aWaa8quaeqaleaatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaa baGaamOBaaqaaiabgUcaRaaaaeqaniabgUIiYdGccaaMi8Uaamivam aaCaaaleqabaGaamiEaaaakiaadAgacaaIOaGaamyEaiaaiMcadaqa daqaamaapefabeWcbaGaam4uamaaBaaabaGaaGymaaqabaGaaGikai aad6gacaaIPaWaaWbaaeqabaGaey4kaScaaaqab0Gaey4kIipakiab fc6aqnaaDaaaleaacaWG5bWaaSbaaeaacaaIXaaabeaaaeaacqaHZo WzaaGccaaMi8Uaam4zaiaaiIcacqaH+oaEcaaISaGaeyykJeUaamyE aiaaiYcacqaH+oaEcqGHQms8caaIPaGaaGjcVlaadsgacaWGtbGaaG ikaiabe67a4jaaiMcacaaMi8oacaGLOaGaayzkaaGaaGjcVlaadMha daqhaaWcbaGaaGymaaqaaiabeo7aNbaakiaayIW7caWGKbGaamyEai aai2daaaa@81A2@

= n + T x f(y) S 1 (n) + G(ξ,y,ξ) dS(ξ) y 1 γ dy, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaatuuDJXwAK1 uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaabaGa amOBaaqaaiabgUcaRaaaaeqaniabgUIiYdGccaaMi8UaamivamaaCa aaleqabaGaamiEaaaakiaadAgacaaIOaGaamyEaiaaiMcadaWdrbqa bSqaaiaadofadaWgaaqaaiaaigdaaeqaaiaaiIcacaWGUbGaaGykam aaCaaabeqaaiabgUcaRaaaaeqaniabgUIiYdGccaaMi8Uaam4raiaa iIcacqaH+oaEcaaISaGaeyykJeUaamyEaiaaiYcacqaH+oaEcqGHQm s8caaIPaGaaGiiaiaayIW7caWGKbGaam4uaiaaiIcacqaH+oaEcaaI PaGaaGjcVlaadMhadaqhaaWcbaGaaGymaaqaaiabeo7aNbaakiaayI W7caWGKbGaamyEaiaaiYcacaaMf8UaaGzbVdaa@70A3@

где введено обозначение

G(ξ,y,ξ)= Π y 1 γ g(ξ,y,ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiabe67a4jaaiYcacq GHPms4caWG5bGaaGilaiabe67a4jabgQYiXlaaiMcacaaI9aGaeuiO da1aa0baaSqaaiaadMhadaWgaaqaaiaaigdaaeqaaaqaaiabeo7aNb aakiaadEgacaaIOaGaeqOVdGNaaGilaiabgMYiHlaadMhacaaISaGa eqOVdGNaeyOkJeVaaGykaiaai6caaaa@4FDA@

Каждая из функций f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbaaaa@32A8@  и g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbaaaa@32A9@  принадлежат основному классу функций, поэтому можно применить теорему Лебега о перестановке пределов интегрирования. В результате получим равенство

( K γ # g*f) γ = S 1 (n) + n + G(ξ,y,ξ) T x f(y) y 1 γ dydS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGypamaapefabeWcbaGaam4uamaaBaaabaGaaG ymaaqabaGaaGikaiaad6gacaaIPaWaaWbaaeqabaGaey4kaScaaaqa b0Gaey4kIipakmaapefabeWcbaWefv3ySLgznfgDOjdaryqr1ngBPr ginfgDObcv39gaiqaacqWFDeIudaqhaaqaaiaad6gaaeaacqGHRaWk aaaabeqdcqGHRiI8aOGaaGjcVlaadEeacaaIOaGaeqOVdGNaaGilai abgMYiHlaadMhacaaISaGaeqOVdGNaeyOkJeVaaGykaiaayIW7caWG ubWaaWbaaSqabeaacaWG4baaaOGaamOzaiaaiIcacaWG5bGaaGykai aayIW7caWG5bWaa0baaSqaaiaaigdaaeaacqaHZoWzaaGccaaMi8Ua amizaiaadMhacaaMi8UaamizaiaadofacaaIOaGaeqOVdGNaaGykai aai6caaaa@7607@

Учитывая действие оператора Пуассона (2), запишем

G(ξ,y,ξ)=C(γ) 0 π g(ξ, y 1 ξ 1 cosβ+ y 2 ξ 2 +, y n ξ n ) sin γ1 βdβ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiabe67a4jaaiYcacq GHPms4caWG5bGaaGilaiabe67a4jabgQYiXlaaiMcacaaI9aGaam4q aiaaiIcacqaHZoWzcaaIPaWaa8qmaeqaleaacaaIWaaabaGaeqiWda haniabgUIiYdGccaWGNbGaaGikaiabe67a4jaaiYcacaWG5bWaaSba aSqaaiaaigdaaeqaaOGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOGaci 4yaiaac+gacaGGZbGaeqOSdiMaey4kaSIaamyEamaaBaaaleaacaaI Yaaabeaakiabe67a4naaBaaaleaacaaIYaaabeaakiabgUcaRiablA ciljaaiYcacaWG5bWaaSbaaSqaaiaad6gaaeqaaOGaeqOVdG3aaSba aSqaaiaad6gaaeqaaOGaaGykaiaayIW7daqfGaqabSqabeaacqaHZo WzcqGHsislcaaIXaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqOSdiMa aGjcVlaadsgacqaHYoGycaaIUaaaaa@705B@  (13)

Как в доказательстве теоремы 1, воспользуемся процедурой вращения. При этом учтем, что

x 1 2 + y 1 2 2 x 1 y 1 cosα = ( x 1 y 1 cosα) 2 + y 1 2 sin 2 α , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGcaaqaaiaadIhadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccqGHRaWkcaWG5bWaa0baaSqaaiaaigdaaeaa caaIYaaaaOGaeyOeI0IaaGOmaiaadIhadaWgaaWcbaGaaGymaaqaba GccaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaci4yaiaac+gacaGGZbGa eqySdegaleqaaOGaaGypamaakaaabaGaaGikaiaadIhadaWgaaWcba GaaGymaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGa ci4yaiaac+gacaGGZbGaeqySdeMaaGykamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaadMhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGcdaqf GaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqySde galeqaaOGaaGilaaaa@585D@

и векторы размерности n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOeI0IaaGymaaaa@3458@ , участвующие в скалярном произведении y,ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4caWG5bGaaGilaiabe67a4j abgQYiXdaa@38B7@ , транслируются в векторы размерности n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  и имеют следующие координаты:

y z ˜ =( z 1 ,0, y ),ξ ξ ˜ =( ξ 1 ,0, ξ ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaeyOKH46aaacaaeaacaWG6b aacaGLdmaacaaI9aGaaGikaiaadQhadaWgaaWcbaGaaGymaaqabaGc caaISaGaaGimaiaaiYcaceWG5bGbauaacaaIPaGaaGilaiaaywW7cq aH+oaEcqGHsgIRdaaiaaqaaiabe67a4bGaay5adaGaaGypaiaaiIca cqaH+oaEdaWgaaWcbaGaaGymaaqabaGccaaISaGaaGimaiaaiYcacu aH+oaEgaqbaiaaiMcacaaIUaaaaa@4FBB@

В результате получим

( K γ # g*f) γ (x)= S 1 (n) + n+1 + f ˜ ( x ˜ z)G(ξ,z, ξ ˜ ) z 2 γ1 dzdS(ξ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypamaapefabeWcba Gaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaWaaWba aeqabaGaey4kaScaaaqab0Gaey4kIipakmaapefabeWcbaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaqa aiaad6gacqGHRaWkcaaIXaaabaGaey4kaScaaaqab0Gaey4kIipaki aayIW7daaiaaqaaiaadAgaaiaawoWaaiaaiIcaceWG4bGbaGaacqGH sislcaWG6bGaaGykaiaayIW7caWGhbGaaGikaiabe67a4jaaiYcacq GHPms4caWG6bGaaGilamaaGaaabaGaeqOVdGhacaGLdmaacqGHQms8 caaIPaGaaGjcVlaadQhadaqhaaWcbaGaaGOmaaqaaiabeo7aNjabgk HiTiaaigdaaaGccaaMi8UaamizaiaadQhacaaMi8Uaamizaiaadofa caaIOaGaeqOVdGNaaGykaiaaiYcaaaa@7D21@

где z=( z 1 , z 2 , y ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaiIcacaWG6bWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaadQhadaWgaaWcbaGaaGOmaaqa baGccaaISaGabmyEayaafaGaaGykaaaa@3B3F@ , x ˜ =( x 1 ,0, x 2 ,, x n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaGaacaaI9aGaaGikaiaadI hadaWgaaWcbaGaaGymaaqabaGccaaISaGaaGimaiaaiYcacaWG4bWa aSbaaSqaaiaaikdaaeqaaOGaaGilaiablAciljaaiYcacaWG4bWaaS baaSqaaiaad6gaaeqaaOGaaGykaaaa@3FAC@  и поэтому x ˜ z=( x 1 z 1 , z 2 , x y ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG4bGbaGaacqGHsislcaWG6bGaaG ypaiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOE amaaBaaaleaacaaIXaaabeaakiaaiYcacaWG6bWaaSbaaSqaaiaaik daaeqaaOGaaGilaiqadIhagaqbaiabgkHiTiqadMhagaqbaiaaiMca aaa@4209@ . Введем n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерные локальные координаты

ξ ˜ =(0,0,,1), ξ ˜ p=(0,0,,p), y =( z 2 , y ,0),y=( z 2 , y ,p). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabe67a4bGaay5adaGaaG ypaiaaiIcacaaIWaGaaGilaiaaicdacaaISaGaeSOjGSKaaGilaiaa igdacaaIPaGaaGilaiaaywW7daaiaaqaaiabe67a4bGaay5adaGaey yXICTaamiCaiaai2dacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiab lAciljaaiYcacaWGWbGaaGykaiaaiYcacaaMf8UaamyEamaaBaaale aacqGHLkIxaeqaaOGaaGypaiaaiIcacaWG6bWaaSbaaSqaaiaaikda aeqaaOGaaGilaiqadMhagaqbaiaaiYcacaaIWaGaaGykaiaaiYcaca aMf8UaamyEaiaai2dacaaIOaGaamOEamaaBaaaleaacaaIYaaabeaa kiaaiYcaceWG5bGbauaacaaISaGaamiCaiaaiMcacaaIUaaaaa@63BA@

Произведем замену переменных

z= x ˜ ζs ξ ˜ , x ˜ z=s ξ ˜ +ζ,гдеζ=( ζ 1 , z 2 , ζ 3 ,, ζ n ) ξ ˜ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiqadIhagaacaiabgk HiTiabeA7a6jabgkHiTiaadohacuaH+oaEgaacaiaaiYcacaaMf8Ua bmiEayaaiaGaeyOeI0IaamOEaiaai2dacaWGZbGafqOVdGNbaGaacq GHRaWkcqaH2oGEcaaISaGaaGzbVlaabodbcaqG0qGaaeyneiaaywW7 cqaH2oGEcaaI9aGaaGikaiabeA7a6naaBaaaleaacaaIXaaabeaaki aaiYcacaWG6bWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiabeA7a6naa BaaaleaacaaIZaaabeaakiaaiYcacqWIMaYscaaISaGaeqOTdO3aaS baaSqaaiaad6gaaeqaaOGaaGykaiabgIGiolqbe67a4zaaiaWaaWba aSqabeaacqGHLkIxaaGccaaIUaaaaa@646D@

Якобиан этой замены равен D(z) D(p,ζ) =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadseacaaIOaGaamOEai aaiMcaaeaacaWGebGaaGikaiaadchacaaISaGaeqOTdONaaGykaaaa caaI9aGaaGymaaaa@3C12@ , и мы имеем

( K γ # g*f) γ (x)= S 1 (n) + 1 + ξ ˜ f ˜ (s ξ ˜ +ζ) z 2 γ1 dζG(ξ, x ˜ , ξ ˜ s)dsdS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypamaapefabeWcba Gaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaWaaWba aeqabaGaey4kaScaaaqab0Gaey4kIipakmaapefabeWcbaWefv3ySL gznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFDeIudaqhaaqa aiaaigdaaeaacqGHRaWkaaaabeqdcqGHRiI8aOGaaGjcVpaapefabe WcbaGafqOVdGNbaGaadaahaaqabeaacqGHLkIxaaaabeqdcqGHRiI8 aOWaaacaaeaacaWGMbaacaGLdmaacaaIOaGaam4Caiqbe67a4zaaia Gaey4kaSIaeqOTdONaaGykaiaayIW7caWG6bWaa0baaSqaaiaaikda aeaacqaHZoWzcqGHsislcaaIXaaaaOGaaGjcVlaadsgacqaH2oGEca aMi8Uaam4raiaaiIcacqaH+oaEcaaISaGaeyykJe+aaacaaeaacaWG 4baacaGLdmaacaaISaWaaacaaeaacqaH+oaEaiaawoWaaiabgQYiXl abgkHiTiaadohacaaIPaGaamizaiaadohacaaMi8Uaamizaiaadofa caaIOaGaeqOVdGNaaGykaiaai6caaaa@88FD@

Здесь внутренний интеграл есть преобразование Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова, записанное в виде интеграла по касательной плоскости ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEdaahaaWcbeqaaiabgwQiEb aaaaa@355E@  (см. формулу (6)). Следовательно,

( K γ # g*f) γ (x)= S 1 (n) + 1 + K γ [f](ξ,s)G(ξ,ps)dsdS(ξ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaiIcacaWGlbWaa0 baaSqaaiabeo7aNbqaaiaaiocaaaGccaWGNbGaaGOkaiaadAgacaaI PaWaaSbaaSqaaiabeo7aNbqabaGccaaIOaGaamiEaiaaiMcacaaI9a Waa8quaeqaleaacaWGtbWaaSbaaeaacaaIXaaabeaacaaIOaGaamOB aiaaiMcadaahaaqabeaacqGHRaWkaaaabeqdcqGHRiI8aOWaa8quae qaleaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab =1risnaaDaaabaGaaGymaaqaaiabgUcaRaaaaeqaniabgUIiYdGcca aMi8Uaam4samaaBaaaleaacqaHZoWzaeqaaOGaaG4waiaadAgacaaI DbGaaGikaiabe67a4jaaiYcacaWGZbGaaGykaiaayIW7caWGhbGaaG ikaiabe67a4jaaiYcacaWGWbGaeyOeI0Iaam4CaiaaiMcacaaMi8Ua amizaiaadohacaaMi8UaamizaiaadofacaaIOaGaeqOVdGNaaGykai aai2daaaa@76ED@

= S 1 (n) + 1 + ( K γ [f](ξ,s) Π x 1 γ g(ξ,ps))dsdS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8quaeqaleaacaWGtbWaaS baaeaacaaIXaaabeaacaaIOaGaamOBaiaaiMcadaahaaqabeaacqGH RaWkaaaabeqdcqGHRiI8aOWaa8quaeqaleaatuuDJXwAK1uy0HMmae Hbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risnaaDaaabaGaaGymaaqa aiabgUcaRaaaaeqaniabgUIiYdGccaaIOaGaam4samaaBaaaleaacq aHZoWzaeqaaOGaaG4waiaadAgacaaIDbGaaGikaiabe67a4jaaiYca caWGZbGaaGykaiaayIW7cqqHGoaudaqhaaWcbaGaamiEamaaBaaaba GaaGymaaqabaaabaGaeq4SdCgaaOGaam4zaiaaiIcacqaH+oaEcaaI SaGaamiCaiabgkHiTiaadohacaaIPaGaaGykaiaayIW7caWGKbGaam 4CaiaayIW7caWGKbGaam4uaiaaiIcacqaH+oaEcaaIPaGaaGOlaaaa @6D61@

В последнем равенстве воспользовались обозначением (13). Но x ˜ , ξ ˜ =x,ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHPms4daaiaaqaaiaadIhaaiaawo WaaiaaiYcadaaiaaqaaiabe67a4bGaay5adaGaeyOkJeVaaGypaiab gMYiHlaadIhacaaISaGaeqOVdGNaeyOkJepaaa@41FA@ , поэтому внутренний интеграл представляет собой классическую свертку по переменной p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@ . В результате

( K γ # g*f) γ (x)= S 1 (n) + Π x 1 γ ( K γ [f](ξ,p)*g(ξ,p))dS(ξ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypamaapefabeWcba Gaam4uamaaBaaabaGaaGymaaqabaGaaGikaiaad6gacaaIPaWaaWba aeqabaGaey4kaScaaaqab0Gaey4kIipakiabfc6aqnaaDaaaleaaca WG4bWaaSbaaeaacaaIXaaabeaaaeaacqaHZoWzaaGccaaIOaGaam4s amaaBaaaleaacqaHZoWzaeqaaOGaaG4waiaadAgacaaIDbGaaGikai abe67a4jaaiYcacaWGWbGaaGykaiaaiQcacaWGNbGaaGikaiabe67a 4jaaiYcacaWGWbGaaGykaiaaiMcacaaMi8UaamizaiaadofacaaIOa GaeqOVdGNaaGykaiaai6caaaa@63E9@

Полученное выражение есть двойственный оператор к преобразованию Радона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Киприянова от свертки функций по переменной p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@ , т.е.

( K γ # g*f) γ (x)= K γ # ( K γ (ξ,p)*g(ξ,p)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4samaaDaaaleaacqaHZo WzaeaacaaIJaaaaOGaam4zaiaaiQcacaWGMbGaaGykamaaBaaaleaa cqaHZoWzaeqaaOGaaGikaiaadIhacaaIPaGaaGypaiaadUeadaWgaa WcbaGaeq4SdCgabeaakmaaCaaaleqabaGaaG4iaaaakiaaiIcacaWG lbWaaSbaaSqaaiabeo7aNbqabaGccaaIOaGaeqOVdGNaaGilaiaadc hacaaIPaGaaGOkaiaadEgacaaIOaGaeqOVdGNaaGilaiaadchacaaI PaGaaGykaiaai6caaaa@51AF@

Доказательство закончено.

×

Об авторах

Лев Николаевич Ляхов

Воронежский государственный университет; Липецкий государственный педагогический университет имени П. П. Семенова-Тян-Шанского

Автор, ответственный за переписку.
Email: levnlya@mail.ru
Россия, Воронеж; Липецк

Владимир Анатольевич Калитвин

Липецкий государственный педагогический университет имени П. П. Семенова-Тян-Шанского

Email: kalitvin@gmail.com
Россия, Липецк

Марина Геннадьевна Лапшина

Липецкий государственный педагогический университет имени П. П. Семенова-Тян-Шанского

Email: marina.lapsh@ya.ru
Россия, Липецк

Список литературы

  1. Гельфанд И. М., Гиндикин С. Г., Граев М. И. Избранные задачи интегральной геометрии. — М.: Добросвет, 2007.
  2. Гельфанд И. М., Граев М. И., Виленкин Н. Я. Интегральная геометрия и связанные с ней вопросы теории представлений. — М.: ГИФМЛ, 1962.
  3. Гельфанд И. М., Шапиро З. Я. Однородные функции и их приложения// Усп. мат. наук. — 1955. — 10, № 3. — С. 3–70.
  4. Киприянов И. А. Сингулярные эллиптические краевые задачи. — M.: Наука, 1997.
  5. Киприянов И. А., Ляхов Л. Н. О преобразованиях Фурье, Фурье—Бесселя и Радона// Докл. АН СССР. — 1998. — 360, № 2. — С. 157–160.
  6. Левитан Б. М. Разложение в ряды и интегралы Фурье по функциям Бесселя// Усп. мат. наук. — 1951. — 6, № 2 (42). — С. 102–143.
  7. Ляхов Л. Н. О преобразовании Радона—Киприянова сферически симметричных функций// Докл. РАН. — 2008. — 419, № 3. — С. 315–319.
  8. Ляхов Л. Н. Преобразование Киприянова—Радона// Тр. Мат. ин-та им. В. А. Стеклова РАН. — 2005. — 248. — С. 144–152.
  9. Ляхов Л. Н. Построение ядер Дирихле и Валле-Пуссена—Никольского для j-бесселевых интегралов Фурье// Тр. Моск. мат. о-ва. — 2015. — 76, № 1. — С. 67–84.
  10. Ляхов Л. Н., Санина Е. Л. Дифференциальные и интегральные операции в скрытой сферической симметрии и размерность кривой Коха// Мат. заметки. — 2023. — 113, № 4. — С. 527–537.
  11. Хелгасон С. Преобразование Радона. — М.: Мир, 1983.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ляхов Л.Н., Калитвин В.А., Лапшина М.Г., 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).