Групповой анализ системы McKean

Обложка

Цитировать

Полный текст

Аннотация

В работе исследуется кинетическая система уравнений McKean двух групп частиц. Система представляет собой кинетическое уравнение Больцмана, и для этой модели импульс и энергия не сохраняются. При помощи методов группового анализа получено решение, представляющее плотность частиц газа. Аналогичным образом можно найти точные решения для других кинетических моделей.

Полный текст

1. Введение. Метод группового анализа является широко известным методом поиска решений, в частности, инвариантных решений уравнений математической физики. Подробно этот метод описан в [5, 10, 15]. Общее описание уравнения Больцмана описано в [3]. В [6, 7] О. В. Ильин получил оптимальную систему одномерных подалгебр и классов инвариантных решений для стационарной кинетической модели Бродуэлла и одномерного интегро-дифференциального уравнения Больцмана для максвелловских частиц с неупругими столкновениями. В [9] приведены результаты группового анализа уравнений Больцмана и Власова. Решения кинетических систем, использующие разложения Пенлеве, были найдены в [4, 8, 13, 14]. Асимптотическая устойчивость для моделей Больцмана, а также численное исследование представлены в [1, 2, 11, 12].

Рассмотрим одномерную систему McKean (см. [4, 13, 14]):

t u+ x u= 1 ε ( v 2 uv),x,t>0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaWgaaWcbaGaamiDaaqaba GccaWG1bGaey4kaSIaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaamyD aiaai2dadaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacaaI SaGaaGzbVlaadIhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGabaiab=1risjaaiYcacaaMf8UaamiDaiaai6dacaaI WaGaaGilaaaa@5820@  (1)

t v x v= 1 ε ( v 2 uv). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaWgaaWcbaGaamiDaaqaba GccaWG2bGaeyOeI0IaeyOaIy7aaSbaaSqaaiaadIhaaeqaaOGaamOD aiaai2dacqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikai aadAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaa iMcacaaIUaaaaa@44E1@  (2)

Здесь u=u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwhacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaaa@3889@ , v=v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadAhacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaaa@388B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  плотности групп частиц со скоростями c=1,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGypaiaaigdacaaISaGaey OeI0IaaGymaaaa@3685@ , ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3364@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  параметр Кнудсена из кинетической теории газов. Данная система описывает одноатомный разреженный газ, состоящий их двух групп частиц. Система McKean является неинтегрируемой системой, т.е. для нее тест Пенлеве неприменим (см. [13]). Взаимодействие происходит следующим образом. Частица из первой группы, взаимодействуя с частицей второй группы, переходят в две частицы второй группы. Аналогично две частицы второй группы, взаимодействуя сами с собой, переходят в частицу первой группы и второй группы соответственно.

2. Формулы группового анализа. Рассмотрим систему уравнений в частных производных

F 1 (u, u t , u x , u tt , u xt , u xx ,)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadwhacaaISaGaamyDamaaBaaaleaacaWG0baabeaakiaa iYcacaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaaGilaiaadwhadaWgaa WcbaGaamiDaiaadshaaeqaaOGaaGilaiaadwhadaWgaaWcbaGaamiE aiaadshaaeqaaOGaaGilaiaadwhadaWgaaWcbaGaamiEaiaadIhaae qaaOGaaGilaiablAciljaaiMcacaaI9aGaaGimaiaaiYcaaaa@4B3D@  (3)

F 2 (v, v t , v x , v tt , v xt , v xx ,)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadAhacaaISaGaamODamaaBaaaleaacaWG0baabeaakiaa iYcacaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaaGilaiaadAhadaWgaa WcbaGaamiDaiaadshaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaamiE aiaadshaaeqaaOGaaGilaiaadAhadaWgaaWcbaGaamiEaiaadIhaae qaaOGaaGilaiablAciljaaiMcacaaI9aGaaGimaiaaiYcaaaa@4B44@  (4)

где u=u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadwhacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaaa@3889@ , v=v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGypaiaadAhacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaaa@388B@  являются неизвестными функциями. Согласно методу группового анализа, ищем продолженный оператор в форме

X 1 =ξ x +η t +ζ u +χ v + ζ 1 u x + ζ 2 u t + χ 1 v x + χ 2 v t , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWfqaqaaiaadIfaaSqaaiaaigdaae qaaOGaaGypaiabe67a4naalaaabaGaeyOaIylabaGaeyOaIyRaamiE aaaacqGHRaWkcqaH3oaAdaWcaaqaaiabgkGi2cqaaiabgkGi2kaads haaaGaey4kaSIaeqOTdO3aaSaaaeaacqGHciITaeaacqGHciITcaWG 1baaaiabgUcaRiabeE8aJnaalaaabaGaeyOaIylabaGaeyOaIyRaam ODaaaacqGHRaWkcqaH2oGEdaWgaaWcbaGaaGymaaqabaGcdaWcaaqa aiabgkGi2cqaaiabgkGi2kaadwhadaWgaaWcbaGaamiEaaqabaaaaO Gaey4kaSIaeqOTdO3aaSbaaSqaaiaaikdaaeqaaOWaaSaaaeaacqGH ciITaeaacqGHciITcaWG1bWaaSbaaSqaaiaadshaaeqaaaaakiabgU caRiabeE8aJnaaBaaaleaacaaIXaaabeaakmaalaaabaGaeyOaIyla baGaeyOaIyRaamODamaaBaaaleaacaWG4baabeaaaaGccqGHRaWkcq aHhpWydaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadAhadaWgaaWcbaGaamiDaaqabaaaaOGaaGilaaaa@704D@

где ξ=ξ(x,t,u,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaeqOVdGNaaGikai aadIhacaaISaGaamiDaiaaiYcacaWG1bGaaGilaiaadAhacaaIPaaa aa@3D7C@ , η=ξ(x,t,u,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaI9aGaeqOVdGNaaGikai aadIhacaaISaGaamiDaiaaiYcacaWG1bGaaGilaiaadAhacaaIPaaa aa@3D65@ , ζ=ζ(x,t,u,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaI9aGaeqOTdONaaGikai aadIhacaaISaGaamiDaiaaiYcacaWG1bGaaGilaiaadAhacaaIPaaa aa@3D70@ , χ=χ(x,t,u,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWycaaI9aGaeq4XdmMaaGikai aadIhacaaISaGaamiDaiaaiYcacaWG1bGaaGilaiaadAhacaaIPaaa aa@3D64@ . Здесь

X=ξ x +η t +ζ u +χ v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybGaaGypaiabe67a4naalaaaba GaeyOaIylabaGaeyOaIyRaamiEaaaacqGHRaWkcqaH3oaAdaWcaaqa aiabgkGi2cqaaiabgkGi2kaadshaaaGaey4kaSIaeqOTdO3aaSaaae aacqGHciITaeaacqGHciITcaWG1baaaiabgUcaRiabeE8aJnaalaaa baGaeyOaIylabaGaeyOaIyRaamODaaaaaaa@4C45@  (5)

является инфинитезимальным оператором группы. Инвариант группы и оператора (5) является функцией I(x,t,u,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGjbGaaGikaiaadIhacaaISaGaam iDaiaaiYcacaWG1bGaaGilaiaadAhacaaIPaaaaa@39FD@ :

XI=ξ I x +η I t +ζ I u +χ I v =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGybGaamysaiaai2dacqaH+oaEda WcaaqaaiabgkGi2kaadMeaaeaacqGHciITcaWG4baaaiabgUcaRiab eE7aOnaalaaabaGaeyOaIyRaamysaaqaaiabgkGi2kaadshaaaGaey 4kaSIaeqOTdO3aaSaaaeaacqGHciITcaWGjbaabaGaeyOaIyRaamyD aaaacqGHRaWkcqaHhpWydaWcaaqaaiabgkGi2kaadMeaaeaacqGHci ITcaWG2baaaiaai2dacaaIWaGaaGOlaaaa@5284@  (6)

Координаты первого продолжения оператора определяются следующим образом:

ζ 1 = D x (ζ) u x D x (ξ) u t D x (η), ζ 2 = D t (ζ) u x D t (ξ) u t D t (η), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEdaWgaaWcbaGaaGymaaqaba GccaaI9aGaamiramaaBaaaleaacaWG4baabeaakiaaiIcacqaH2oGE caaIPaGaeyOeI0IaamyDamaaBaaaleaacaWG4baabeaakiaadseada WgaaWcbaGaamiEaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTiaa dwhadaWgaaWcbaGaamiDaaqabaGccaWGebWaaSbaaSqaaiaadIhaae qaaOGaaGikaiabeE7aOjaaiMcacaaISaGaaGzbVlabeA7a6naaBaaa leaacaaIYaaabeaakiaai2dacaWGebWaaSbaaSqaaiaadshaaeqaaO GaaGikaiabeA7a6jaaiMcacqGHsislcaWG1bWaaSbaaSqaaiaadIha aeqaaOGaamiramaaBaaaleaacaWG0baabeaakiaaiIcacqaH+oaEca aIPaGaeyOeI0IaamyDamaaBaaaleaacaWG0baabeaakiaadseadaWg aaWcbaGaamiDaaqabaGccaaIOaGaeq4TdGMaaGykaiaaiYcaaaa@6694@

χ 1 = D x (χ) v x D x (ξ) v t D x (η), χ 2 = D t (χ) v x D t (ξ) v t D t (η), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaWgaaWcbaGaaGymaaqaba GccaaI9aGaamiramaaBaaaleaacaWG4baabeaakiaaiIcacqaHhpWy caaIPaGaeyOeI0IaamODamaaBaaaleaacaWG4baabeaakiaadseada WgaaWcbaGaamiEaaqabaGccaaIOaGaeqOVdGNaaGykaiabgkHiTiaa dAhadaWgaaWcbaGaamiDaaqabaGccaWGebWaaSbaaSqaaiaadIhaae qaaOGaaGikaiabeE7aOjaaiMcacaaISaGaaGzbVlabeE8aJnaaBaaa leaacaaIYaaabeaakiaai2dacaWGebWaaSbaaSqaaiaadshaaeqaaO GaaGikaiabeE8aJjaaiMcacqGHsislcaWG2bWaaSbaaSqaaiaadIha aeqaaOGaamiramaaBaaaleaacaWG0baabeaakiaaiIcacqaH+oaEca aIPaGaeyOeI0IaamODamaaBaaaleaacaWG0baabeaakiaadseadaWg aaWcbaGaamiDaaqabaGccaaIOaGaeq4TdGMaaGykaiaaiYcaaaa@6680@

где D x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadIhaaeqaaa aa@33AF@ , D t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadshaaeqaaa aa@33AB@  являются операторами полного дифференцирования по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ :

D x = x + u x u + v x v + u xx u x + u xt u t + v xx v x + v xt v t +, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadIhaaeqaaO GaaGypamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacqGHRaWk caWG1bWaaSbaaSqaaiaadIhaaeqaaOWaaSaaaeaacqGHciITaeaacq GHciITcaWG1baaaiabgUcaRiaadAhadaWgaaWcbaGaamiEaaqabaGc daWcaaqaaiabgkGi2cqaaiabgkGi2kaadAhaaaGaey4kaSIaamyDam aaBaaaleaacaWG4bGaamiEaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadwhadaWgaaWcbaGaamiEaaqabaaaaOGaey4kaSIaamyDam aaBaaaleaacaWG4bGaamiDaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadwhadaWgaaWcbaGaamiDaaqabaaaaOGaey4kaSIaamODam aaBaaaleaacaWG4bGaamiEaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadAhadaWgaaWcbaGaamiEaaqabaaaaOGaey4kaSIaamODam aaBaaaleaacaWG4bGaamiDaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadAhadaWgaaWcbaGaamiDaaqabaaaaOGaey4kaSIaeSOjGS KaaGilaaaa@6D27@

D t = t + u t u + v t v + u xt u x + u tt u t + v xt v x + v tt v t +. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebWaaSbaaSqaaiaadshaaeqaaO GaaGypamaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaaaacqGHRaWk caWG1bWaaSbaaSqaaiaadshaaeqaaOWaaSaaaeaacqGHciITaeaacq GHciITcaWG1baaaiabgUcaRiaadAhadaWgaaWcbaGaamiDaaqabaGc daWcaaqaaiabgkGi2cqaaiabgkGi2kaadAhaaaGaey4kaSIaamyDam aaBaaaleaacaWG4bGaamiDaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadwhadaWgaaWcbaGaamiEaaqabaaaaOGaey4kaSIaamyDam aaBaaaleaacaWG0bGaamiDaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadwhadaWgaaWcbaGaamiDaaqabaaaaOGaey4kaSIaamODam aaBaaaleaacaWG4bGaamiDaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadAhadaWgaaWcbaGaamiEaaqabaaaaOGaey4kaSIaamODam aaBaaaleaacaWG0bGaamiDaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadAhadaWgaaWcbaGaamiDaaqabaaaaOGaey4kaSIaeSOjGS KaaGOlaaaa@6D09@

Имеем

ζ 1 = ζ x + ζ u u x + ζ v v x u x ( ξ x + ξ u u x + ξ v v x ) u t ( η x + η u u x + η v v x ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEdaWgaaWcbaGaaGymaaqaba GccaaI9aGaeqOTdO3aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeqOT dO3aaSbaaSqaaiaadwhaaeqaaOGaamyDamaaBaaaleaacaWG4baabe aakiabgUcaRiabeA7a6naaBaaaleaacaWG2baabeaakiaadAhadaWg aaWcbaGaamiEaaqabaGccqGHsislcaWG1bWaaSbaaSqaaiaadIhaae qaaOGaaGikaiabe67a4naaBaaaleaacaWG4baabeaakiabgUcaRiab e67a4naaBaaaleaacaWG1baabeaakiaadwhadaWgaaWcbaGaamiEaa qabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaamODaaqabaGccaWG2bWa aSbaaSqaaiaadIhaaeqaaOGaaGykaiabgkHiTiaadwhadaWgaaWcba GaamiDaaqabaGccaaIOaGaeq4TdG2aaSbaaSqaaiaadIhaaeqaaOGa ey4kaSIaeq4TdG2aaSbaaSqaaiaadwhaaeqaaOGaamyDamaaBaaale aacaWG4baabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWG2baabeaa kiaadAhadaWgaaWcbaGaamiEaaqabaGccaaIPaGaaGilaaaa@6B7F@  (7)

ζ 2 = ζ t + ζ u u t + ζ v v t u x ( ξ t + ξ u u t + ξ v v t ) u t ( η x + η u u t + η v v t )и χ 1 = χ x + u x χ u + v x χ v v x ( ξ x + u x ξ u + v x ξ v ) v t ( η x + u x η u + v x η v ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEdaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeqOTdO3aaSbaaSqaaiaadshaaeqaaOGaey4kaSIaeqOT dO3aaSbaaSqaaiaadwhaaeqaaOGaamyDamaaBaaaleaacaWG0baabe aakiabgUcaRiabeA7a6naaBaaaleaacaWG2baabeaakiaadAhadaWg aaWcbaGaamiDaaqabaGccqGHsislcaWG1bWaaSbaaSqaaiaadIhaae qaaOGaaGikaiabe67a4naaBaaaleaacaWG0baabeaakiabgUcaRiab e67a4naaBaaaleaacaWG1baabeaakiaadwhadaWgaaWcbaGaamiDaa qabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaamODaaqabaGccaWG2bWa aSbaaSqaaiaadshaaeqaaOGaaGykaiabgkHiTiaadwhadaWgaaWcba GaamiDaaqabaGccaaIOaGaeq4TdG2aaSbaaSqaaiaadIhaaeqaaOGa ey4kaSIaeq4TdG2aaSbaaSqaaiaadwhaaeqaaOGaamyDamaaBaaale aacaWG0baabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWG2baabeaa kiaadAhadaWgaaWcbaGaamiDaaqabaGccaaIPaGaaeioeiabeE8aJn aaBaaaleaacaaIXaaabeaakiaai2dacqaHhpWydaWgaaWcbaGaamiE aaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaeq4Xdm 2aaSbaaSqaaiaadwhaaeqaaOGaey4kaSIaamODamaaBaaaleaacaWG 4baabeaakiabeE8aJnaaBaaaleaacaWG2baabeaakiabgkHiTiaadA hadaWgaaWcbaGaamiEaaqabaGccaaIOaGaeqOVdG3aaSbaaSqaaiaa dIhaaeqaaOGaey4kaSIaamyDamaaBaaaleaacaWG4baabeaakiabe6 7a4naaBaaaleaacaWG1baabeaakiabgUcaRiaadAhadaWgaaWcbaGa amiEaaqabaGccqaH+oaEdaWgaaWcbaGaamODaaqabaGccaaIPaGaey OeI0IaamODamaaBaaaleaacaWG0baabeaakiaaiIcacqaH3oaAdaWg aaWcbaGaamiEaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaadIhaae qaaOGaeq4TdG2aaSbaaSqaaiaadwhaaeqaaOGaey4kaSIaamODamaa BaaaleaacaWG4baabeaakiabeE7aOnaaBaaaleaacaWG2baabeaaki aaiMcacaaISaaaaa@A515@  (8)

χ 2 = ξ t + ξ u u t + ξ v v t v x ( ξ t + ξ u u t + ξ v v t ) v t ( η t + η u u t + η v v t ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHhpWydaWgaaWcbaGaaGOmaaqaba GccaaI9aGaeqOVdG3aaSbaaSqaaiaadshaaeqaaOGaey4kaSIaeqOV dG3aaSbaaSqaaiaadwhaaeqaaOGaamyDamaaBaaaleaacaWG0baabe aakiabgUcaRiabe67a4naaBaaaleaacaWG2baabeaakiaadAhadaWg aaWcbaGaamiDaaqabaGccqGHsislcaWG2bWaaSbaaSqaaiaadIhaae qaaOGaaGikaiabe67a4naaBaaaleaacaWG0baabeaakiabgUcaRiab e67a4naaBaaaleaacaWG1baabeaakiaadwhadaWgaaWcbaGaamiDaa qabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaamODaaqabaGccaWG2bWa aSbaaSqaaiaadshaaeqaaOGaaGykaiabgkHiTiaadAhadaWgaaWcba GaamiDaaqabaGccaaIOaGaeq4TdG2aaSbaaSqaaiaadshaaeqaaOGa ey4kaSIaeq4TdG2aaSbaaSqaaiaadwhaaeqaaOGaamyDamaaBaaale aacaWG0baabeaakiabgUcaRiabeE7aOnaaBaaaleaacaWG2baabeaa kiaadAhadaWgaaWcbaGaamiDaaqabaGccaaIPaGaaGOlaaaa@6B6C@  (9)

Потребуем, чтобы

X 1 F 1 | F 1 = F 2 =0 =0, X 1 F 2 | F 1 = F 2 =0 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWfqaqaaiaadIfaaSqaaiaaigdaae qaaOGaamOramaaBaaaleaacaaIXaaabeaakiaaiYhadaWgaaWcbaGa amOramaaBaaabaGaaGymaaqabaGaaGypaiaadAeadaWgaaqaaiaaik daaeqaaiaai2dacaaIWaaabeaakiaai2dacaaIWaGaaGilaiaaywW7 daWfqaqaaiaadIfaaSqaaiaaigdaaeqaaOGaamOramaaBaaaleaaca aIYaaabeaakiaaiYhadaWgaaWcbaGaamOramaaBaaabaGaaGymaaqa baGaaGypaiaadAeadaWgaaqaaiaaikdaaeqaaiaai2dacaaIWaaabe aakiaai2dacaaIWaGaaGOlaaaa@4C90@  (10)

Соотношения (10) называются инвариантными условиями.

3. Приложение метода группового анализа. Подставим

F 1 = u t + u x 1 ε ( v 2 uv), F 2 = v t v x + 1 ε ( v 2 uv) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadwhadaWgaaWcbaGaamiDaaqabaGccqGHRaWkcaWG1bWa aSbaaSqaaiaadIhaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaeq yTdugaaiaaiIcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia amyDaiaadAhacaaIPaGaaGilaiaaywW7caWGgbWaaSbaaSqaaiaaik daaeqaaOGaaGypaiaadAhadaWgaaWcbaGaamiDaaqabaGccqGHsisl caWG2bWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSYaaSaaaeaacaaIXa aabaGaeqyTdugaaiaaiIcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaamyDaiaadAhacaaIPaaaaa@56A2@

в инвариантные условия (10):

X 1 F 1 | F 1 = F 2 =0 = ζ 2 + ζ 1 2 ε vχ+ 1 ε uχ+ 1 ε vζ | F 1 = F 2 =0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWfqaqaaiaadIfaaSqaaiaaigdaae qaaOGaamOramaaBaaaleaacaaIXaaabeaakiaaiYhadaWgaaWcbaGa amOramaaBaaabaGaaGymaaqabaGaaGypaiaadAeadaWgaaqaaiaaik daaeqaaiaai2dacaaIWaaabeaakiaai2dadaqadaqaaiabeA7a6naa BaaaleaacaaIYaaabeaakiabgUcaRiabeA7a6naaBaaaleaacaaIXa aabeaakiabgkHiTmaalaaabaGaaGOmaaqaaiabew7aLbaacaWG2bGa eq4XdmMaey4kaSYaaSaaaeaacaaIXaaabaGaeqyTdugaaiaadwhacq aHhpWycqGHRaWkdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaamODaiab eA7a6bGaayjkaiaawMcaaiaaiYhadaWgaaWcbaGaamOramaaBaaaba GaaGymaaqabaGaaGypaiaadAeadaWgaaqaaiaaikdaaeqaaiaai2da caaIWaaabeaakiaaiYcaaaa@5E62@  (11)

X 1 F 2 | F 1 = F 2 =0 = χ 2 χ 1 + 2 ε vχ 1 ε χu 1 ε vζ | F 1 = F 2 =0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWfqaqaaiaadIfaaSqaaiaaigdaae qaaOGaamOramaaBaaaleaacaaIYaaabeaakiaaiYhadaWgaaWcbaGa amOramaaBaaabaGaaGymaaqabaGaaGypaiaadAeadaWgaaqaaiaaik daaeqaaiaai2dacaaIWaaabeaakiaai2dadaqadaqaaiabeE8aJnaa BaaaleaacaaIYaaabeaakiabgkHiTiabeE8aJnaaBaaaleaacaaIXa aabeaakiabgUcaRmaalaaabaGaaGOmaaqaaiabew7aLbaacaWG2bGa eq4XdmMaeyOeI0YaaSaaaeaacaaIXaaabaGaeqyTdugaaiabeE8aJj aadwhacqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaamODaiab eA7a6bGaayjkaiaawMcaaiaaiYhadaWgaaWcbaGaamOramaaBaaaba GaaGymaaqabaGaaGypaiaadAeadaWgaaqaaiaaikdaaeqaaiaai2da caaIWaaabeaakiaai6caaaa@5E6F@  (12)

Заменяя u t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadshaaeqaaa aa@33DC@ , v t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadshaaeqaaa aa@33DD@  на u x +( v 2 uv)/ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcaWG1bWaaSbaaSqaaiaadI haaeqaaOGaey4kaSIaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGc cqGHsislcaWG1bGaamODaiaaiMcacaaIVaGaeqyTdugaaa@3E4E@ , v x ( v 2 uv)/ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaO GaeyOeI0IaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsisl caWG1bGaamODaiaaiMcacaaIVaGaeqyTdugaaa@3D6D@  и принимая во внимание выражения (7) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (9) для координат первого продолжения из первого уравнения (11), имеем:

u x : ξ t 1 ε ( v 2 uv) ξ u + ξ v 1 ε ( v 2 uv)+ η t + η u 1 ε ( v 2 uv) 1 ε η v ( v 2 uv) ξ x + η x =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIhaaeqaaO GaaGOoaiaaywW7cqGHsislcqaH+oaEdaWgaaWcbaGaamiDaaqabaGc cqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqaH +oaEdaWgaaWcbaGaamyDaaqabaGccqGHRaWkcqaH+oaEdaWgaaWcba GaamODaaqabaGcdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaa dAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiM cacqGHRaWkcqaH3oaAdaWgaaWcbaGaamiDaaqabaGccqGHRaWkcqaH 3oaAdaWgaaWcbaGaamyDaaqabaGcdaWcaaqaaiaaigdaaeaacqaH1o qzaaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG 1bGaamODaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaa Gaeq4TdG2aaSbaaSqaaiaadAhaaeqaaOGaaGikaiaadAhadaahaaWc beqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqGHsislcq aH+oaEdaWgaaWcbaGaamiEaaqabaGccqGHRaWkcqaH3oaAdaWgaaWc baGaamiEaaqabaGccaaI9aGaaGimaiaaiYcaaaa@798D@

u x 2 : ξ u η u ξ u + η u =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaa0baaSqaaiaadIhaaeaaca aIYaaaaOGaaGOoaiaaywW7cqaH+oaEdaWgaaWcbaGaamyDaaqabaGc cqGHsislcqaH3oaAdaWgaaWcbaGaamyDaaqabaGccqGHsislcqaH+o aEdaWgaaWcbaGaamyDaaqabaGccqGHRaWkcqaH3oaAdaWgaaWcbaGa amyDaaqabaGccaaI9aGaaGimaiaaiYcaaaa@478A@

v x : ζ v 1 ε ( v 2 uv) η v + ζ v 1 ε ( v 2 uv) η v =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaO GaaGOoaiaaywW7cqaH2oGEdaWgaaWcbaGaamODaaqabaGccqGHsisl daWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhadaahaaWcbe qaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqaH3oaAdaWg aaWcbaGaamODaaqabaGccqGHRaWkcqaH2oGEdaWgaaWcbaGaamODaa qabaGccqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaa dAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiM cacqaH3oaAdaWgaaWcbaGaamODaaqabaGccaaI9aGaaGimaiaaiYca aaa@5814@

u x v x : ξ v + η v ξ v + η v =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIhaaeqaaO GaamODamaaBaaaleaacaWG4baabeaakiaaiQdacaaMf8UaeyOeI0Ia eqOVdG3aaSbaaSqaaiaadAhaaeqaaOGaey4kaSIaeq4TdG2aaSbaaS qaaiaadAhaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaaiaadAhaaeqa aOGaey4kaSIaeq4TdG2aaSbaaSqaaiaadAhaaeqaaOGaaGypaiaaic dacaaISaaaaa@49E1@

1: ζ t + ζ u 1 ε ( v 2 uv) ζ v 1 ε ( v 2 uv) 1 ε ( v 2 uv) η t 1 ε ( v 2 uv) η u 1 ε ( v 2 uv)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGOoaiaaywW7cqaH2oGEda WgaaWcbaGaamiDaaqabaGccqGHRaWkcqaH2oGEdaWgaaWcbaGaamyD aaqabaGcdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqGH sislcqaH2oGEdaWgaaWcbaGaamODaaqabaGcdaWcaaqaaiaaigdaae aacqaH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGH sislcaWG1bGaamODaiaaiMcacqGHsisldaWcaaqaaiaaigdaaeaacq aH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsisl caWG1bGaamODaiaaiMcacqaH3oaAdaWgaaWcbaGaamiDaaqabaGccq GHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhadaah aaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqaH3o aAdaWgaaWcbaGaamyDaaqabaGcdaWcaaqaaiaaigdaaeaacqaH1oqz aaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1b GaamODaiaaiMcacqGHRaWkaaa@7316@

+ 1 ε ( v 2 uv) η v 1 ε ( v 2 uv)+ ζ x 1 ε ( v 2 uv) η x 2 ε vχ+ 1 ε uχ+ 1 ε vζ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlabgUcaRmaalaaabaGaaGymaaqaaiab ew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aadwhacaWG2bGaaGykaiabeE7aOnaaBaaaleaacaWG2baabeaakmaa laaabaGaaGymaaqaaiabew7aLbaacaaIOaGaamODamaaCaaaleqaba GaaGOmaaaakiabgkHiTiaadwhacaWG2bGaaGykaiabgUcaRiabeA7a 6naaBaaaleaacaWG4baabeaakiabgkHiTmaalaaabaGaaGymaaqaai abew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaadwhacaWG2bGaaGykaiabeE7aOnaaBaaaleaacaWG4baabeaaki abgkHiTmaalaaabaGaaGOmaaqaaiabew7aLbaacaWG2bGaeq4XdmMa ey4kaSYaaSaaaeaacaaIXaaabaGaeqyTdugaaiaadwhacqaHhpWycq GHRaWkdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaamODaiabeA7a6jaa i6caaaa@765A@

Из второго уравнения (12):

u x : χ u 1 ε ( v 2 uv) η u χ u 1 ε ( v 2 uv) η u =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIhaaeqaaO GaaGOoaiaaywW7cqaHhpWydaWgaaWcbaGaamyDaaqabaGccqGHsisl daWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhadaahaaWcbe qaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqaH3oaAdaWg aaWcbaGaamyDaaqabaGccqGHsislcqaHhpWydaWgaaWcbaGaamyDaa qabaGccqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaa dAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiM cacqaH3oaAdaWgaaWcbaGaamyDaaqabaGccaaI9aGaaGimaiaaiYca aaa@580E@

u x v x : ξ u + η u + ξ u +ηu=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadIhaaeqaaO GaamODamaaBaaaleaacaWG4baabeaakiaaiQdacaaMf8UaeqOVdG3a aSbaaSqaaiaadwhaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaadw haaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaadwhaaeqaaOGaey4k aSIaeq4TdGMaeyOeI0IaamyDaiaai2dacaaIWaGaaGilaaaa@499C@

v x : χ v ξ t 1 ε ( v 2 uv) ξ u + ξ v 1 ε ( v 2 uv) η t η u 1 ε ( v 2 uv)+ η v 1 ε ( v 2 uv)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaO GaaGOoaiaaywW7cqaHhpWydaWgaaWcbaGaamODaaqabaGccqGHsisl cqaH+oaEdaWgaaWcbaGaamiDaaqabaGccqGHsisldaWcaaqaaiaaig daaeaacqaH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGc cqGHsislcaWG1bGaamODaiaaiMcacqaH+oaEdaWgaaWcbaGaamyDaa qabaGccqGHRaWkcqaH+oaEdaWgaaWcbaGaamODaaqabaGcdaWcaaqa aiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaaik daaaGccqGHsislcaWG1bGaamODaiaaiMcacqGHsislcqaH3oaAdaWg aaWcbaGaamiDaaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaamyDaa qabaGcdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhadaah aaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqGHRa WkcqaH3oaAdaWgaaWcbaGaamODaaqabaGcdaWcaaqaaiaaigdaaeaa cqaH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsi slcaWG1bGaamODaiaaiMcacqGHRaWkaaa@7388@

+ 1 ε ( v 2 uv) η v χ v + ξ x + η x 1 ε ( v 2 uv) η v =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaGzbVlaaywW7caaMf8Uaey4kaSYaaSaaaeaacaaIXaaabaGaeq yTdugaaiaaiIcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia amyDaiaadAhacaaIPaGaeq4TdG2aaSbaaSqaaiaadAhaaeqaaOGaey OeI0Iaeq4Xdm2aaSbaaSqaaiaadAhaaeqaaOGaey4kaSIaeqOVdG3a aSbaaSqaaiaadIhaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaadI haaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaeqyTdugaaiaaiIca caWG2bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyDaiaadAhaca aIPaGaeq4TdG2aaSbaaSqaaiaadAhaaeqaaOGaaGypaiaaicdacaaI Saaaaa@7119@

v x 2 : ξ v η v + ξ v + η v =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaa0baaSqaaiaadIhaaeaaca aIYaaaaOGaaGOoaiaaywW7cqGHsislcqaH+oaEdaWgaaWcbaGaamOD aaqabaGccqGHsislcqaH3oaAdaWgaaWcbaGaamODaaqabaGccqGHRa WkcqaH+oaEdaWgaaWcbaGaamODaaqabaGccqGHRaWkcqaH3oaAdaWg aaWcbaGaamODaaqabaGccaaI9aGaaGimaiaaiYcaaaa@4871@

1: χ t + χ u 1 ε ( v 2 uv) χ v 1 ε ( v 2 uv)+ 1 ε ( v 2 uv) η t + 1 ε ( v 2 uv) η u 1 ε ( v 2 uv) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGOoaiaaywW7cqaHhpWyda WgaaWcbaGaamiDaaqabaGccqGHRaWkcqaHhpWydaWgaaWcbaGaamyD aaqabaGcdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqGH sislcqaHhpWydaWgaaWcbaGaamODaaqabaGcdaWcaaqaaiaaigdaae aacqaH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGH sislcaWG1bGaamODaiaaiMcacqGHRaWkdaWcaaqaaiaaigdaaeaacq aH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsisl caWG1bGaamODaiaaiMcacqaH3oaAdaWgaaWcbaGaamiDaaqabaGccq GHRaWkdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhadaah aaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqaH3o aAdaWgaaWcbaGaamyDaaqabaGcdaWcaaqaaiaaigdaaeaacqaH1oqz aaGaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1b GaamODaiaaiMcacqGHsislaaa@72F9@

1 ε ( v 2 uv) η v 1 ε ( v 2 uv) χ x 1 ε ( v 2 uv) η x + 2 ε vχ 1 ε χu 1 ε vζ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaaywW7caaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlabgkHiTmaalaaabaGaaGymaaqaaiab ew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaGOmaaaakiabgkHiTi aadwhacaWG2bGaaGykaiabeE7aOnaaBaaaleaacaWG2baabeaakmaa laaabaGaaGymaaqaaiabew7aLbaacaaIOaGaamODamaaCaaaleqaba GaaGOmaaaakiabgkHiTiaadwhacaWG2bGaaGykaiabgkHiTiabeE8a JnaaBaaaleaacaWG4baabeaakiabgkHiTmaalaaabaGaaGymaaqaai abew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaadwhacaWG2bGaaGykaiabeE7aOnaaBaaaleaacaWG4baabeaaki abgUcaRmaalaaabaGaaGOmaaqaaiabew7aLbaacaWG2bGaeq4XdmMa eyOeI0YaaSaaaeaacaaIXaaabaGaeqyTdugaaiabeE8aJjaadwhacq GHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaamODaiabeA7a6jaa i6caaaa@7675@

Перепишем систему в более компактной форме:

η v = ξ v ,2 1 ε ( v 2 uv) η u ξ t + η t + η x ξ x =0, ζ v 1 ε ( v 2 uv) η v =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaWgaaWcbaGaamODaaqaba GccaaI9aGaeqOVdG3aaSbaaSqaaiaadAhaaeqaaOGaaGilaiaaywW7 caaIYaWaaSaaaeaacaaIXaaabaGaeqyTdugaaiaaiIcacaWG2bWaaW baaSqabeaacaaIYaaaaOGaeyOeI0IaamyDaiaadAhacaaIPaGaeq4T dG2aaSbaaSqaaiaadwhaaeqaaOGaeyOeI0IaeqOVdG3aaSbaaSqaai aadshaaeqaaOGaey4kaSIaeq4TdG2aaSbaaSqaaiaadshaaeqaaOGa ey4kaSIaeq4TdG2aaSbaaSqaaiaadIhaaeqaaOGaeyOeI0IaeqOVdG 3aaSbaaSqaaiaadIhaaeqaaOGaaGypaiaaicdacaaISaGaaGzbVlab eA7a6naaBaaaleaacaWG2baabeaakiabgkHiTmaalaaabaGaaGymaa qaaiabew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaGOmaaaakiab gkHiTiaadwhacaWG2bGaaGykaiabeE7aOnaaBaaaleaacaWG2baabe aakiaai2dacaaIWaGaaGilaaaa@6B73@

1 ε ( v 2 uv) ζ u ζ v η t η u 1 ε ( v 2 uv)+ η v 1 ε ( v 2 uv) η x + ζ x + ζ t 2 ε vχ+ 1 ε uχ+ 1 ε vζ=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacqaH1oqzaa GaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGa amODaiaaiMcadaqadaqaaiabeA7a6naaBaaaleaacaWG1baabeaaki abgkHiTiabeA7a6naaBaaaleaacaWG2baabeaakiabgkHiTiabeE7a OnaaBaaaleaacaWG0baabeaakiabgkHiTiabeE7aOnaaBaaaleaaca WG1baabeaakmaalaaabaGaaGymaaqaaiabew7aLbaacaaIOaGaamOD amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadwhacaWG2bGaaGykai abgUcaRiabeE7aOnaaBaaaleaacaWG2baabeaakmaalaaabaGaaGym aaqaaiabew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaGOmaaaaki abgkHiTiaadwhacaWG2bGaaGykaiabgkHiTiabeE7aOnaaBaaaleaa caWG4baabeaaaOGaayjkaiaawMcaaiabgUcaRiabeA7a6naaBaaale aacaWG4baabeaakiabgUcaRiabeA7a6naaBaaaleaacaWG0baabeaa kiabgkHiTmaalaaabaGaaGOmaaqaaiabew7aLbaacaWG2bGaeq4Xdm Maey4kaSYaaSaaaeaacaaIXaaabaGaeqyTdugaaiaadwhacqaHhpWy cqGHRaWkdaWcaaqaaiaaigdaaeaacqaH1oqzaaGaamODaiabeA7a6j aai2dacaaIWaGaaGilaaaa@7F19@   MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMe8oaaa@334A@

η u = ξ u , χ u + 1 ε ( v 2 uv) η u =0,2 1 ε ( v 2 uv) η v η t ξ t + η x + ξ x =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaWgaaWcbaGaamyDaaqaba GccaaI9aGaeyOeI0IaeqOVdG3aaSbaaSqaaiaadwhaaeqaaOGaaGil aiaaywW7cqaHhpWydaWgaaWcbaGaamyDaaqabaGccqGHRaWkdaWcaa qaaiaaigdaaeaacqaH1oqzaaGaaGikaiaadAhadaahaaWcbeqaaiaa ikdaaaGccqGHsislcaWG1bGaamODaiaaiMcacqaH3oaAdaWgaaWcba GaamyDaaqabaGccaaI9aGaaGimaiaaiYcacaaMf8UaaGOmamaalaaa baGaaGymaaqaaiabew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaadwhacaWG2bGaaGykaiabeE7aOnaaBaaaleaa caWG2baabeaakiabgkHiTiabeE7aOnaaBaaaleaacaWG0baabeaaki abgkHiTiabe67a4naaBaaaleaacaWG0baabeaakiabgUcaRiabeE7a OnaaBaaaleaacaWG4baabeaakiabgUcaRiabe67a4naaBaaaleaaca WG4baabeaakiaai2dacaaIWaGaaGilaaaa@6C4C@

1 ε ( v 2 uv) χ u χ v + η t + 1 ε ( v 2 uv) η u 1 ε ( v 2 uv) η v η x + χ t χ x + 2 ε vχ 1 ε χu 1 ε vζ=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaigdaaeaacqaH1oqzaa GaaGikaiaadAhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG1bGa amODaiaaiMcadaqadaqaaiabeE8aJnaaBaaaleaacaWG1baabeaaki abgkHiTiabeE8aJnaaBaaaleaacaWG2baabeaakiabgUcaRiabeE7a OnaaBaaaleaacaWG0baabeaakiabgUcaRmaalaaabaGaaGymaaqaai abew7aLbaacaaIOaGaamODamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaadwhacaWG2bGaaGykaiabeE7aOnaaBaaaleaacaWG1baabeaaki abgkHiTmaalaaabaGaaGymaaqaaiabew7aLbaacaaIOaGaamODamaa CaaaleqabaGaaGOmaaaakiabgkHiTiaadwhacaWG2bGaaGykaiabeE 7aOnaaBaaaleaacaWG2baabeaakiabgkHiTiabeE7aOnaaBaaaleaa caWG4baabeaaaOGaayjkaiaawMcaaiabgUcaRiabeE8aJnaaBaaale aacaWG0baabeaakiabgkHiTiabeE8aJnaaBaaaleaacaWG4baabeaa kiabgUcaRmaalaaabaGaaGOmaaqaaiabew7aLbaacaWG2bGaeq4Xdm MaeyOeI0YaaSaaaeaacaaIXaaabaGaeqyTdugaaiabeE8aJjaadwha cqGHsisldaWcaaqaaiaaigdaaeaacqaH1oqzaaGaamODaiabeA7a6j aai2dacaaIWaGaaGOlaaaa@7F0E@

Интегрируя систему, получаем

η(t)=αt+β,ξ(x)=αx+γ,ζ(u)=αu,χ(v)=αv, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaamiDaiaaiMcaca aI9aGaeqySdeMaamiDaiabgUcaRiabek7aIjaaiYcacaaMf8UaeqOV dGNaaGikaiaadIhacaaIPaGaaGypaiabeg7aHjaadIhacqGHRaWkcq aHZoWzcaaISaGaaGzbVlabeA7a6jaaiIcacaWG1bGaaGykaiaai2da cqGHsislcqaHXoqycaWG1bGaaGilaiaaywW7cqaHhpWycaaIOaGaam ODaiaaiMcacaaI9aGaeyOeI0IaeqySdeMaamODaiaaiYcaaaa@5E0A@

где α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqyaaa@335C@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@ , γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3364@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольные константы.

Характеристическая система для (6) имеет вид

dt η = dx ξ = du ζ = dv χ или dt αt+β = dx αx+γ = du αu = dv αv . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadsgacaWG0baabaGaeq 4TdGgaaiaai2dadaWcaaqaaiaadsgacaWG4baabaGaeqOVdGhaaiaa i2dadaWcaaqaaiaadsgacaWG1baabaGaeqOTdOhaaiaai2dadaWcaa qaaiaadsgacaWG2baabaGaeq4XdmgaaiaaywW7caqG4qGaae4oeiaa bIdbcaaMf8+aaSaaaeaacaWGKbGaamiDaaqaaiabeg7aHjaadshacq GHRaWkcqaHYoGyaaGaaGypamaalaaabaGaamizaiaadIhaaeaacqaH XoqycaWG4bGaey4kaSIaeq4SdCgaaiaai2dadaWcaaqaaiaadsgaca WG1baabaGaeyOeI0IaeqySdeMaamyDaaaacaaI9aWaaSaaaeaacaWG KbGaamODaaqaaiabgkHiTiabeg7aHjaadAhaaaGaaGOlaaaa@6449@

Интегрируя, получаем

ω= αx+γ αt+β , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDcaaI9aWaaSaaaeaacqaHXo qycaWG4bGaey4kaSIaeq4SdCgabaGaeqySdeMaamiDaiabgUcaRiab ek7aIbaacaaISaaaaa@3F57@

где α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqyaaa@335C@ , γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3364@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  константы интегрирования. Инвариантное решение будем искать в виде

u= Φ(ω) α(αt+β) ,v= Ψ(ω) α(αt+β) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypamaalaaabaGaeuOPdy KaaGikaiabeM8a3jaaiMcaaeaacqaHXoqycaaIOaGaeqySdeMaamiD aiabgUcaRiabek7aIjaaiMcaaaGaaGilaiaaywW7caWG2bGaaGypam aalaaabaGaeuiQdKLaaGikaiabeM8a3jaaiMcaaeaacqaHXoqycaaI OaGaeqySdeMaamiDaiabgUcaRiabek7aIjaaiMcaaaGaaGilaaaa@5205@  (13)

где Φ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGraaa@3337@ , Ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwaaa@334C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  неизвестные функции автомодельных переменных, которые требуется определить. Подставляем (13) в (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2):

(αt+β)Φ+(αtαx+βγ) Φ (αt+β) 3 = Ψ 2 ΦΨ α 2 (αt+β) 2 ε , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkHiTiaaiIcacqaHXo qycaWG0bGaey4kaSIaeqOSdiMaaGykaiabfA6agjabgUcaRiaaiIca cqaHXoqycaWG0bGaeyOeI0IaeqySdeMaamiEaiabgUcaRiabek7aIj abgkHiTiabeo7aNjaaiMcacuqHMoGrgaqbaaqaaiaaiIcacqaHXoqy caWG0bGaey4kaSIaeqOSdiMaaGykamaaCaaaleqabaGaaG4maaaaaa GccaaI9aWaaSaaaeaacqqHOoqwdaahaaWcbeqaaiaaikdaaaGccqGH sislcqqHMoGrcqqHOoqwaeaacqaHXoqydaahaaWcbeqaaiaaikdaaa GccaaIOaGaeqySdeMaamiDaiabgUcaRiabek7aIjaaiMcadaahaaWc beqaaiaaikdaaaGccqaH1oqzaaGaaGilaaaa@64DE@

(αt+β)Ψ(αt+αx+β+γ) Ψ (αt+β) 3 = Φ 2 ΨΨ α 2 (αt+β) 2 ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkHiTiaaiIcacqaHXo qycaWG0bGaey4kaSIaeqOSdiMaaGykaiabfI6azjabgkHiTiaaiIca cqaHXoqycaWG0bGaey4kaSIaeqySdeMaamiEaiabgUcaRiabek7aIj abgUcaRiabeo7aNjaaiMcacuqHOoqwgaqbaaqaaiaaiIcacqaHXoqy caWG0bGaey4kaSIaeqOSdiMaaGykamaaCaaaleqabaGaaG4maaaaaa GccaaI9aGaeyOeI0YaaSaaaeaacqqHMoGrdaahaaWcbeqaaiaaikda aaGccqGHsislcqqHOoqwcqqHOoqwaeaacqaHXoqydaahaaWcbeqaai aaikdaaaGccaaIOaGaeqySdeMaamiDaiabgUcaRiabek7aIjaaiMca daahaaWcbeqaaiaaikdaaaGccqaH1oqzaaaaaa@6534@

или

α 2 ε(Φ(1ω) ) = Ψ 2 ΦΨ, α 2 ε(Ψ(1+ω) ) = Ψ 2 ΦΨ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqydaahaaWcbeqaaiaaikdaaa GccqaH1oqzcaaIOaGaeuOPdyKaaGikaiaaigdacqGHsislcqaHjpWD caaIPaGabGykayaafaGaaGypaiabfI6aznaaCaaaleqabaGaaGOmaa aakiabgkHiTiabfA6agjabfI6azjaaiYcacaaMf8UaeqySde2aaWba aSqabeaacaaIYaaaaOGaeqyTduMaaGikaiabfI6azjaaiIcacaaIXa Gaey4kaSIaeqyYdCNaaGykaiqaiMcagaqbaiaai2dacqqHOoqwdaah aaWcbeqaaiaaikdaaaGccqGHsislcqqHMoGrcqqHOoqwaaa@5A85@

(здесь дифференцирование производится по переменной ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDaaa@338A@  ). Интегрируя, получим

Φ(ω)= 1+ω 1ω Ψ(ω)+ 1 (1ω) C, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaeqyYdCNaaGykai aai2dadaWcaaqaaiaaigdacqGHRaWkcqaHjpWDaeaacaaIXaGaeyOe I0IaeqyYdChaaiabfI6azjaaiIcacqaHjpWDcaaIPaGaey4kaSYaaS aaaeaacaaIXaaabaGaaGikaiaaigdacqGHsislcqaHjpWDcaaIPaaa aiaadoeacaaISaaaaa@4AE5@

где C MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbaaaa@3285@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  константа интегрирования. Для нахождения функции Ψ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwaaa@334C@  имеем упрощенное уравнение Риккати

Ψ = 2 ω 2 2ω ε α 2 (1ω) 2 (1+ω) Ψ 2 + Cε α 2 +(2ε α 2 +C)ωε α 2 ω 2 ε α 2 (1ω) 2 (1+ω) Ψ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHOoqwgaqbaiaai2dadaWcaaqaai aaikdacqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGa eqyYdChabaGaeqyTduMaeqySde2aaWbaaSqabeaacaaIYaaaaOGaaG ikaiaaigdacqGHsislcqaHjpWDcaaIPaWaaWbaaSqabeaacaaIYaaa aOGaaGikaiaaigdacqGHRaWkcqaHjpWDcaaIPaaaaiabfI6aznaaCa aaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWaaSaaaeaacqGHsisl caWGdbGaeyOeI0IaeqyTduMaeqySde2aaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGikaiaaikdacqaH1oqzcqaHXoqydaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGdbGaaGykaiabeM8a3jabgkHiTiabew7aLj abeg7aHnaaCaaaleqabaGaaGOmaaaakiabeM8a3naaCaaaleqabaGa aGOmaaaaaOqaaiabew7aLjabeg7aHnaaCaaaleqabaGaaGOmaaaaki aaiIcacaaIXaGaeyOeI0IaeqyYdCNaaGykamaaCaaaleqabaGaaGOm aaaakiaaiIcacaaIXaGaey4kaSIaeqyYdCNaaGykaaaaaiaawIcaca GLPaaacqqHOoqwcaaIUaaaaa@7983@

Можем записать частное решение при C=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGypaiaaicdaaaa@3406@ :

Ψ(ω)= 2ε α 2 2+2 α 2 ε C 1 +2ωε α 2 C 1 +(ω+1)ln ω+1 ω1 ,Φ(ω)= 1+ω 1ω Ψ(ω), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwcaaIOaGaeqyYdCNaaGykai aai2dadaWcaaqaaiaaikdacqaH1oqzcqaHXoqydaahaaWcbeqaaiaa ikdaaaaakeaacaaIYaGaey4kaSIaaGOmaiabeg7aHnaaCaaaleqaba GaaGOmaaaakiabew7aLjaadoeadaWgaaWcbaGaaGymaaqabaGccqGH RaWkcaaIYaGaeqyYdCNaeqyTduMaeqySde2aaWbaaSqabeaacaaIYa aaaOGaam4qamaaBaaaleaacaaIXaaabeaakiabgUcaRiaaiIcacqaH jpWDcqGHRaWkcaaIXaGaaGykaiGacYgacaGGUbWaaSaaaeaacqaHjp WDcqGHRaWkcaaIXaaabaGaeqyYdCNaeyOeI0IaaGymaaaaaaGaaGil aiaaywW7cqqHMoGrcaaIOaGaeqyYdCNaaGykaiaai2dadaWcaaqaai aaigdacqGHRaWkcqaHjpWDaeaacaaIXaGaeyOeI0IaeqyYdChaaiab fI6azjaaiIcacqaHjpWDcaaIPaGaaGilaaaa@7094@  (14)

где C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaa aa@336C@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольная константа интегрирования. Неотрицательность решения может быть достигнута посредством выбора константы C 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaa aa@336C@  в области x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ .

×

Об авторах

Сергей Анатольевич Духновский

Национальный исследовательский Московский государственный строительный университет

Автор, ответственный за переписку.
Email: sergeidukhnvskijj@rambler.ru
Россия, Москва

Список литературы

  1. Васильева О. А., Духновский С. А., Радкевич Е. В. О локальном равновесии уравнения Карлемана//в кн.: Проблемы математического анализа. Т. 78, 2015. — С. 165–190.
  2. Васильева О. А., Духновский С. А., Радкевич Е. В. О природе локального равновесия уравнений Карлемана и Годунова—Султангазина// Совр. мат. Фундам. напр. — 2016. — 60. — С. 23–81.
  3. Годунов С. К., Султангазин У. М. О дискретных моделях кинетического уравнения Больцмана// Усп. мат. наук. — 1971. — 26, № 3. — С. 3–51.
  4. Духновский С. А. Тест Пенлеве и автомодельное решение кинетической модели// Итоги науки техн. Сер. Совр. мат. прилож. Темат. обз. — 2020. — 176. — С. 91–94.
  5. Ибрагимов Н. Х. Групповой анализ обыкновенных дифференциальных уравнений и принцип инвариантности в математической физике// Усп. мат. наук. — 1992. — 47, № 4. — С. 83–144.
  6. Ильин О. В. Стационарные решения кинетической модели Бродуэлла// Теор. мат. физ. — 2012. — 170, № 3. — С. 481–488.
  7. Ильин О. В. Симметрии, функция тока и точные решения для двумерной стационарной кинетической модели Бродуэлла// Теор. мат. физ. — 2014. — 179, № 3. — С. 350–359.
  8. Линдблом О., Эйлер Н. Решение уравнений Больцмана для дискретных скоростей при помощи уравнений Бейтмена и Риккати// Теор. мат. физ. — 2002. — 131, № 2. — С. 522–526.
  9. Платонова К. С., Боровских А. В. Групповой анализ уравнений Больцмана и Власова// Теор. мат. физ. — 2020. — 203, № 3. — С. 417–450.
  10. Полянин А. Д., Зайцев В. Ф, Журов А. И. Методы решения нелинейных уравнений математической физики. — М.: Физматлит, 2005.
  11. Радкевич Е. В. О дискретных кинетических уравнениях// Докл. Акад. наук. — 2012. — 447, № 4. — С. 369–373.
  12. Радкевич Е. В. О поведении на больших временах решений задачи Коши для двумерного кинетического уравнения// Совр. мат. Фундам. напр. — 2013. — 47. — С. 108–139.
  13. Dukhnovsky S. A. On solutions of the kinetic McKean system// Bul. Acad. Ştiinţe Repub. Mold. Mat. — 2020. — 94, № 3. — P. 3–11.
  14. Euler N., Steeb W.-H. Painlevé test and discrete Boltzmann equations// Austr. J. Phys. — 1989. — 42. — P. 1–10.
  15. Ovsiannikov L. V. Group Analysis of Differential Equations. — New York: Academic Press, 1982.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Духновский С.А., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».