Общая схема построения определяющей функции в задаче управления для динамической системы в частных производных разного порядка

Обложка

Цитировать

Полный текст

Аннотация

Для системы управления в частных производных выведен критерий полной управляемости системы. Исследование ведется методом каскадной декомпозиции, которая заключается в пошаговом эквивалентном переходе от исходной системы к редуцированнным системам в подпространствах. Получена функция, принадлежащая подпространству минимальной размерности, определяющая вид решения задачи программного управления — функций состояния и управления в аналитическом виде. Установлены необходимые и достаточные условия существования определяющей функции, приведена схема ее построения. Найдены необходимые и достаточные условия существования определяющей функции в полиномиальном, экспоненциальном, дробно-рациональном видах; приведены формулы для построения функций такого вида. Для исходной системы построено решение задачи программного управления.

Полный текст

1. Введение. Рассматривается динамическая система в частных производных

x(t,s) t =B x k (t,s) s k +Du(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadIhacaaIOa GaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshaaaGaaGyp aiaadkeadaWcaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaa GccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadoha daahaaWcbeqaaiaadUgaaaaaaOGaey4kaSIaamiraiaadwhacaaIOa GaamiDaiaaiYcacaWGZbGaaGykaaaa@4E05@  (1)

с условиями

x(0,s)=α(s),x(T,s)=β(s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaaicdacaaISaGaam 4CaiaaiMcacaaI9aGaeqySdeMaaGikaiaadohacaaIPaGaaGilaiaa ywW7caWG4bGaaGikaiaadsfacaaISaGaam4CaiaaiMcacaaI9aGaeq OSdiMaaGikaiaadohacaaIPaGaaGilaaaa@47F2@  (2)

где t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaaicdaca aISaGaamivaiaai2faaaa@384F@ , s[0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyicI4SaaG4waiaaicdaca aISaGaam4uaiaai2faaaa@384D@ ; x(t,s) n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@4421@ ; u(t,s) m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGabaiab=1risnaaCaaaleqabaGaamyBaaaaaaa@441D@ ; B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@ , D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  матрицы соответствующих размеров.

Систему (1) называют полностью управляемой, если существует функция управления u(t,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcaaaa@36C8@ , под воздействием которой система переводится из произвольного начального состояния в произвольное конечное состояние (см. (2)) за время [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  для любого T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@3418@ .

Изучению управляемости, как одного из важнейших свойств динамической системы, посвящено огромное количество работ, например, ставшие классическими (см. [1, 2, 6–8, 12]).

Наряду с выявлением возможности управления системой актуальной задачей является именно построение функции управления и функции состояния, отвечающей заданным условиям. Однако данное направление на данный момент разработано недостаточно широко и полно. Наиболее общим подходом является применение методов, позволяющих строить искомые функции в приближенном виде, что не всегда отвечает запросам практики и затрудняет более полное исследование свойств функций состояния и управления. Потребность в развитии методов построения функций управления и состояния в аналитической форме весьма велика.

В данной работе для системы (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) ставятся следующие задачи управления:

(a) выявление свойств матричных коэффициентов B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  и D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ , влекущих полную управляемость системы (1);

(b) установление свойств функций α(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcaaa a@35B9@  и β(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcaaa a@35BB@ , в условиях (2) достаточных для реализации управляемого процесса;

(c) построение функции управления u(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C3@  и соответствующей функции состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@  для полностью управляемой системы. Именно процедура построения указанных функций занимает в данной работе центральное место.

Решение поставленной задачи ведется методом каскадной декомпозиции, разработанным в [9] для исследования полной управляемости классической системы управления и примененным позже в [4, 10, 13, 14] для исследования свойств робастности, инвариантности, наблюдаемости, управляемости, а также при решении задач управления для ряда динамических систем (см. [5, 11, 15–19]). Именно такой подход позволяет получить решение задачи управления в аналитическом виде.

Метод каскадной декомпозиции базируется на свойстве нетеровости матичного коэффициента при функции управления в системе (1), позволяющем проводить пошаговое расщепление функции состояния на компоненты из сужающихся подпространств. Компонента состояния из самого узкого подпространства, названная здесь определяющей функцией, будет определять вид аналитического решения задачи управления. Основной целью данной работы является выявление необходимых условий существования определяющей функции, а также разработка общей схемы ее построения в различных формах.

Каскадная декомпозиция включает три этапа:

(i) прямой ход, подразумевающий поэтапную редукцию системы (1) и выявление ее полной управляемости или неуправляемости; на данном этапе выявляются и свойств функций α(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcaaa a@35B9@  и β(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcaaa a@35BB@ , достаточные для реализации управляемого процесса;

(ii) центральный этап: построение определяющей функции для полностью управляемой системы (1);

(iii) обратный ход, подразумевающий сначала пошаговое восстановление функции состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@ , удовлетворяющей заданным условиям (2); затем построение соответствующей функции управления u(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C3@ .

Таким образом, решается задача программного управления, которая, для полностью управляемой системы (1), предполагает сначала построение функции состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@ ; затем построение соответствующей функции u(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C3@ , которая и будет обеспечивать такое управление системой (1), что траектория системы пройдет через заданные точки (2) за время [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  для любого T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@3418@ .

2. Теоретическая база исследования. Метод каскадной декомпозиции базируется на свойстве нетеровости матричного коэффициента D: m n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaGOoamrr1ngBPrwtHrhAYa qeguuDJXwAKbstHrhAGq1DVbaceaGae8xhHi1aaWbaaSqabeaacaWG TbaaaOGaeyOKH4Qae8xhHi1aaWbaaSqabeaacaWGUbaaaaaa@434C@ , которому соответствуют разложения пространств в прямые суммы

m =CoimDKerD, n =ImDCokerD, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamyBaaaakiaai2da caWGdbGaam4BaiaadMgacaWGTbGaamiramrr1ngBPrwtHrhAXaqehu uDJXwAKbstHrhAG8KBLbacfaGae4hfIOUaam4saiaadwgacaWGYbGa amiraiaaiYcacaaMf8Uae8xhHi1aaWbaaSqabeaacaWGUbaaaOGaaG ypaiaadMeacaWGTbGaamiraiab+rHiQlaadoeacaWGVbGaam4Aaiaa dwgacaWGYbGaamiraiaaiYcaaaa@60F5@  (3)

где KerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbGaamyzaiaadkhacaWGebaaaa@3537@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  ядро D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ ; ImD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaamyBaiaadseaaaa@3446@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  образ D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ ; CokerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaam4BaiaadUgacaWGLbGaam OCaiaadseaaaa@3713@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  дефектное подпространство, n 0 =dimCokerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiGacsgacaGGPbGaaiyBaiaadoeacaWGVbGaam4Aaiaadwga caWGYbGaamiraaaa@3C85@ ; CoimD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaam4BaiaadMgacaWGTbGaam iraaaa@3622@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  прямое дополнение к KerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbGaamyzaiaadkhacaWGebaaaa@3537@  в n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@3D94@ ; при этом сужение D ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGebGbaGaaaaa@3295@  оператора D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  на CoimD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaam4BaiaadMgacaWGTbGaam iraaaa@3622@  имеет обратный D ˜ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGebGbaGaadaahaaWcbeqaaiabgk HiTiaaigdaaaaaaa@346A@ . Проекторы на подпространства KerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbGaamyzaiaadkhacaWGebaaaa@3537@  и CokerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaam4BaiaadUgacaWGLbGaam OCaiaadseaaaa@3713@  обозначаются через P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbaaaa@3292@  и Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@ , соответственно. Оператор D ˜ 1 (IQ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGebGbaGaadaahaaWcbeqaaiabgk HiTiaaigdaaaGccaaIOaGaamysaiabgkHiTiaadgfacaaIPaaaaa@386A@  называется полуобратным к D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  и обозначается D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaWbaaSqabeaacqGHsislaa aaaa@33A0@  (через I MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbaaaa@328B@  здесь и далее обозначен тождественный оператор в соответствующем пространстве). Здесь операторы и соответствующие им матрицы обозначаем одинаково.

Лемма 1 (см. [3]). Соотношение

Du=v,u m ,v n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaamyDaiaai2dacaWG2bGaaG ilaiaaywW7caWG1bGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrgi nfgDObcv39gaiqaacqWFDeIudaahaaWcbeqaaiaad2gaaaGccaaISa GaaGzbVlaadAhacqGHiiIZcqWFDeIudaahaaWcbeqaaiaad6gaaaaa aa@4CDC@  (4)

эквивалентно системе

u= D v+Pu,Qv=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadseadaahaaWcbe qaaiabgkHiTaaakiaadAhacqGHRaWkcaWGqbGaamyDaiaaiYcacaaM f8UaamyuaiaadAhacaaI9aGaaGimaiaai6caaaa@3F65@  (5)

Выражения (5) суть решение уравнения (4) для u MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32B7@ , найденное с точностью до произвольного элемента Pu MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyDaaaa@338C@  из подпространства KerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbGaamyzaiaadkhacaWGebaaaa@3537@ , и условие корректности системы (4).

Следует заметить, что в случае n= n 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaad6gadaWgaaWcba GaaGimaaqabaaaaa@3550@  система (1) вида

x(t,s) t =B x k (t,s) s k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadIhacaaIOa GaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshaaaGaaGyp aiaadkeadaWcaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaa GccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadoha daahaaWcbeqaaiaadUgaaaaaaaaa@474A@

является неуправляемой. Здесь рассматривается случай n> n 0 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGOpaiaad6gadaWgaaWcba GaaGimaaqabaGccaaI+aGaaGimaaaa@36DD@ .

3. Прямой ход декомпозиции. Нетеровость матричного коэффициента D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  позволяет расщепить коэффициенты и функции в уравнении (1) на коэффициенты и функции из подпространств. Так функция состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@  расщепляется на компоненты Qx(t,s)CokerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaamiEaiaaiIcacaWG0bGaaG ilaiaadohacaaIPaGaeyicI4Saam4qaiaad+gacaWGRbGaamyzaiaa dkhacaWGebaaaa@3E76@  и (IQ)x(t,s)ImD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamysaiabgkHiTiaadgfaca aIPaGaamiEaiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaeyicI4Sa amysaiaad2gacaWGebaaaa@3EC9@ , которые будем обозначать x 1 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37B7@  и u 1 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37B4@ , и называть функциями псевдосостояния и псевдоуправления соответственно. Введем следующие обозначения:

B 1 =QBQ, D 1 =QB(IQ), G 1 =QB, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadgfacaWGcbGaamyuaiaaiYcacaaMf8UaamiramaaBaaa leaacaaIXaaabeaakiaai2dacaWGrbGaamOqaiaaiIcacaWGjbGaey OeI0IaamyuaiaaiMcacaaISaGaaGzbVlaadEeadaWgaaWcbaGaaGym aaqabaGccaaI9aGaamyuaiaadkeacaaISaaaaa@4822@

α 10 (s)=Qα(s), α 11 (s)= G 1 k α(s) s k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaaGymaiaaic daaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadgfacqaHXoqycaaI OaGaam4CaiaaiMcacaaISaGaaGzbVlabeg7aHnaaBaaaleaacaaIXa GaaGymaaqabaGccaaIOaGaam4CaiaaiMcacaaI9aGaam4ramaaBaaa leaacaaIXaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaWGRb aaaOGaeqySdeMaaGikaiaadohacaaIPaaabaGaeyOaIyRaam4Camaa CaaaleqabaGaam4AaaaaaaGccaaISaaaaa@5241@

β 10 (s)=Qβ(s), β 11 (s)= G 1 k β(s) s k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaaGymaiaaic daaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadgfacqaHYoGycaaI OaGaam4CaiaaiMcacaaISaGaaGzbVlabek7aInaaBaaaleaacaaIXa GaaGymaaqabaGccaaIOaGaam4CaiaaiMcacaaI9aGaam4ramaaBaaa leaacaaIXaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaWGRb aaaOGaeqOSdiMaaGikaiaadohacaaIPaaabaGaeyOaIyRaam4Camaa CaaaleqabaGaam4AaaaaaaGccaaISaaaaa@5249@

x 1 (t,s)=Qx(t,s), u 1 (t,s)=(IQ)x(t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aGaamyuaiaadIha caaIOaGaamiDaiaaiYcacaWGZbGaaGykaiaaiYcacaaMf8UaamyDam aaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaI PaGaaGypaiaaiIcacaWGjbGaeyOeI0IaamyuaiaaiMcacaWG4bGaaG ikaiaadshacaaISaGaam4CaiaaiMcacaaISaaaaa@5114@

Описанные выше свойства нетеровости матричного коэффициента D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  обусловливают на первом шаге расщепления эквивалентный переход от системы (1) к иерархически структурированной совокупности систем первого и второго уровней, а именно, системе первого (верхнего) уровня MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  системе для построения функции управления

u(t,s)= D ( x(t,s) t B x k (t,s) s k )+Pu(t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcacaaI9aGaamiramaaCaaaleqabaGaeyOeI0caaOGaaGik amaalaaabaGaeyOaIyRaamiEaiaaiIcacaWG0bGaaGilaiaadohaca aIPaaabaGaeyOaIyRaamiDaaaacqGHsislcaWGcbWaaSaaaeaacqGH ciITcaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaGikaiaadshacaaISa Gaam4CaiaaiMcaaeaacqGHciITcaWGZbWaaWbaaSqabeaacaWGRbaa aaaakiaaiMcacqGHRaWkcaWGqbGaamyDaiaaiIcacaWG0bGaaGilai aadohacaaIPaGaaGilaaaa@580C@  (6)

с неизвестной пока функцией состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@ , с произвольным элементом Pu(t,s)KerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyDaiaaiIcacaWG0bGaaG ilaiaadohacaaIPaGaeyicI4Saam4saiaadwgacaWGYbGaamiraaaa @3C96@  и, с учетом расщепления

x(t,s)= x 1 (t,s)+ u 1 (t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcacaaI9aGaamiEamaaBaaaleaacaaIXaaabeaakiaaiIca caWG0bGaaGilaiaadohacaaIPaGaey4kaSIaamyDamaaBaaaleaaca aIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGilaaaa @4516@  (7)

системе второго (нижнего) уровня

x 1 (t,s) t = B 1 x 1 k (t,s) s k + D 1 u 1 k (t,s) s k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadIhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqa aiabgkGi2kaadshaaaGaaGypaiaadkeadaWgaaWcbaGaaGymaaqaba GcdaWcaaqaaiabgkGi2kaadIhadaqhaaWcbaGaaGymaaqaaiaadUga aaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaado hadaahaaWcbeqaaiaadUgaaaaaaOGaey4kaSIaamiramaaBaaaleaa caaIXaaabeaakmaalaaabaGaeyOaIyRaamyDamaaDaaaleaacaaIXa aabaGaam4AaaaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaabaGa eyOaIyRaam4CamaaCaaaleqabaGaam4AaaaaaaGccaaIUaaaaa@5928@  (8)

Кроме того, на первом шаге декомпозиции производится эквивалентный переход от условий (2) к условиям

2 x 1 (0,s)= α 10 (s), x 1 (T,s)= β 10 (s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamiEamaaBaaaleaacaaIXa aabeaakiaaiIcacaaIWaGaaGilaiaadohacaaIPaGaaGypaiabeg7a HnaaBaaaleaacaaIXaGaaGimaaqabaGccaaIOaGaam4CaiaaiMcaca aISaGaaGzbVlaadIhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiv aiaaiYcacaWGZbGaaGykaiaai2dacqaHYoGydaWgaaWcbaGaaGymai aaicdaaeqaaOGaaGikaiaadohacaaIPaGaaGilaaaa@4DE6@  (9)

x 1 (t,s) t | t=0 = α 11 (s), x 1 (t,s) t | t=T = β 11 (s). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadIhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqa aiabgkGi2kaadshaaaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaaic daaeqaaOGaaGypaiabeg7aHnaaBaaaleaacaaIXaGaaGymaaqabaGc caaIOaGaam4CaiaaiMcacaaISaGaaGzbVpaalaaabaGaeyOaIyRaam iEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadoha caaIPaaabaGaeyOaIyRaamiDaaaacaaI8bWaaSbaaSqaaiaadshaca aI9aGaamivaaqabaGccaaI9aGaeqOSdi2aaSbaaSqaaiaaigdacaaI XaaabeaakiaaiIcacaWGZbGaaGykaiaai6caaaa@5CC2@  (10)

Лемма 2. При выполнении условий α(s) C k [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGRbaaaOGaaG4waiaaicdacaaI SaGaam4uaiaai2faaaa@3D40@ , β(s) C k [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGRbaaaOGaaG4waiaaicdacaaI SaGaam4uaiaai2faaaa@3D42@ , в случае n> n 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGOpaiaad6gadaWgaaWcba GaaGimaaqabaaaaa@3551@ , система (1) с условиями (2) эквивалентна иерархически структурированной совокупности соотношений первого шага: системе (6) первого уровня, выражению (7) и системе (8) второго уровня с условиями (9) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (10).

Исследование свойств системы (8) базируется на описанных выше свойствах нетеровости матричного коэффициента D 1 :ImDCokerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaaigdaaeqaaO GaaGOoaiaadMeacaWGTbGaamiraiabgkziUkaadoeacaWGVbGaam4A aiaadwgacaWGYbGaamiraaaa@3E07@ .

Обозначим n 1 =dimCoker D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiGacsgacaGGPbGaaiyBaiaadoeacaWGVbGaam4Aaiaadwga caWGYbGaamiramaaBaaaleaacaaIXaaabeaaaaa@3D6D@ . В случае n 0 > n 1 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaad6gadaWgaaWcbaGaaGymaaqabaGccaaI+aGaaGimaaaa @37CE@ , при выполнении условий k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  -кратной дифференцировании функций α(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcaaa a@35B9@ , β(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcaaa a@35BB@ , реализуется эквивалентный переход от системы (8) к иерархически структурированной совокупности систем второго шага. Следует заметить, что система нижнего уровня второго шага MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  система относительно функции псевдосостояния x 2 (t,s)Coker D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacqGHiiIZcaWGdbGaam4B aiaadUgacaWGLbGaamOCaiaadseadaWgaaWcbaGaaGymaaqabaaaaa@3F79@  и функции псевдоуправления u 2 (t,s)Im D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacqGHiiIZcaWGjbGaamyB aiaadseadaWgaaWcbaGaaGymaaqabaaaaa@3CA9@ , будет иметь вид, аналогичный системе (8) с заменой индекса 1 на 2.

Кроме того, в точках t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaaicdaaaa@3437@  и t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@  появятся по одному дополнительному условию

2 x 2 (t,s) t 2 | t=0 = α 22 (s), 2 x 2 (t,s) t 2 | t=T = β 22 (s). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiD aiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshadaahaaWcbeqaai aaikdaaaaaaOGaaGiFamaaBaaaleaacaWG0bGaaGypaiaaicdaaeqa aOGaaGypaiabeg7aHnaaBaaaleaacaaIYaGaaGOmaaqabaGccaaIOa Gaam4CaiaaiMcacaaISaGaaGzbVpaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamiEamaaBaaaleaacaaIYaaabeaakiaaiIcaca WG0bGaaGilaiaadohacaaIPaaabaGaeyOaIyRaamiDamaaCaaaleqa baGaaGOmaaaaaaGccaaI8bWaaSbaaSqaaiaadshacaaI9aGaamivaa qabaGccaaI9aGaeqOSdi2aaSbaaSqaaiaaikdacaaIYaaabeaakiaa iIcacaWGZbGaaGykaiaai6caaaa@6094@

Таким образом, в случае n 0 > n 1 >> n i1 > n i >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaad6gadaWgaaWcbaGaaGymaaqabaGccaaI+aGaeSOjGSKa aGOpaiaad6gadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaG Opaiaad6gadaWgaaWcbaGaamyAaaqabaGccaaI+aGaaGimaaaa@411E@  при выполнении условий α(s) C k [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGRbaaaOGaaG4waiaaicdacaaI SaGaam4uaiaai2faaaa@3D40@ , β(s) C k [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGRbaaaOGaaG4waiaaicdacaaI SaGaam4uaiaai2faaaa@3D42@ , общий вид иерархически структурированной совокупности соотношений i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  -го шага имеет вид:

u i1 k (t,s) s k = D i1 x i1 (t,s) t B i1 x i1 k (t,s) s k + f i1 (t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhadaqhaa WcbaGaamyAaiabgkHiTiaaigdaaeaacaWGRbaaaOGaaGikaiaadsha caaISaGaam4CaiaaiMcaaeaacqGHciITcaWGZbWaaWbaaSqabeaaca WGRbaaaaaakiaai2dacaWGebWaa0baaSqaaiaadMgacqGHsislcaaI XaaabaGaeyOeI0caaOWaaeWaaeaadaWcaaqaaiabgkGi2kaadIhada WgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaGikaiaadshacaaI SaGaam4CaiaaiMcaaeaacqGHciITcaWG0baaaiabgkHiTiaadkeada WgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOWaaSaaaeaacqGHciIT caWG4bWaa0baaSqaaiaadMgacqGHsislcaaIXaaabaGaam4Aaaaaki aaiIcacaWG0bGaaGilaiaadohacaaIPaaabaGaeyOaIyRaam4Camaa CaaaleqabaGaam4AaaaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGMb WaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiIcacaWG0bGa aGilaiaadohacaaIPaGaaGilaaaa@6D94@  (11)

x i1 (t,s)= x i (t,s)+ u i (t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGyp aiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiDaiaaiYcaca WGZbGaaGykaiabgUcaRiaadwhadaWgaaWcbaGaamyAaaqabaGccaaI OaGaamiDaiaaiYcacaWGZbGaaGykaiaaiYcaaaa@4848@  (12)

x i (t,s) t = B i x i k (t,s) s k + D i u i k (t,s) s k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadIhadaWgaa WcbaGaamyAaaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqa aiabgkGi2kaadshaaaGaaGypaiaadkeadaWgaaWcbaGaamyAaaqaba GcdaWcaaqaaiabgkGi2kaadIhadaqhaaWcbaGaamyAaaqaaiaadUga aaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaado hadaahaaWcbeqaaiaadUgaaaaaaOGaey4kaSIaamiramaaBaaaleaa caWGPbaabeaakmaalaaabaGaeyOaIyRaamyDamaaDaaaleaacaWGPb aabaGaam4AaaaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaabaGa eyOaIyRaam4CamaaCaaaleqabaGaam4AaaaaaaGccaaISaaaaa@5A25@  (13)

j x i (t,s) t j | t=0 = α ij (s), j x i (t,s) t j | t=T = β ij (s),j= 0,i ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaamOAaaaakiaadIhadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiD aiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshadaahaaWcbeqaai aadQgaaaaaaOGaaGiFamaaBaaaleaacaWG0bGaaGypaiaaicdaaeqa aOGaaGypaiabeg7aHnaaBaaaleaacaWGPbGaamOAaaqabaGccaaIOa Gaam4CaiaaiMcacaaISaGaaGzbVpaalaaabaGaeyOaIy7aaWbaaSqa beaacaWGQbaaaOGaamiEamaaBaaaleaacaWGPbaabeaakiaaiIcaca WG0bGaaGilaiaadohacaaIPaaabaGaeyOaIyRaamiDamaaCaaaleqa baGaamOAaaaaaaGccaaI8bWaaSbaaSqaaiaadshacaaI9aGaamivaa qabaGccaaI9aGaeqOSdi2aaSbaaSqaaiaadMgacaWGQbaabeaakiaa iIcacaWGZbGaaGykaiaaiYcacaaMf8UaamOAaiaai2dadaqdaaqaai aaicdacaaISaGaamyAaaaacaaISaaaaa@68F5@  (14)

Здесь

B i = Q i1 B i1 Q i1 , D i = Q i1 B i1 (I Q i1 ), G i = Q i1 B i1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadgfadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaOGa amOqamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaWGrbWaaS baaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiYcacaaMf8Uaamir amaaBaaaleaacaWGPbaabeaakiaai2dacaWGrbWaaSbaaSqaaiaadM gacqGHsislcaaIXaaabeaakiaadkeadaWgaaWcbaGaamyAaiabgkHi TiaaigdaaeqaaOGaaGikaiaadMeacqGHsislcaWGrbWaaSbaaSqaai aadMgacqGHsislcaaIXaaabeaakiaaiMcacaaISaGaaGzbVlaadEea daWgaaWcbaGaamyAaaqabaGccaaI9aGaamyuamaaBaaaleaacaWGPb GaeyOeI0IaaGymaaqabaGccaWGcbWaaSbaaSqaaiaadMgacqGHsisl caaIXaaabeaakiaaiYcaaaa@5F1B@  (15)

α i0 (s)= Q i1 α i10 (s)= Q i1 Q i2 Q 1 Qα(s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaamyAaiaaic daaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadgfadaWgaaWcbaGa amyAaiabgkHiTiaaigdaaeqaaOGaeqySde2aaSbaaSqaaiaadMgacq GHsislcaaIXaGaaGimaaqabaGccaaIOaGaam4CaiaaiMcacaaI9aGa amyuamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaWGrbWaaS baaSqaaiaadMgacqGHsislcaaIYaaabeaakiablAciljaadgfadaWg aaWcbaGaaGymaaqabaGccaWGrbGaeqySdeMaaGikaiaadohacaaIPa GaaGilaaaa@53FF@  (16)

β i0 (s)= Q i1 β i10 (s)= Q i1 Q i2 Q 1 Qβ(s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaamyAaiaaic daaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadgfadaWgaaWcbaGa amyAaiabgkHiTiaaigdaaeqaaOGaeqOSdi2aaSbaaSqaaiaadMgacq GHsislcaaIXaGaaGimaaqabaGccaaIOaGaam4CaiaaiMcacaaI9aGa amyuamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccaWGrbWaaS baaSqaaiaadMgacqGHsislcaaIYaaabeaakiablAciljaadgfadaWg aaWcbaGaaGymaaqabaGccaWGrbGaeqOSdiMaaGikaiaadohacaaIPa GaaGilaaaa@5405@  (17)

α ij (s)= G i G i1 G 2 G 1 jk α(s) s jk = G i jk α i1 (s) s jk ,j=1,2,,i, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadEeadaWgaaWcbaGa amyAaaqabaGccaWGhbWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabe aakiablAciljaadEeadaWgaaWcbaGaaGOmaaqabaGccaWGhbWaaSba aSqaaiaaigdaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadQ gacqGHflY1caWGRbaaaOGaeqySdeMaaGikaiaadohacaaIPaaabaGa eyOaIyRaam4CamaaCaaaleqabaGaamOAaiabgwSixlaadUgaaaaaaO GaaGypaiaadEeadaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaamOAaiabgwSixlaadUgaaaGccqaHXoqydaWgaa WcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaGikaiaadohacaaIPaaa baGaeyOaIyRaam4CamaaCaaaleqabaGaamOAaiabgwSixlaadUgaaa aaaOGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaaGOmaiaa iYcacqWIMaYscaaISaGaamyAaiaaiYcaaaa@73B4@  (18)

β ij (s)= G i G i1 G 2 G 1 jk β(s) s jk = G i jk β i1 (s) s jk ,j=1,2,,i, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadEeadaWgaaWcbaGa amyAaaqabaGccaWGhbWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabe aakiablAciljaadEeadaWgaaWcbaGaaGOmaaqabaGccaWGhbWaaSba aSqaaiaaigdaaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadQ gacqGHflY1caWGRbaaaOGaeqOSdiMaaGikaiaadohacaaIPaaabaGa eyOaIyRaam4CamaaCaaaleqabaGaamOAaiabgwSixlaadUgaaaaaaO GaaGypaiaadEeadaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaamOAaiabgwSixlaadUgaaaGccqaHYoGydaWgaa WcbaGaamyAaiabgkHiTiaaigdaaeqaaOGaaGikaiaadohacaaIPaaa baGaeyOaIyRaam4CamaaCaaaleqabaGaamOAaiabgwSixlaadUgaaa aaaOGaaGilaiaaywW7caWGQbGaaGypaiaaigdacaaISaGaaGOmaiaa iYcacqWIMaYscaaISaGaamyAaiaaiYcaaaa@73BA@  (19)

x i (t,s)= Q i1 x i1 (t,s), u i (t,s)=(I Q i1 ) x i1 (t,s). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aGaamyuamaaBaaa leaacaWGPbGaeyOeI0IaaGymaaqabaGccaWG4bWaaSbaaSqaaiaadM gacqGHsislcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaI PaGaaGilaiaaywW7caWG1bWaaSbaaSqaaiaadMgaaeqaaOGaaGikai aadshacaaISaGaam4CaiaaiMcacaaI9aGaaGikaiaadMeacqGHsisl caWGrbWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiMcaca WG4bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaaiIcacaWG 0bGaaGilaiaadohacaaIPaGaaGOlaaaa@5CAC@  (20)

Система (11) первого уровня MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  это система для нахождения функции псевдоуправления u i1 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaaaa@398F@  с неизвестной пока функцией псевдосостояния x i1 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaaaa@3992@  и с произвольной функцией f i1 (t,s)Ker D i1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadMgacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaeyic I4Saam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGPbGaeyOeI0 IaaGymaaqabaaaaa@4140@ .

Система (13) второго уровня аналогична по виду системе (8) первого шага, но относительно компонент x i (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37EA@  из еще более узкого подпространства Coker D i1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaam4BaiaadUgacaWGLbGaam OCaiaadseadaWgaaWcbaGaamyAaiabgkHiTiaaigdaaeqaaaaa@39D5@ .

В силу конечномерности исходного пространства n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risnaaCaaaleqabaGaamOBaaaaaaa@3D94@ , возможны лишь два следующих случая:

(i) n 0 > n 1 >> n p1 = n p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaad6gadaWgaaWcbaGaaGymaaqabaGccaaI+aGaeSOjGSKa aGOpaiaad6gadaWgaaWcbaGaamiCaiabgkHiTiaaigdaaeqaaOGaaG ypaiaad6gadaWgaaWcbaGaamiCaaqabaaaaa@3F9F@ ;

(ii) n 0 > n 1 >> n p1 > n p =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaad6gadaWgaaWcbaGaaGymaaqabaGccaaI+aGaeSOjGSKa aGOpaiaad6gadaWgaaWcbaGaamiCaiabgkHiTiaaigdaaeqaaOGaaG Opaiaad6gadaWgaaWcbaGaamiCaaqabaGccaaI9aGaaGimaaaa@412B@ .

При выполнении условий α(s) C k [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGRbaaaOGaaG4waiaaicdacaaI SaGaam4uaiaai2faaaa@3D40@ , β(s) C k [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGRbaaaOGaaG4waiaaicdacaaI SaGaam4uaiaai2faaaa@3D42@  прямой ход полностью реализуется за p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  шагов ( np0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaamiCaiabgwMiZk aaicdaaaa@37EB@  ) переходом к иерархической структуре: системе первого уровня p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  -го шага

u p1 k (t,s) s k = D p1 x p1 (t,s) t B p1 x p1 k (t,s) s k + f p1 (t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhadaqhaa WcbaGaamiCaiabgkHiTiaaigdaaeaacaWGRbaaaOGaaGikaiaadsha caaISaGaam4CaiaaiMcaaeaacqGHciITcaWGZbWaaWbaaSqabeaaca WGRbaaaaaakiaai2dacaWGebWaa0baaSqaaiaadchacqGHsislcaaI XaaabaGaeyOeI0caaOWaaeWaaeaadaWcaaqaaiabgkGi2kaadIhada WgaaWcbaGaamiCaiabgkHiTiaaigdaaeqaaOGaaGikaiaadshacaaI SaGaam4CaiaaiMcaaeaacqGHciITcaWG0baaaiabgkHiTiaadkeada WgaaWcbaGaamiCaiabgkHiTiaaigdaaeqaaOWaaSaaaeaacqGHciIT caWG4bWaa0baaSqaaiaadchacqGHsislcaaIXaaabaGaam4Aaaaaki aaiIcacaWG0bGaaGilaiaadohacaaIPaaabaGaeyOaIyRaam4Camaa CaaaleqabaGaam4AaaaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGMb WaaSbaaSqaaiaadchacqGHsislcaaIXaaabeaakiaaiIcacaWG0bGa aGilaiaadohacaaIPaGaaGilaaaa@6DBE@

с неизвестной пока функцией псевдосостояния x p1 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaaaa@3999@ , с произвольной функцией f p1 (t,s)Ker D p1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaeyic I4Saam4saiaadwgacaWGYbGaamiramaaBaaaleaacaWGWbGaeyOeI0 IaaGymaaqabaaaaa@414E@  и, с учетом расщепления

x p1 (t,s)= x p (t,s)+ u p (t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGyp aiaadIhadaWgaaWcbaGaamiCaaqabaGccaaIOaGaamiDaiaaiYcaca WGZbGaaGykaiabgUcaRiaadwhadaWgaaWcbaGaamiCaaqabaGccaaI OaGaamiDaiaaiYcacaWGZbGaaGykaiaaiYcaaaa@485D@  (21)

к системе второго уровня p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  -го шага

x p (t,s) t = B p x p k (t,s) s k + D p u p k (t,s) s k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadIhadaWgaa WcbaGaamiCaaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqa aiabgkGi2kaadshaaaGaaGypaiaadkeadaWgaaWcbaGaamiCaaqaba GcdaWcaaqaaiabgkGi2kaadIhadaqhaaWcbaGaamiCaaqaaiaadUga aaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaado hadaahaaWcbeqaaiaadUgaaaaaaOGaey4kaSIaamiramaaBaaaleaa caWGWbaabeaakmaalaaabaGaeyOaIyRaamyDamaaDaaaleaacaWGWb aabaGaam4AaaaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaabaGa eyOaIyRaam4CamaaCaaaleqabaGaam4AaaaaaaGccaaISaaaaa@5A48@  (22)

с условиями

2 j x p (t,s) t j | t=0 = α pj (s),j=0,1,,p, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadQgaaaGccaWG4bWaaSbaaSqaaiaadchaaeqaaOGaaGik aiaadshacaaISaGaam4CaiaaiMcaaeaacqGHciITcaWG0bWaaWbaaS qabeaacaWGQbaaaaaakiaaiYhadaWgaaWcbaGaamiDaiaai2dacaaI Waaabeaakiaai2dacqaHXoqydaWgaaWcbaGaamiCaiaadQgaaeqaaO GaaGikaiaadohacaaIPaGaaGilaiaaywW7caWGQbGaaGypaiaaicda caaISaGaaGymaiaaiYcacqWIMaYscaaISaGaamiCaiaaiYcaaaa@53BF@  (23)

j x p (t,s) t j | t=T = β pj (s),j=0,1,,p, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaamOAaaaakiaadIhadaWgaaWcbaGaamiCaaqabaGccaaIOaGaamiD aiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshadaahaaWcbeqaai aadQgaaaaaaOGaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfaaeqa aOGaaGypaiabek7aInaaBaaaleaacaWGWbGaamOAaaqabaGccaaIOa Gaam4CaiaaiMcacaaISaGaaGzbVlaadQgacaaI9aGaaGimaiaaiYca caaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGilaaaa@5324@  (24)

где коэффициенты и функции определяются по формулам (12), (15) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (20), с заменой индекса i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  на p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@ .

Лемма 3. При выполнении условий α(s) C pk [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGWbGaeyyXICTaam4Aaaaakiaa iUfacaaIWaGaaGilaiaadofacaaIDbaaaa@407F@ , β(s) C pk [0,S] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaaWbaaSqabeaacaWGWbGaeyyXICTaam4Aaaaakiaa iUfacaaIWaGaaGilaiaadofacaaIDbaaaa@4081@ , в случае n 0 > n 1 >> n p1 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaO GaaGOpaiaad6gadaWgaaWcbaGaaGymaaqabaGccaaI+aGaeSOjGSKa aGOpaiaad6gadaWgaaWcbaGaamiCaiabgkHiTiaaigdaaeqaaOGaaG Opaiaaicdaaaa@3E46@ , система второго уровня первого шага (8) с условиями (9), (10) эквивалентна цепочке иерархически структурированных систем (11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (13), i=1,2,,p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamiCaaaa@3922@ , с условиями (23), (24).

В случае (i) n p1 = n p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaai2dacaWGUbWaaSbaaSqaaiaadchaaeqaaaaa @385E@ , т.е. dimCoker D p1 =dimCoker D p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGKbGaaiyAaiaac2gacaWGdbGaam 4BaiaadUgacaWGLbGaamOCaiaadseadaWgaaWcbaGaamiCaiabgkHi TiaaigdaaeqaaOGaaGypaiGacsgacaGGPbGaaiyBaiaadoeacaWGVb Gaam4AaiaadwgacaWGYbGaamiramaaBaaaleaacaWGWbaabeaaaaa@46B4@ , что означает D p =(0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadchaaeqaaO GaaGypaiaaiIcacaaIWaGaaGykaaaa@3697@ , система (22) принимает вид

x p (t,s) t = B p x p k (t,s) s k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadIhadaWgaa WcbaGaamiCaaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqa aiabgkGi2kaadshaaaGaaGypaiaadkeadaWgaaWcbaGaamiCaaqaba GcdaWcaaqaaiabgkGi2kaadIhadaqhaaWcbaGaamiCaaqaaiaadUga aaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaado hadaahaaWcbeqaaiaadUgaaaaaaaaa@4A95@  (25)

и является неуправляемой, так как функция псевдосостояния x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@ , найденная как решение дифференциального уравнения (25), в общем случае не будет удовлетворять всем условиям (23), (24). Тем самым доказано следующее утверждение.

Лемма 4. В случае D p =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadchaaeqaaO GaaGypaiaaicdaaaa@3532@  система (22) с условиями (23), (24) не является управляемой.

Неуправляемость системы (22) с условиями (23), (24) влечет неуправляемость всех систем (13) с условиями (14) с i=p1,p2,,2,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaadchacqGHsislca aIXaGaaGilaiaadchacqGHsislcaaIYaGaaGilaiablAciljaaiYca caaIYaGaaGilaiaaigdaaaa@3E1E@ , что влечет и неуправляемость исходной системы (1).

Лемма 5. В случае D p =(0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadchaaeqaaO GaaGypaiaaiIcacaaIWaGaaGykaaaa@3697@  система (1) с условиями (2) не является управляемой.

В случае (ii) n p =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbWaaSbaaSqaaiaadchaaeqaaO GaaGypaiaaicdaaaa@355C@ , т.е. Coker D p =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaam4BaiaadUgacaWGLbGaam OCaiaadseadaWgaaWcbaGaamiCaaqabaGccaaI9aGaaGimaaaa@39BF@ ; таким образом, матрица D p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadchaaeqaaa aa@33A7@  является сюръективной. Можно построить функцию x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@ , удовлетворяющую всем условиям (23), (24) в произвольной форме, например, в виде линейной комбинации линейно независимых функций ψ pi (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaaaaa@3802@  c векторными коэффициентами φ pi (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37F0@ . Построение функции

x p (t,s)= i=1 2(p+1) φ pi (s) ψ pi (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aWaaabCaeqaleaa caWGPbGaaGypaiaaigdaaeaacaaIYaGaaGikaiaadchacqGHRaWkca aIXaGaaGykaaqdcqGHris5aOGaeqOXdO2aaSbaaSqaaiaadchacaWG PbaabeaakiaaiIcacaWGZbGaaGykaiabgwSixlabeI8a5naaBaaale aacaWGWbGaamyAaaqabaGccaaIOaGaamiDaiaaiMcacaaISaaaaa@51A0@  (26)

удовлетворяющей всем 2(p+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaaGikaiaadchacqGHRaWkca aIXaGaaGykaaaa@3670@  условиям (23), (24), затем подстановка ее в выражение

F p (t,s)= x p (t,s) t B p x p k (t,s) s k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aWaaSaaaeaacqGH ciITcaWG4bWaaSbaaSqaaiaadchaaeqaaOGaaGikaiaadshacaaISa Gaam4CaiaaiMcaaeaacqGHciITcaWG0baaaiabgkHiTiaadkeadaWg aaWcbaGaamiCaaqabaGcdaWcaaqaaiabgkGi2kaadIhadaqhaaWcba GaamiCaaqaaiaadUgaaaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGyk aaqaaiabgkGi2kaadohadaahaaWcbeqaaiaadUgaaaaaaOGaaGilaa aa@5244@  (27)

позволяют найти функцию u p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37EE@ , как решение дифференциального уравнения

u p k (t,s) s k = D p F p (t,s)+ f p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadwhadaqhaa WcbaGaamiCaaqaaiaadUgaaaGccaaIOaGaamiDaiaaiYcacaWGZbGa aGykaaqaaiabgkGi2kaadohadaahaaWcbeqaaiaadUgaaaaaaOGaaG ypaiaadseadaqhaaWcbaGaamiCaaqaaiabgkHiTaaakiaadAeadaWg aaWcbaGaamiCaaqabaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykai abgUcaRiaadAgadaWgaaWcbaGaamiCaaqabaGccaaIOaGaamiDaiaa iYcacaWGZbGaaGykaaaa@4E89@  (28)

с произвольной функцией f p (t,s)Ker D p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacqGHiiIZcaWGlbGaamyz aiaadkhacaWGebWaaSbaaSqaaiaadchaaeqaaaaa@3DFE@ , которая может быть взята нулевой.

Следовательно, доказано следующее утверждение.

Лемма 6. В случае сюрьективной матрицы D p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadchaaeqaaa aa@33A7@  система (22) с условиями (23), (24) является полностью управляемой.

Таким образом, прямой ход каскадной декомпозиции завершается выявлением свойства НУ или полностью управляемой системы (22). В случае сюрьективной матрицы D p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadchaaeqaaa aa@33A7@  осуществляется переход ко второму этапу каскадной декомпозиции.

4. Центральный этап декомпозиции. Построение определяющей функции. Содержание центрального этапа декомпозиции составляет построение функции псевдосостояния x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  вида (26), который определяется выбором функций ψ pi (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaaaaa@3802@ . При этом функция x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  должна удовлетворять всем условиям (23), (24).

Определение 1. Минимальный набор линейно независимых функций ψ pi (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaaaaa@3802@ , выбранных для построения функции x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  вида (26), называется базисным набором

w(t)=( ψ p1 (t), ψ p2 (t),, ψ pr (t)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadshacaaIPaGaaG ypaiaaiIcacqaHipqEdaWgaaWcbaGaamiCaiaaigdaaeqaaOGaaGik aiaadshacaaIPaGaaGilaiaaysW7cqaHipqEdaWgaaWcbaGaamiCai aaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaiaaysW7cqWIMaYs caaISaGaaGjbVlabeI8a5naaBaaaleaacaWGWbGaamOCaaqabaGcca aIOaGaamiDaiaaiMcacaaIPaGaaGOlaaaa@5259@  (29)

Сами функции ψ pi (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaaaaa@3802@ , i=1,,r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaeS OjGSKaaGilaiaadkhaaaa@37B2@ , называются базисными функциями. Число r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbaaaa@32B4@ , равное минимальному количеству базисных функций, определяется количеством условий (23), (24) и называется размерностью базисного набора: r=dimw(t)=2(p+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGypaiGacsgacaGGPbGaai yBaiaadEhacaaIOaGaamiDaiaaiMcacaaI9aGaaGOmaiaaiIcacaWG WbGaey4kaSIaaGymaiaaiMcaaaa@3F17@ .

В зависимости от вида функций α pj (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaWgaaWcbaGaamiCaiaadQ gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37D3@ , β pj (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaamiCaiaadQ gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37D5@  в условиях (23), (24), которые, в свою очередь, определяются видом функций α(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcaaa a@35B9@ , β(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcaaa a@35BB@  в условиях (2), или от пожеланий исследователя, возможен выбор базисных функций в виде степенных функций, в экспоненциальном виде, в виде дробно-линейных функций и т. д. Очевидно, форма функции x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  определяется видом базисного набора w(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadshacaaIPaaaaa@3517@ . Вид функции x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@ , в свою очередь, определяет вид функций состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@  и управления u(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C3@ , т.е. определяет вид аналитического решения задачи управления для полностью управляемой системы (1) с условиями (2).

Определение 2. Построенная для выбранного базисного набора (29) функция x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  вида (26), удовлетворяющая всем условиям (23), (24), называется определяющей функцией.

4.1. Общая схема построения определяющей функции. Подстановка определяющей функции (26) в условия (23), (24) приводит к системе

2 φ pi (s) j ψ pi (t) t j | t=0 = α pj (s),j=0,1,,p, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaeqOXdO2aaSbaaSqaaiaadc hacaWGPbaabeaakiaaiIcacaWGZbGaaGykaiabgwSixpaalaaabaGa eyOaIy7aaWbaaSqabeaacaWGQbaaaOGaeqiYdK3aaSbaaSqaaiaadc hacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaqaaiabgkGi2kaadsha daahaaWcbeqaaiaadQgaaaaaaOGaaGiFamaaBaaaleaacaWG0bGaaG ypaiaaicdaaeqaaOGaaGypaiabeg7aHnaaBaaaleaacaWGWbGaamOA aaqabaGccaaIOaGaam4CaiaaiMcacaaISaGaaGzbVlaadQgacaaI9a GaaGimaiaaiYcacaaIXaGaaGilaiablAciljaaiYcacaWGWbGaaGil aaaa@5C4D@  (30)

φ pi (s) j ψ pi (t) t j | t=T = β pj (s),j=0,1,,p, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaGaeyyXIC9aaSaaaeaacqGHciIT daahaaWcbeqaaiaadQgaaaGccqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaaabaGaeyOaIyRaamiDamaaCaaa leqabaGaamOAaaaaaaGccaaI8bWaaSbaaSqaaiaadshacaaI9aGaam ivaaqabaGccaaI9aGaeqOSdi2aaSbaaSqaaiaadchacaWGQbaabeaa kiaaiIcacaWGZbGaaGykaiaaiYcacaaMf8UaamOAaiaai2dacaaIWa GaaGilaiaaigdacaaISaGaeSOjGSKaaGilaiaadchacaaISaaaaa@5BB2@  (31)

относительно векторных коэффициентов φ pi (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37F0@ , i=1,2,,r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOCaaaa@3924@ . Введем в рассмотрение определитель вида

W( t 1 , t 2 )=det w( t 1 ), w ' ( t 1 ), w ' ( t 1 ), , w p ( t 1 ), w( t 2 ), w ' ( t 2 ), w ' ( t 2 ), , w p ( t p ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadshadaWgaaWcba GaaGymaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaabeaakiaa iMcacaaI9aGaciizaiaacwgacaGG0bWaaeWaaeaafaqabeWcbaaaaa qaaiaadEhacaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiMca caaISaaabaGaam4DamaaCaaaleqabaGaaG4jaaaakiaaiIcacaWG0b WaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiYcaaeaacaWG3bWaaWba aSqabeaaceaINaGbauaaaaGccaaIOaGaamiDamaaBaaaleaacaaIXa aabeaakiaaiMcacaaISaaabaGaeSOjGSKaaGilaaqaaiaadEhadaah aaWcbeqaaiaadchaaaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiMcacaaISaaabaGaam4DaiaaiIcacaWG0bWaaSbaaSqaaiaa ikdaaeqaaOGaaGykaiaaiYcaaeaacaWG3bWaaWbaaSqabeaacaaINa aaaOGaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGil aaqaaiaadEhadaahaaWcbeqaaiqaiEcagaqbaaaakiaaiIcacaWG0b WaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaaiYcaaeaacqWIMaYscaaI SaaabaGaam4DamaaCaaaleqabaGaamiCaaaakiaaiIcacaWG0bWaaS baaSqaaiaadchaaeqaaOGaaGykaaqaaaaaaiaawIcacaGLPaaaaaa@6F12@  (32)

где w j ( t i ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaWbaaSqabeaacaWGQbaaaO GaaGikaiaadshadaWgaaWcbaGaamyAaaqabaGccaaIPaaaaa@3761@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  производные j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32AC@  -го порядка от компонент базисного набора w(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadshacaaIPaaaaa@3517@ , вычисленные в точках t i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@33D0@ , j=0,1,,p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaicdacaaISaGaaG ymaiaaiYcacqWIMaYscaaISaGaamiCaaaa@3921@ , i=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG Omaaaa@359F@ . Определитель (32) размера r×r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaey41aqRaamOCaaaa@35C2@ , где r=2(p+1)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGypaiaaikdacaaIOaGaam iCaiabgUcaRiaaigdacaaIPaGaaGykaaaa@38E1@ , состоит из двух блоков: первые p+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaey4kaSIaaGymaaaa@344F@  строк MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  это первые p+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaey4kaSIaaGymaaaa@344F@  строк вронскиана, составленного из функций базисного набора w(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadshacaaIPaaaaa@3517@  в точке t 1 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaG4oaaaa@346C@  последние p+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaey4kaSIaaGymaaaa@344F@  сторок MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  это первые p+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaey4kaSIaaGymaaaa@344F@  строк вронскиана, составленного из функций базисного набора w(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadshacaaIPaaaaa@3517@  со значениями в точке t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaikdaaeqaaa aa@339E@ .

Определение 3. Определитель W( t 1 , t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadshadaWgaaWcba GaaGymaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaabeaakiaa iMcaaaa@3889@  вида (32), построенный для базисного набора w(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadshacaaIPaaaaa@3517@  вида (29), называется двухточечным псевдовронскианом.

Функции φ pi (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37F0@ , i=1,2,,r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOCaaaa@3924@ , образующие решение системы (30), (31) находятся по формулам

φ pi (s)= 1 W(0,T) W i (s,0,T),i=1,2,,r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaadEfacaaIOaGaaGimaiaaiYcacaWGubGaaGykaaaacqGHflY1ca WGxbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadohacaaISaGaaGim aiaaiYcacaWGubGaaGykaiaaiYcacaaMf8UaamyAaiaai2dacaaIXa GaaGilaiaaikdacaaISaGaeSOjGSKaaGilaiaadkhacaaISaaaaa@5213@  (33)

где W(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaaicdacaaISaGaam ivaiaaiMcaaaa@3647@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  значение двухточечного псевдовронскиана, вычисленное для значений t 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3528@ , t 2 =T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadsfaaaa@3548@ ; W i (s,0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadohacaaISaGaaGimaiaaiYcacaWGubGaaGykaaaa@3919@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  определитель полученный из W(0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaaicdacaaISaGaam ivaiaaiMcaaaa@3647@ , с заменой i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  -го столбца на столбец правых частей системы (30), (31).

Теорема 1. Для базисного набора w(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadshacaaIPaaaaa@3517@  вида (29) существует определяющая функция x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  вида (26) тогда и только тогда, когда двухточечный вронскиан W( t 1 , t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadshadaWgaaWcba GaaGymaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaabeaakiaa iMcaaaa@3889@ , определяемый выражением (32) удовлетворяет условию

W(0,T)0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaaicdacaaISaGaam ivaiaaiMcacqGHGjsUcaaIWaGaaGOlaaaa@3980@  (34)

При условии (34) векторные коэффициенты определяющей функции φ pi (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37F0@ , i=1,2,,r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOCaaaa@3924@ , находятся по формулам (33).

Далее к рассмотрению предлагается построение определяющей функции в различных формах: полиномиальной, экспоненциальной, дробно-линейной. Верхние индексы pl MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaamiBaaaa@33A3@ , exp MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGLbGaaiiEaiaacchaaaa@3498@ , dr MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbGaamOCaaaa@339D@  в формулах будут соответствовать выбору базисных функций полиномиального, экспоненциального, дробно-рационального вида.

4.2. Построение определяющей функции в полиномиальном виде. В случае выбора базисных функций в форме

ψ pi (t)= t i1 ,i=1,2,,r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaadshadaahaaWcbeqa aiaadMgacqGHsislcaaIXaaaaOGaaGilaiaaywW7caWGPbGaaGypai aaigdacaaISaGaaGOmaiaaiYcacqWIMaYscaaISaGaamOCaiaaiYca aaa@46F0@

базисный набор имеет вид

w pl (t)=(1,t, t 2 ,, t r1 , t i1 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaWbaaSqabeaacaWGWbGaam iBaaaakiaaiIcacaWG0bGaaGykaiaai2dacaaIOaGaaGymaiaaiYca caaMe8UaamiDaiaaiYcacaaMe8UaamiDamaaCaaaleqabaGaaGOmaa aakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWG0bWaaWbaaSqa beaacaWGYbGaeyOeI0IaaGymaaaakiaaiYcacaaMe8UaamiDamaaCa aaleqabaGaamyAaiabgkHiTiaaigdaaaGccaaIPaGaaGOlaaaa@51BE@  (35)

Разложение по формуле Тейлора функции W(t,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadshacaaISaGaam ivaiaaiMcaaaa@3686@  (в окрестности точки t=T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadsfaaaa@3456@  ) имеет вид

W pl ( t 1 ,T)= j=0 p 1 j! W pl(j) (t,T )| t= t 1 (T t 1 ) j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaWGWbGaam iBaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaa dsfacaaIPaGaaGypamaaqahabeWcbaGaamOAaiaai2dacaaIWaaaba GaamiCaaqdcqGHris5aOWaaSaaaeaacaaIXaaabaGaamOAaiaaigca aaGaam4vamaaCaaaleqabaGaamiCaiaadYgacaaIOaGaamOAaiaaiM caaaGccaaIOaGaamiDaiaaiYcacaWGubGaaGykaiaaiYhadaWgaaWc baGaamiDaiaai2dacaWG0bWaaSbaaeaacaaIXaaabeaaaeqaaOGaaG ikaiaadsfacqGHsislcaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGyk amaaCaaaleqabaGaamOAaaaaaaa@56AE@  (36)

c W pl(j) (t,T)= d (j) W pl (t,T) d t (j) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaWGWbGaam iBaiaaiIcacaWGQbGaaGykaaaakiaaiIcacaWG0bGaaGilaiaadsfa caaIPaGaaGypamaalaaabaGaamizamaaCaaaleqabaGaaGikaiaadQ gacaaIPaaaaOGaam4vamaaCaaaleqabaGaamiCaiaadYgaaaGccaaI OaGaamiDaiaaiYcacaWGubGaaGykaaqaaiaadsgacaWG0bWaaWbaaS qabeaacaaIOaGaamOAaiaaiMcaaaaaaaaa@4A8B@ , и при t 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3528@  вычисляется по формуле

W pl (0,T)=( T (p+1) i=1 p (i !)) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaWGWbGaam iBaaaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaGaaGypaiaaiIca caWGubWaaWbaaSqabeaacaaIOaGaamiCaiabgUcaRiaaigdacaaIPa aaaOGaeyyXIC9aaebCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWG Wbaaniabg+GivdGccaaIOaGaamyAaiaaigcacaaIPaGaaGykamaaCa aaleqabaGaaGOmaaaakiaai6caaaa@4C2B@  (37)

Векторные коэффициенты определяющей функции полиномиального вида находятся по формулам

φ pi (s)= 1 T (p+1) i=1 p (i!) 2 W i pl (s,0,T),i=1,2,,r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaGaaGypamaalaaabaGaaGymaaqa amaabmaabaGaamivamaaCaaaleqabaGaaGikaiaadchacqGHRaWkca aIXaGaaGykaaaakiabgwSixpaarahabeWcbaGaamyAaiaai2dacaaI XaaabaGaamiCaaqdcqGHpis1aOGaaGikaiaadMgacaaIHaGaaGykaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaGccqGHflY1caWG xbWaa0baaSqaaiaadMgaaeaacaWGWbGaamiBaaaakiaaiIcacaWGZb GaaGilaiaaicdacaaISaGaamivaiaaiMcacaaISaGaaGzbVlaadMga caaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAciljaaiYcacaWGYb GaaGilaaaa@61DC@  (38)

где W i pl (s,0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaa0baaSqaaiaadMgaaeaaca WGWbGaamiBaaaakiaaiIcacaWGZbGaaGilaiaaicdacaaISaGaamiv aiaaiMcaaaa@3B00@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  определитель, полученный из выражения (36) для W pl (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaWGWbGaam iBaaaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaaaaa@3864@ , заменой i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  -го столбца на столбец правых частей системы (30), (31).

Теорема 2. Для базисного набора (35) существует определяющая функция

x p (t,s)= x p pl (t,s)= i=1 r φ pi (s) t i1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aGaamiEamaaDaaa leaacaWGWbaabaGaamiCaiaadYgaaaGccaaIOaGaamiDaiaaiYcaca WGZbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqa aiaadkhaa0GaeyyeIuoakiabeA8aQnaaBaaaleaacaWGWbGaamyAaa qabaGccaaIOaGaam4CaiaaiMcacqGHflY1caWG0bWaaWbaaSqabeaa caWGPbGaeyOeI0IaaGymaaaakiaaiYcaaaa@5447@

с векторными коэффициентами φ pi (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37F0@  вида (38).

4.3. Построение определяющей функции в экспоненциальном виде. В случае выбора базисных функций

ψ pi (t)= e (i1)t ,i=1,2,,r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaadwgadaahaaWcbeqa aiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcacaWG0baaaOGaaGilai aaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacqWIMaYs caaISaGaamOCaiaaiYcaaaa@493F@

базисный набор имеет вид

w exp (t)=(1, e t , e 2t ,, e (r2)t , e (r1)t ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaWbaaSqabeaaciGGLbGaai iEaiaacchaaaGccaaIOaGaamiDaiaaiMcacaaI9aGaaGikaiaaigda caaISaGaaGjbVlaadwgadaahaaWcbeqaaiaadshaaaGccaaISaGaaG jbVlaadwgadaahaaWcbeqaaiaaikdacaWG0baaaOGaaGilaiaaysW7 cqWIMaYscaaISaGaaGjbVlaadwgadaahaaWcbeqaaiaaiIcacaWGYb GaeyOeI0IaaGOmaiaaiMcacaWG0baaaOGaaGilaiaaysW7caWGLbWa aWbaaSqabeaacaaIOaGaamOCaiabgkHiTiaaigdacaaIPaGaamiDaa aakiaaiMcaaaa@58AE@  (39)

и значение двухточечного псевдовронскиана, вычисленное при t 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3528@ , t 2 =T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadsfaaaa@3548@ , определяется формулой

W exp (0,T)=exp T k=1 p k W pl (0,T), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaaciGGLbGaai iEaiaacchaaaGccaaIOaGaaGimaiaaiYcacaWGubGaaGykaiaai2da ciGGLbGaaiiEaiaacchadaqadaqaaiaadsfacqGHflY1daqadaqaam aaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamiCaaqdcqGHris5 aOGaam4AaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgwSixlaadE fadaahaaWcbeqaaiaadchacaWGSbaaaOGaaGikaiaaicdacaaISaGa amivaiaaiMcacaaISaaaaa@537B@  (40)

где W pl (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaWGWbGaam iBaaaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaaaaa@3864@  вычисляется формулой (37). Векторные коэффициенты определяющей функции экспоненциального вида находятся по формулам

φ pi (s)= 1 exp T k=1 p k T (p+1) i=1 p (i!) 2 W i exp (s,0,T),i=1,2,,r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaGaaGypamaalaaabaGaaGymaaqa aiGacwgacaGG4bGaaiiCamaabmaabaGaamivaiabgwSixpaabmaaba WaaabCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGWbaaniabggHi LdGccaWGRbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyyXIC9aae WaaeaacaWGubWaaWbaaSqabeaacaaIOaGaamiCaiabgUcaRiaaigda caaIPaaaaOGaeyyXIC9aaebCaeqaleaacaWGPbGaaGypaiaaigdaae aacaWGWbaaniabg+GivdGccaaIOaGaamyAaiaaigcacaaIPaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakiabgwSixlaadEfada qhaaWcbaGaamyAaaqaaiGacwgacaGG4bGaaiiCaaaakiaaiIcacaWG ZbGaaGilaiaaicdacaaISaGaamivaiaaiMcacaaISaGaaGzbVlaadM gacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAciljaaiYcacaWG YbGaaGilaaaa@74CF@  (41)

где W i exp (s,0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaa0baaSqaaiaadMgaaeaaci GGLbGaaiiEaiaacchaaaGccaaIOaGaam4CaiaaiYcacaaIWaGaaGil aiaadsfacaaIPaaaaa@3BF5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  определитель, полученный из W exp (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaaciGGLbGaai iEaiaacchaaaGccaaIOaGaaGimaiaaiYcacaWGubGaaGykaaaa@3959@  вида (40) заменой i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  -го столбца на столбец правых частей системы (30), (31).

Теорема 3. Для базисного набора экспоненциальных функций (39) существует определяющая функция экспоненциального вида

x p (t,s)= x p exp (t,s)= i=1 r φ pi (s) e (i1)t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aGaamiEamaaDaaa leaacaWGWbaabaGaciyzaiaacIhacaGGWbaaaOGaaGikaiaadshaca aISaGaam4CaiaaiMcacaaI9aWaaabCaeqaleaacaWGPbGaaGypaiaa igdaaeaacaWGYbaaniabggHiLdGccqaHgpGAdaWgaaWcbaGaamiCai aadMgaaeqaaOGaaGikaiaadohacaaIPaGaamyzamaaCaaaleqabaGa aGikaiaadMgacqGHsislcaaIXaGaaGykaiaadshaaaaaaa@5481@

с векторными коэффициентами φ pi (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37F0@ , определяемыми формулой (41).

4.4. Построение определяющей функции в дробно-рациональном виде. Для базисных функций

ψ pi (t)= 1 (t t 0 ) (i1) ,i=1,2,,r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaiIcacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaaIWaaabeaaki aaiMcadaahaaWcbeqaaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMca aaaaaOGaaGilaiaaywW7caWGPbGaaGypaiaaigdacaaISaGaaGOmai aaiYcacqWIMaYscaaISaGaamOCaiaaiYcaaaa@4D5B@

c t 0 (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaeyicI4SaaGikaiaaicdacaaISaGaamivaiaaiMcaaaa@38D8@ , базисный набор имеет вид

w dr (t)= 1, 1 (t t 0 ) , 1 (t t 0 ) 2 ,, 1 (t t 0 ) (r2) , 1 (t t 0 ) (r1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaWbaaSqabeaacaWGKbGaam OCaaaakiaaiIcacaWG0bGaaGykaiaai2dadaqadaqaaiaaigdacaaI SaGaaGjbVpaalaaabaGaaGymaaqaaiaaiIcacaWG0bGaeyOeI0Iaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcaaaGaaGilaiaaysW7daWc aaqaaiaaigdaaeaacaaIOaGaamiDaiabgkHiTiaadshadaWgaaWcba GaaGimaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaaakiaaiYca caaMe8UaeSOjGSKaaGilaiaaysW7daWcaaqaaiaaigdaaeaacaaIOa GaamiDaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaWa aWbaaSqabeaacaaIOaGaamOCaiabgkHiTiaaikdacaaIPaaaaaaaki aaiYcadaWcaaqaaiaaigdaaeaacaaIOaGaamiDaiabgkHiTiaadsha daWgaaWcbaGaaGimaaqabaGccaaIPaWaaWbaaSqabeaacaaIOaGaam OCaiabgkHiTiaaigdacaaIPaaaaaaaaOGaayjkaiaawMcaaaaa@6683@  (42)

ddd и значение двухточечного псевдовронскиана, вычисленное при t 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3528@ , t 2 =T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaikdaaeqaaO GaaGypaiaadsfaaaa@3548@ , определяется формулой

W dr (0,T)= T (p+1) i=1 p (i!) i=2 p+2 ( t 0 (T t 0 )) (i1) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaWGKbGaam OCaaaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaGaaGypamaabmaa baWaaSaaaeaacaWGubWaaWbaaSqabeaacaaIOaGaamiCaiabgUcaRi aaigdacaaIPaaaaOGaeyyXIC9aaebCaeqaleaacaWGPbGaaGypaiaa igdaaeaacaWGWbaaniabg+GivdGccaaIOaGaamyAaiaaigcacaaIPa aabaWaaebCaeqaleaacaWGPbGaaGypaiaaikdaaeaacaWGWbGaey4k aSIaaGOmaaqdcqGHpis1aOGaaGikaiaadshadaWgaaWcbaGaaGimaa qabaGccaaIOaGaamivaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqa baGccaaIPaGaaGykamaaCaaaleqabaGaaGikaiaadMgacqGHsislca aIXaGaaGykaaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaGccaaIUaaaaa@602D@  (43)

Векторные коэффициенты определяющей функции дробно-рационального вида находятся по формулам

φ pi (s)= i=2 p+2 ( t 0 (T t 0 )) (i1) T (p+1) i=1 p (i!) 2 W i dr (s,0,T),i=1,2,,r, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaGaaGypamaabmaabaWaaSaaaeaa daqeWbqabSqaaiaadMgacaaI9aGaaGOmaaqaaiaadchacqGHRaWkca aIYaaaniabg+GivdGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaa kiaaiIcacaWGubGaeyOeI0IaamiDamaaBaaaleaacaaIWaaabeaaki aaiMcacaaIPaWaaWbaaSqabeaacaaIOaGaamyAaiabgkHiTiaaigda caaIPaaaaaGcbaGaamivamaaCaaaleqabaGaaGikaiaadchacqGHRa WkcaaIXaGaaGykaaaakiabgwSixpaarahabeWcbaGaamyAaiaai2da caaIXaaabaGaamiCaaqdcqGHpis1aOGaaGikaiaadMgacaaIHaGaaG ykaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHflY1 caWGxbWaa0baaSqaaiaadMgaaeaacaWGKbGaamOCaaaakiaaiIcaca WGZbGaaGilaiaaicdacaaISaGaamivaiaaiMcacaaISaGaaGzbVlaa dMgacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiablAciljaaiYcaca WGYbGaaGilaaaa@74EF@  (44)

где W i dr (s,0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaa0baaSqaaiaadMgaaeaaca WGKbGaamOCaaaakiaaiIcacaWGZbGaaGilaiaaicdacaaISaGaamiv aiaaiMcaaaa@3AFA@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  определитель, полученный из W dr (0,T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbWaaWbaaSqabeaacaWGKbGaam OCaaaakiaaiIcacaaIWaGaaGilaiaadsfacaaIPaaaaa@385E@  заменой i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbaaaa@32AB@  -го столбца на столбец правых частей системы (30), (31).

Таким образом, доказана следующая теорема.

Теорема 4. Для базисного набора (42) существует определяющая функция дробно-рационального вида

x p (t,s)= x p dr (t,s)= i=1 r φ pi (s) 1 (t t 0 ) (i1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aGaamiEamaaDaaa leaacaWGWbaabaGaamizaiaadkhaaaGccaaIOaGaamiDaiaaiYcaca WGZbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqa aiaadkhaa0GaeyyeIuoakiabeA8aQnaaBaaaleaacaWGWbGaamyAaa qabaGccaaIOaGaam4CaiaaiMcadaWcaaqaaiaaigdaaeaacaaIOaGa amiDaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaWaaW baaSqabeaacaaIOaGaamyAaiabgkHiTiaaigdacaaIPaaaaaaakiaa iYcaaaa@5862@

с векторными коэффициентами φ pi (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamiCaiaadM gaaeqaaOGaaGikaiaadohacaaIPaaaaa@37F0@ , определяемыми формулой (44).

Построением определяющей функции завершается центральный этап декомпозиции. Далее реализуется этап восстановления функции состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@ .

5. Обратный ход декомпозиции. Наличие определяющей функции x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  позволяет найти функцию F p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37BF@  вида (27). Интегрирование k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  раз правой части уравнения (28) с этой найденной функцией F p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37BF@  приводит к выражению для u p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37EE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функции псевдоуправления p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  -го шага

u p (t,s)= D p 0 s 0 τ k1 0 τ 1 F p (t,τ)dτd τ 1 d τ k2 d τ k1 + h p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aGaamiramaaDaaa leaacaWGWbaabaGaeyOeI0caaOWaa8qmaeqaleaacaaIWaaabaGaam 4CaaqdcqGHRiI8aOWaa8qmaeqaleaacaaIWaaabaGaeqiXdq3aaSba aeaacaWGRbGaeyOeI0IaaGymaaqabaaaniabgUIiYdGccqWIMaYsda WdXaqabSqaaiaaicdaaeaacqaHepaDdaWgaaqaaiaaigdaaeqaaaqd cqGHRiI8aOGaamOramaaBaaaleaacaWGWbaabeaakiaaiIcacaWG0b GaaGilaiabes8a0jaaiMcacaaMi8Uaamizaiabes8a0jaayIW7caWG KbGaeqiXdq3aaSbaaSqaaiaaigdaaeqaaOGaaGjcVlablAciljaayI W7caWGKbGaeqiXdq3aaSbaaSqaaiaadUgacqGHsislcaaIYaaabeaa kiaayIW7caWGKbGaeqiXdq3aaSbaaSqaaiaadUgacqGHsislcaaIXa aabeaakiabgUcaRiaadIgadaWgaaWcbaGaamiCaaqabaGccaaIOaGa amiDaiaaiYcacaWGZbGaaGykaaaa@75AC@

с последним слагаемым вида

h p (t,s)= i=1 k h pi (t) s i1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aWaaabCaeqaleaa caWGPbGaaGypaiaaigdaaeaacaWGRbaaniabggHiLdGccaWGObWaaS baaSqaaiaadchacaWGPbaabeaakiaaiIcacaWG0bGaaGykaiabgwSi xlaadohadaahaaWcbeqaaiaadMgacqGHsislcaaIXaaaaOGaaGOlaa aa@4A80@

Функции h pi (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadchacaWGPb aabeaakiaaiIcacaWG0bGaaGykaaaa@3721@  подбираются таким образом, чтобы удовлетворялись условия

2 j h pi (t) s j | t=0 =(I Q p1 ) α p1j (0),j=0,1,,p1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadQgaaaGccaWGObWaaSbaaSqaaiaadchacaWGPbaabeaa kiaaiIcacaWG0bGaaGykaaqaaiabgkGi2kaadohadaahaaWcbeqaai aadQgaaaaaaOGaaGiFamaaBaaaleaacaWG0bGaaGypaiaaicdaaeqa aOGaaGypaiaaiIcacaWGjbGaeyOeI0IaamyuamaaBaaaleaacaWGWb GaeyOeI0IaaGymaaqabaGccaaIPaGaeqySde2aaSbaaSqaaiaadcha cqGHsislcaaIXaGaamOAaaqabaGccaaIOaGaaGimaiaaiMcacaaISa GaaGzbVlaadQgacaaI9aGaaGimaiaaiYcacaaIXaGaaGilaiablAci ljaaiYcacaWGWbGaeyOeI0IaaGymaiaaiYcaaaa@5CC9@

j h pi (t) s j | t=T =(I Q p1 ) β p1j (0),j=0,1,,p1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaamOAaaaakiaadIgadaWgaaWcbaGaamiCaiaadMgaaeqaaOGaaGik aiaadshacaaIPaaabaGaeyOaIyRaam4CamaaCaaaleqabaGaamOAaa aaaaGccaaI8bWaaSbaaSqaaiaadshacaaI9aGaamivaaqabaGccaaI 9aGaaGikaiaadMeacqGHsislcaWGrbWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiMcacqaHYoGydaWgaaWcbaGaamiCaiabgkHi TiaaigdacaWGQbaabeaakiaaiIcacaaIWaGaaGykaiaaiYcacaaMf8 UaamOAaiaai2dacaaIWaGaaGilaiaaigdacaaISaGaeSOjGSKaaGil aiaadchacqGHsislcaaIXaGaaGOlaaaa@5C30@

Функция псевдосостояния (p1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiCaiabgkHiTiaaigdaca aIPaaaaa@35BF@  -го шага x p1 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaaaa@3999@ , с учетом выражений (21) и (26) восстанавливается в виде

x p1 (t,s)= i=1 2(p+1) φ pi (s) ψ pi (t)+ u p (t,s). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGyp amaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaaGOmaiaaiIcaca WGWbGaey4kaSIaaGymaiaaiMcaa0GaeyyeIuoakiabeA8aQnaaBaaa leaacaWGWbGaamyAaaqabaGccaaIOaGaam4CaiaaiMcacqGHflY1cq aHipqEdaWgaaWcbaGaamiCaiaadMgaaeqaaOGaaGikaiaadshacaaI PaGaey4kaSIaamyDamaaBaaaleaacaWGWbaabeaakiaaiIcacaWG0b GaaGilaiaadohacaaIPaGaaGOlaaaa@5A5D@  (45)

Подстановка выражения (45) в формулу (27) с заменой индекса p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  на p1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaeyOeI0IaaGymaaaa@345A@ , затем k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  -кратное интегрирование правой части уравнения (28) с заменой индекса p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  на p1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaeyOeI0IaaGymaaaa@345A@  с найденной функцией F p1 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaaaa@3967@  приводит к следующему выражению для функции псевдоуправления (p1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiCaiabgkHiTiaaigdaca aIPaaaaa@35BF@  -го шага:

u p1 (t,s)= D p1 0 s 0 τ k1 0 τ 1 F p1 (t,τ)dτd τ 1 d τ k2 d τ k1 + h p1 (t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGyp aiaadseadaqhaaWcbaGaamiCaiabgkHiTiaaigdaaeaacqGHsislaa GcdaWdXaqabSqaaiaaicdaaeaacaWGZbaaniabgUIiYdGcdaWdXaqa bSqaaiaaicdaaeaacqaHepaDdaWgaaqaaiaadUgacqGHsislcaaIXa aabeaaa0Gaey4kIipakiablAcilnaapedabeWcbaGaaGimaaqaaiab es8a0naaBaaabaGaaGymaaqabaaaniabgUIiYdGccaWGgbWaaSbaaS qaaiaadchacqGHsislcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiab es8a0jaaiMcacaaMi8Uaamizaiabes8a0jaayIW7caWGKbGaeqiXdq 3aaSbaaSqaaiaaigdaaeqaaOGaaGjcVlablAciljaayIW7caWGKbGa eqiXdq3aaSbaaSqaaiaadUgacqGHsislcaaIYaaabeaakiaayIW7ca WGKbGaeqiXdq3aaSbaaSqaaiaadUgacqGHsislcaaIXaaabeaakiab gUcaRiaadIgadaWgaaWcbaGaamiCaiabgkHiTiaaigdaaeqaaOGaaG ikaiaadshacaaISaGaam4CaiaaiMcacaaISaaaaa@7D02@

с последним слагаемым вида

h p1 (t,s)= i=1 k h p1i (t) s i1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadchacqGHsi slcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGyp amaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaam4AaaqdcqGHri s5aOGaamiAamaaBaaaleaacaWGWbGaeyOeI0IaaGymaiaadMgaaeqa aOGaaGikaiaadshacaaIPaGaeyyXICTaam4CamaaCaaaleqabaGaam yAaiabgkHiTiaaigdaaaGccaaIUaaaaa@4DD0@

Функции h p1i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadchacqGHsi slcaaIXaGaamyAaaqabaGccaaIOaGaamiDaiaaiMcaaaa@38C9@  подбираются таким образом, чтобы удовлетворить условиям

2 j h p1i (t) s j | t=0 =(I Q p2 ) α p2j (0),j=0,1,,p2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadQgaaaGccaWGObWaaSbaaSqaaiaadchacqGHsislcaaI XaGaamyAaaqabaGccaaIOaGaamiDaiaaiMcaaeaacqGHciITcaWGZb WaaWbaaSqabeaacaWGQbaaaaaakiaaiYhadaWgaaWcbaGaamiDaiaa i2dacaaIWaaabeaakiaai2dacaaIOaGaamysaiabgkHiTiaadgfada WgaaWcbaGaamiCaiabgkHiTiaaikdaaeqaaOGaaGykaiabeg7aHnaa BaaaleaacaWGWbGaeyOeI0IaaGOmaiaadQgaaeqaaOGaaGikaiaaic dacaaIPaGaaGilaiaaywW7caWGQbGaaGypaiaaicdacaaISaGaaGym aiaaiYcacqWIMaYscaaISaGaamiCaiabgkHiTiaaikdacaaISaaaaa@5E74@

j h p1i (t) s j | t=T =(I Q p2 ) β p2j (0),j=0,1,,p2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaamOAaaaakiaadIgadaWgaaWcbaGaamiCaiabgkHiTiaaigdacaWG PbaabeaakiaaiIcacaWG0bGaaGykaaqaaiabgkGi2kaadohadaahaa WcbeqaaiaadQgaaaaaaOGaaGiFamaaBaaaleaacaWG0bGaaGypaiaa dsfaaeqaaOGaaGypaiaaiIcacaWGjbGaeyOeI0IaamyuamaaBaaale aacaWGWbGaeyOeI0IaaGOmaaqabaGccaaIPaGaeqOSdi2aaSbaaSqa aiaadchacqGHsislcaaIYaGaamOAaaqabaGccaaIOaGaaGimaiaaiM cacaaISaGaaGzbVlaadQgacaaI9aGaaGimaiaaiYcacaaIXaGaaGil aiablAciljaaiYcacaWGWbGaeyOeI0IaaGOmaiaai6caaaa@5DDB@

Затем восстанавливается функция псевдосостояния p2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaeyOeI0IaaGOmaaaa@345B@  -го шага x p2 (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchacqGHsi slcaaIYaaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaaaa@399A@  и так далее.

Далее последовательно (c i=p1,p,,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaadchacqGHsislca aIXaGaaGilaiaadchacaaISaGaeSOjGSKaaGilaiaaigdaaaa@3B03@  ) используется цепочка формул

x i (t,s)= x i+1 (t,s)+ u i+1 (t,s), F i (t,s)= x i (t,s) t B i x i k (t,s) s k , u i (t,s)= D i 0 s 0 τ k1 0 τ 1 F i (t,τ)dτd τ 1 d τ k2 d τ k1 + h i (t,s), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaamiEamaaBaaale aacaWGPbaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGyp aiaadIhadaWgaaWcbaGaamyAaiabgUcaRiaaigdaaeqaaOGaaGikai aadshacaaISaGaam4CaiaaiMcacqGHRaWkcaWG1bWaaSbaaSqaaiaa dMgacqGHRaWkcaaIXaaabeaakiaaiIcacaWG0bGaaGilaiaadohaca aIPaGaaGilaiaaywW7caWGgbWaaSbaaSqaaiaadMgaaeqaaOGaaGik aiaadshacaaISaGaam4CaiaaiMcacaaI9aWaaSaaaeaacqGHciITca WG4bWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaISaGaam4C aiaaiMcaaeaacqGHciITcaWG0baaaiabgkHiTiaadkeadaWgaaWcba GaamyAaaqabaGcdaWcaaqaaiabgkGi2kaadIhadaqhaaWcbaGaamyA aaqaaiaadUgaaaGccaaIOaGaamiDaiaaiYcacaWGZbGaaGykaaqaai abgkGi2kaadohadaahaaWcbeqaaiaadUgaaaaaaOGaaGilaaqaaiaa dwhadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiDaiaaiYcacaWGZb GaaGykaiaai2dacaWGebWaa0baaSqaaiaadMgaaeaacqGHsislaaGc daWdXaqabSqaaiaaicdaaeaacaWGZbaaniabgUIiYdGcdaWdXaqabS qaaiaaicdaaeaacqaHepaDdaWgaaqaaiaadUgacqGHsislcaaIXaaa beaaa0Gaey4kIipakiablAcilnaapedabeWcbaGaaGimaaqaaiabes 8a0naaBaaabaGaaGymaaqabaaaniabgUIiYdGccaWGgbWaaSbaaSqa aiaadMgaaeqaaOGaaGikaiaadshacaaISaGaeqiXdqNaaGykaiaayI W7caWGKbGaeqiXdqNaaGjcVlaadsgacqaHepaDdaWgaaWcbaGaaGym aaqabaGccaaMi8UaeSOjGSKaaGjcVlaadsgacqaHepaDdaWgaaWcba Gaam4AaiabgkHiTiaaikdaaeqaaOGaaGjcVlaadsgacqaHepaDdaWg aaWcbaGaam4AaiabgkHiTiaaigdaaeqaaOGaey4kaSIaamiAamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaGa aGilaaaaaaa@B069@  (46)

где функции u i (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37E7@  находятся из (11). Функции

h i (t,s)= l=1 k h il (t) s l1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacaaI9aWaaabCaeqaleaa caqGSbGaaGypaiaaigdaaeaacaWGRbaaniabggHiLdGccaWGObWaaS baaSqaaiaadMgacaWGSbaabeaakiaaiIcacaWG0bGaaGykaiabgwSi xlaadohadaahaaWcbeqaaiaadYgacqGHsislcaaIXaaaaaaa@49B7@

подбираются таким образом, чтобы удовлетворить условиям

2 j h i (t) s j | t=0 =(I Q i1 ) α i1j (0),j=0,1,,i1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadQgaaaGccaWGObWaaSbaaSqaaiaadMgaaeqaaOGaaGik aiaadshacaaIPaaabaGaeyOaIyRaam4CamaaCaaaleqabaGaamOAaa aaaaGccaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqabaGccaaI 9aGaaGikaiaadMeacqGHsislcaWGrbWaaSbaaSqaaiaadMgacqGHsi slcaaIXaaabeaakiaaiMcacqaHXoqydaWgaaWcbaGaamyAaiabgkHi TiaaigdacaWGQbaabeaakiaaiIcacaaIWaGaaGykaiaaiYcacaaMf8 UaamOAaiaai2dacaaIWaGaaGilaiaaigdacaaISaGaeSOjGSKaaGil aiaadMgacqGHsislcaaIXaGaaGilaaaa@5BBF@

j h i (t) s j | t=T =(I Q i1 ) β i1j (0),j=0,1,,i1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaamOAaaaakiaadIgadaWgaaWcbaGaamyAaaqabaGccaaIOaGaamiD aiaaiMcaaeaacqGHciITcaWGZbWaaWbaaSqabeaacaWGQbaaaaaaki aaiYhadaWgaaWcbaGaamiDaiaai2dacaWGubaabeaakiaai2dacaaI OaGaamysaiabgkHiTiaadgfadaWgaaWcbaGaamyAaiabgkHiTiaaig daaeqaaOGaaGykaiabek7aInaaBaaaleaacaWGPbGaeyOeI0IaaGym aiaadQgaaeqaaOGaaGikaiaaicdacaaIPaGaaGilaiaaywW7caWGQb GaaGypaiaaicdacaaISaGaaGymaiaaiYcacqWIMaYscaaISaGaamyA aiabgkHiTiaaigdacaaIUaaaaa@5B26@

Таким образом, за p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@  шагов обратного хода восстанавливается функция состояния системы (1) в виде

x(t,s)= x p (t,s)+ i=1 p u i (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcacaaI9aGaamiEamaaBaaaleaacaWGWbaabeaakiaaiIca caWG0bGaaGilaiaadohacaaIPaGaey4kaSYaaabCaeqaleaacaWGPb GaaGypaiaaigdaaeaacaWGWbaaniabggHiLdGccaWG1bWaaSbaaSqa aiaadMgaaeqaaOGaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@4A7F@  (47)

c функциями x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  и u i (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37E7@ , построенными по формулам (46) и (26).

Завершающим этапом является построение функции управления системы (1), а именно, подстановка функции x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@  вида (47) в правую часть равенства (6) приводит к следующему выражению для функции u(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C3@ :

u(t,s)= D x p (t,s) t + i=1 p u i (t,s) t B x p (t,s) t + i=1 p F i (t,s) +Pu(t,s). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcacaaI9aGaamiramaaCaaaleqabaGaeyOeI0caaOWaaeWa aeaadaqadaqaamaalaaabaGaeyOaIyRaamiEamaaBaaaleaacaWGWb aabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaabaGaeyOaIyRa amiDaaaacqGHRaWkdaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaai aadchaa0GaeyyeIuoakmaalaaabaGaeyOaIyRaamyDamaaBaaaleaa caWGPbaabeaakiaaiIcacaWG0bGaaGilaiaadohacaaIPaaabaGaey OaIyRaamiDaaaaaiaawIcacaGLPaaacqGHsislcaWGcbWaaeWaaeaa daWcaaqaaiabgkGi2kaadIhadaWgaaWcbaGaamiCaaqabaGccaaIOa GaamiDaiaaiYcacaWGZbGaaGykaaqaaiabgkGi2kaadshaaaGaey4k aSYaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWGWbaaniabgg HiLdGccaWGgbWaaSbaaSqaaiaadMgaaeqaaOGaaGikaiaadshacaaI SaGaam4CaiaaiMcaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHRa WkcaWGqbGaamyDaiaaiIcacaWG0bGaaGilaiaadohacaaIPaGaaGOl aaaa@786F@  (48)

с произвольным элементом Pu(t,s)KerD MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaamyDaiaaiIcacaWG0bGaaG ilaiaadohacaaIPaGaeyicI4Saam4saiaadwgacaWGYbGaamiraaaa @3C96@ .

Теорема 5 (критерий полной управляемости системы (1)). При выполнении условий α(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcaaa a@35B9@ , β(s) C [0,S] kp MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcacq GHiiIZcaWGdbWaa0baaSqaaiaaiUfacaaIWaGaaGilaiaadofacaaI DbaabaGaam4AaiabgwSixlaadchaaaaaaa@4077@  система (1) с условиями (2) является полностью управляемой тогда и только тогда, когда существует такое p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbaaaa@32B2@ , 0pn MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaamiCaiabgsMiJk aad6gaaaa@37C9@ , что D p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadchaaeqaaa aa@33A7@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  сюръективная матрица.

6. Заключение. С применением метода каскадной декомпозиции решена задача программного управления для динамической системы (1). Выявлены свойств матричных коэффициентов B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  и D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ , влекущих полную управляемость системы (1). Выведен критерий полной управляемости системы (1).

Установлены свойств функций в условиях (2) а именно: условия (kp) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaam4AaiabgwSixlaadchaca aIPaaaaa@3751@  -кратной дифференцируемости функций α(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaam4CaiaaiMcaaa a@35B9@  и β(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaam4CaiaaiMcaaa a@35BB@  достаточны для реализации управляемого процесса.

Выделена компонента функции состояния из подпространства минимальной размерности MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  определяющая функция x p (t,s)Coker D p1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcacqGHiiIZcaWGdbGaam4B aiaadUgacaWGLbGaamOCaiaadseadaWgaaWcbaGaamiCaiabgkHiTi aaigdaaeqaaaaa@4194@ . Форма x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  определяет вид аналитического решения задачи программного управления, т.е. вид функций состояния x(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C6@  и управления u(t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam 4CaiaaiMcaaaa@36C3@ .

Установлены необходимые и достаточные условия существования определяющей функции x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  и разработана общая схема для ее построения.

Кроме того, установлены необходимые и достаточные условия существования определяющей функции в различных видах. Приведены формулы для построения определяющей функции в полиномиальном, экспоненциальном, дробно-рациональном видах.

В аналитическом виде построено решение задачи программного управления: рассчитана удовлетворяющая заданным условиям (2) функция состояния вида (47) с определяющей функцией x p (t,s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaGikaiaadshacaaISaGaam4CaiaaiMcaaaa@37F1@  общего вида (26) и построена функция управления вида (48), под воздействием которого система (1) переводится из произвольного начального состояния в произвольное конечное состояние (см. (2)) за время [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaaa@35D2@  для произвольного T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@3418@ .

×

Об авторах

Елена Владимировна Раецкая

Воронежский государственный лесотехнический университет им. Г. Ф. Морозова

Автор, ответственный за переписку.
Email: raetskaya@inbox.ru
Россия, Воронеж

Список литературы

  1. Андреев Ю. Н. Управление конечномерными линейными объектами. — М.: Наука, 1976.
  2. Зубов В. И. Лекции по теории управления. — М.: Наука, 1975.
  3. Зубова С. П. Решение обратных задач для линейных динамических систем каскадным методом//Докл. РАН. — 2012. — 447, № 6. — С. 599–602.
  4. Зубова С. П., Раецкая Е. В. Об инвариантности нестационарной системы наблюдения относительно некоторых возмущений// Вестн. Тамбов. ун-та. Сер. Естеств. техн. науки. — 2010. — 25, № 6. — С. 1678–1679.
  5. Зубова С. П., Раецкая Е. В. Построение управления для получения заданного выхода в системе наблюдения// Вестн. Тамбов. ун-та. Сер. Естеств. техн. науки. — 2015. — 20, № 5. — С. 1400–1400.
  6. Калман Р. Е. Об общей теории систем управления. — М.: Изд-во АН СССР, 1960.
  7. Красовский Н. Н. Теория управления движением. — М.: Наука, 1968.
  8. Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов. — М.: Физматгиз, 1961.
  9. Раецкая Е. В. Условная управляемость и наблюдамость линейных систем/ Дисс. на соиск. уч. степ. канд. физ.-мат. наук — Воронеж, 2004.
  10. Раецкая Е. В. Исследование сингулярно возмущенной системы управления// Вестн. Тамбов. ун-та. Сер. Естеств. техн. науки. — 2018. — 23, № 122. — С. 303–307.
  11. Раецкая Е. В. Структурный анализ функции управления динамической системой в частных производных// Модел. сист. проц. — 2023. — 16, № 1. — С. 93–104.
  12. Уонем М. Линейные многомерные системы управления. — М.: Наука, 1980.
  13. Zubova S. P., Raetskaya E. V. Invariance of a nonstationary observability system under certain perturbations//J. Math. Sci. — 2013. — 188, № 3. — P. 218–226.
  14. Zubova S. P., Raetskaya E. V. A study of the rigidity of descriptor dynamical systems in a Banach space//J. Math. Sci. — 2015. — 208, № 1. — P. 119–124.
  15. Zubova S. P., Raetskaya E. V. Algorithm to solve linear multipoint problems of control by the method of cascade decomposition// Automat. Remote Control. — 2017. — 78, № 7. — P. 1189–1202.
  16. Zubova S. P., Raetskaya E. V. Solution of the multi-point control problem for a dynamic system in partial derivatives// Math. Meth. Appl. Sci. — 2021. — 44, № 15. — P. 11998–12009.
  17. Zubova S. P., Raetskaya E. V. Construction of control providing the desired output of the linear dynamic system// Automat. Remote Control. — 2018. — 79, № 5. — P. 774–791.
  18. Zubova S. P., Raetskaya E. V., Trung L. H. Control problem for dynamical systems with partial derivatives// J. Math. Sci. — 2021. — 249, № 6. — P. 941–953.
  19. Zubova S. P., Trung L. H., Raetskaya E. V. On polinomial solutions of the linear stationary control system// Automat. Remote Control. — 2008. — 69, № 11. — P. 1852–1858.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Раецкая Е.В., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».