On a discrete two-parameter fractional control problem

Cover Page

Cite item

Full Text

Abstract

In this paper, we examine a fractional difference analog of an optimal control problem occupying an intermediate position between problems with lumped and distributed parameters and obtain various first-order optimality necessary conditions. 

Full Text

Пусть управляемый дискретный процесс описывается системой разностных уравнений дробного порядка

Δ α z(t+1,x)=f(t,x,z(t,x),u(t)), tT={ t 0 , t 0 +1, t 1 1},xX={ x 0 , x 0 +1, x 1 }. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqabeGabaaabaGaeuiLdq0aaWbaaS qabeaacqaHXoqyaaGccaWG6bGaaGikaiaadshacqGHRaWkcaaIXaGa aGilaiaadIhacaaIPaGaaGypaiaadAgacaaIOaGaamiDaiaaiYcaca WG4bGaaGilaiaadQhacaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaa iYcacaWG1bGaaGikaiaadshacaaIPaGaaGykaiaaiYcaaeaacaWG0b GaeyicI4Saamivaiaai2dacaaI7bGaamiDamaaBaaaleaacaaIWaaa beaakiaaiYcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaaG ymaiaaiYcacqWIMaYscaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaeyOe I0IaaGymaiaai2hacaaISaGaaGzbVlaadIhacqGHiiIZcaWGybGaaG ypaiaaiUhacaWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadIha daWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaGaaGilaiablAcilj aadIhadaWgaaWcbaGaaGymaaqabaGccaaI9bGaaGOlaaaaaaa@70D8@  (1)

с начальным условием

z( t 0 ,x)=y(x),xX={ x 0 , x 0 +1, x 1 }, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccaaISaGaamiEaiaaiMcacaaI9aGaamyEaiaaiIca caWG4bGaaGykaiaaiYcacaaMf8UaamiEaiabgIGiolaadIfacaaI9a GaaG4EaiaadIhadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiEamaa BaaaleaacaaIWaaabeaakiabgUcaRiaaigdacaaISaGaeSOjGSKaam iEamaaBaaaleaacaaIXaaabeaakiaai2hacaaISaaaaa@4F02@  (2)

где y(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadIhacaaIPaaaaa@351D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@   n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерная вектор-функция, являющаяся решением задачи Коши

Δ β y(x+1)=g(x,y(x),v(x)),xX\ x 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaahaaWcbeqaaiabek7aIb aakiaadMhacaaIOaGaamiEaiabgUcaRiaaigdacaaIPaGaaGypaiaa dEgacaaIOaGaamiEaiaaiYcacaWG5bGaaGikaiaadIhacaaIPaGaaG ilaiaadAhacaaIOaGaamiEaiaaiMcacaaIPaGaaGilaiaaywW7caWG 4bGaeyicI4SaamiwaiaacYfacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@4F5C@  (3)

y( x 0 )= y 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadIhadaWgaaWcba GaaGimaaqabaGccaaIPaGaaGypaiaadMhadaWgaaWcbaGaaGimaaqa baGccaaIUaaaaa@397A@  (4)

Здесь f(t,x,z,u) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bGaaGilaiaadwhacaaIPaaaaa@3A1E@ , g(x,y,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaISaGaam yEaiaaiYcacaWG2bGaaGykaaaa@3870@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданные n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерные вектор-функции, непрерывные по совокупности переменных вместе с частными производными по z(y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadMhacaaIPaaaaa@351F@ , y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaa aa@33A1@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданный постоянной вектор, t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaa aa@339C@ , t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaa aa@339D@ , x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaa aa@33A0@ , x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaa aa@33A1@  заданы, Δ α z(t,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaahaaWcbeqaaiabeg7aHb aakiaadQhacaaIOaGaamiDaiaaiYcacaWG4bGaaGykaaaa@3A09@  ( 0<α<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeg7aHjaaiYdaca aIXaaaaa@365D@  ) и Δ β y(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaahaaWcbeqaaiabek7aIb aakiaadMhacaaIOaGaamiEaiaaiMcaaaa@385B@  ( 0<β<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabek7aIjaaiYdaca aIXaaaaa@365F@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  дробные операторы порядков α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqyaaa@335C@  и β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@  (см., например, [4, 9–11]), u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@ , v(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaaaaa@351A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@   r(q) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadghacaaIPaaaaa@350F@  -мерные вектор-функции управляющих воздействий со значениями из заданного непустого и ограниченного множества U(V) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbGaaGikaiaadAfacaaIPaaaaa@34D7@  и

u(t)U R r ,tT,v(x)U R q ,xX\ x 1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI4SaamyvaiabgkOimlaadkfadaahaaWcbeqaaiaadkhaaaGccaaI SaGaaGjbVlaadshacqGHiiIZcaWGubGaaGilaiaaywW7caWG2bGaaG ikaiaadIhacaaIPaGaeyicI4SaamyvaiabgkOimlaadkfadaahaaWc beqaaiaadghaaaGccaaISaGaaGjbVlaadIhacqGHiiIZcaWGybGaai ixaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIUaaaaa@5633@  (5)

Управляющую функцию (u(t),v(x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiIcacaWG0bGaaG ykaiaaiYcacaWG2bGaaGikaiaadIhacaaIPaGaaGykaaaa@3A8D@  назовем допустимым управлением, если она удовлетворяет ограничениям (4) и (5), а соответствующий процесс (u(t),v(x),y(x),z(t,x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiIcacaWG0bGaaG ykaiaaiYcacaWG2bGaaGikaiaadIhacaaIPaGaaGilaiaadMhacaaI OaGaamiEaiaaiMcacaaISaGaamOEaiaaiIcacaWG0bGaaGilaiaadI hacaaIPaGaaGykaaaa@4469@  назовем допустимым процессом.

На решениях системы (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4), порожденных всевозможными допустимыми управлениями, определим функционал терминального типа

S(u,v)= φ 1 (y( x 1 ))+ x 0 x 1 1 φ 2 (x,z( t 1 ,x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbGaaGikaiaadwhacaaISaGaam ODaiaaiMcacaaI9aGaeqOXdO2aaSbaaSqaaiaaigdaaeqaaOGaaGik aiaadMhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcaca aIPaGaey4kaSYaaabCaeqaleaacaWG4bWaaSbaaeaacaaIWaaabeaa aeaacaWG4bWaaSbaaeaacaaIXaaabeaacqGHsislcaaIXaaaniabgg HiLdGccqaHgpGAdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaa iYcacaWG6bGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccaaISa GaamiEaiaaiMcacaaIPaGaaGOlaaaa@54D8@  (6)

Здесь φ 1 (y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamyEaiaaiMcaaaa@36CE@ , φ 2 (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamOEaiaaiMcaaaa@36D0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  заданные скалярные функции, непрерывные по совокупности переменных вместе с их производными по y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BB@  и z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32BC@  соответственно.

Требуется найти минимальное значение функционала (6) при ограничениях (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5).

Предполагается, что при каждом заданном допустимом управлении дискретные аналоги задач Коши, т.е. задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (2) и (3) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (4), имеют единственные решения.

Допустимое управление (u(t,x),v(x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaGaaGilaiaadAhacaaIOaGaamiEaiaaiMcacaaI Paaaaa@3C40@ , доставляющее минимум функционалу (6) при ограничениях (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5), называется оптимальным управлением, а пара (u(t,x),v(x),y(x),z(t,x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaGaaGilaiaadAhacaaIOaGaamiEaiaaiMcacaaI SaGaamyEaiaaiIcacaWG4bGaaGykaiaaiYcacaWG6bGaaGikaiaads hacaaISaGaamiEaiaaiMcacaaIPaaaaa@461C@  является оптимальным процессом.

Цель работы состоит в выводе ряда необходимых условий оптимальности.

Пусть ( u 0 (t), v 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaa caaIWaaaaOGaaGikaiaadIhacaaIPaGaaGykaaaa@3C6F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  фиксированное, а ( u ¯ (t,x)= u 0 (t,x)+Δu(t,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmyDayaaraGaaGikaiaads hacaaISaGaamiEaiaaiMcacaaI9aGaamyDamaaCaaaleqabaGaaGim aaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaSIaeuiLdq KaamyDaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaaaaa@45A8@ , v ¯ (x)= v 0 (x)+Δv(x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG2bGbaebacaaIOaGaamiEaiaaiM cacaaI9aGaamODamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGa aGykaiabgUcaRiabfs5aejaadAhacaaIOaGaamiEaiaaiMcacaaIPa aaaa@409F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольное допустимое управления. Через ( y 0 (x), z 0 (t,x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyEamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG6bWaaWbaaSqabeaa caaIWaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaIPaaaaa@3E2A@  и ( y ¯ (x)= y 0 (x)+Δy(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGabmyEayaaraGaaGikaiaadI hacaaIPaGaaGypaiaadMhadaahaaWcbeqaaiaaicdaaaGccaaIOaGa amiEaiaaiMcacqGHRaWkcqqHuoarcaWG5bGaaGikaiaadIhacaaIPa aaaa@40A7@ , z ¯ (t,x)= z 0 (t,x)+Δz(t,x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG6bGbaebacaaIOaGaamiDaiaaiY cacaWG4bGaaGykaiaai2dacaWG6bWaaWbaaSqabeaacaaIWaaaaOGa aGikaiaadshacaaISaGaamiEaiaaiMcacqGHRaWkcqqHuoarcaWG6b GaaGikaiaadshacaaISaGaamiEaiaaiMcacaaIPaaaaa@45B8@  обозначим соответствующие им решения системы (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3). Тогда ясно, что (Δz(t,x),Δy(x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdqKaamOEaiaaiIcaca WG0bGaaGilaiaadIhacaaIPaGaaGilaiabfs5aejaadMhacaaIOaGa amiEaiaaiMcacaaIPaaaaa@3F14@  будет удовлетворять системе

Δ α (Δz(t+1,x))=f(t,x, z ¯ (t,x), u ¯ (t))f(t,x, z 0 (t,x), u 0 (t)),tT,xX, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaahaaWcbeqaaiabeg7aHb aakiaaiIcacqqHuoarcaWG6bGaaGikaiaadshacqGHRaWkcaaIXaGa aGilaiaadIhacaaIPaGaaGykaiaai2dacaWGMbGaaGikaiaadshaca aISaGaamiEaiaaiYcaceWG6bGbaebacaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiaaiYcaceWG1bGbaebacaaIOaGaamiDaiaaiMcacaaIPa GaeyOeI0IaamOzaiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamOE amaaCaaaleqabaGaaGimaaaakiaaiIcacaWG0bGaaGilaiaadIhaca aIPaGaaGilaiaadwhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiD aiaaiMcacaaIPaGaaGilaiaaywW7caWG0bGaeyicI4SaamivaiaaiY cacaaMf8UaamiEaiabgIGiolaadIfacaaISaaaaa@6BC9@  (7)

Δz( t 0 ,x)=Δy(x),xX, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWG6bGaaGikaiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiEaiaaiMcacaaI9aGaeuiL dqKaamyEaiaaiIcacaWG4bGaaGykaiaaiYcacaaMf8UaamiEaiabgI GiolaadIfacaaISaaaaa@4508@  (8)

Δ β (Δy(x+1)=g(x, y ¯ (x), v ¯ (x))g(x, y 0 (x), v 0 (x)),xX\ x 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaahaaWcbeqaaiabek7aIb aakiaaiIcacqqHuoarcaWG5bGaaGikaiaadIhacqGHRaWkcaaIXaGa aGykaiaai2dacaWGNbGaaGikaiaadIhacaaISaGabmyEayaaraGaaG ikaiaadIhacaaIPaGaaGilaiqadAhagaqeaiaaiIcacaWG4bGaaGyk aiaaiMcacqGHsislcaWGNbGaaGikaiaadIhacaaISaGaamyEamaaCa aaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG2bWa aWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGykaiaaiY cacaaMf8UaamiEaiabgIGiolaadIfacaGGCbGaamiEamaaBaaaleaa caaIXaaabeaakiaaiYcaaaa@5FEA@  (9)

Δy( x 0 )=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWG5bGaaGikaiaadIhada WgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiaaicdacaaIUaaaaa@39AC@  (10)

Пусть ( ψ 0 (t,x), p 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqiYdK3aaWbaaSqabeaaca aIWaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGaamiC amaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiMcaaa a@3EF0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  пока неизвестные n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  -мерные вектор-функции. Умножим обе части соотношений (7), (9) слева скалярно на ψ 0 (t,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEdaahaaWcbeqaaiaaicdaaa GccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaaaa@388D@  (соответственно, на p 0 (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaWbaaSqabeaacaaIWaaaaO GaaGikaiaadIhacaaIPaaaaa@3605@  ) и просуммируем полученные тождества по (t,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaaaa@35CE@  от t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaa aa@339C@  до t 1 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaaGymaaaa@354F@  и от x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaa aa@33A0@  до x 1 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaaGymaaaa@3553@  (соответственно, по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  от x 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaa aa@33A0@  до x 1 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaSbaaSqaaiaaigdaaeqaaO GaeyOeI0IaaGymaaaa@3553@  ). В результате получим

t= t 0 t 1 1 x= x 0 x 1 1 ψ 0 ' (t,x) Δ α (Δz(t+1,x))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadshacaaI9aGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabeI8a5naaCaaale qabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bGa aGilaiaadIhacaaIPaGaeuiLdq0aaWbaaSqabeaacqaHXoqyaaGcca aIOaGaeuiLdqKaamOEaiaaiIcacaWG0bGaey4kaSIaaGymaiaaiYca caWG4bGaaGykaiaaiMcacaaI9aaaaa@59B3@

= t= t 0 t 1 1 x= x 0 x 1 1 ψ 0 ' (t,x) f(t,x, z ¯ (t,x), u ¯ (t))f(t,x, z 0 (t,x), u 0 (t)) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWG0bGaaG ypaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadshadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakmaaqahabeWcbaGaam iEaiaai2dacaWG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSba aeaacaaIXaaabeaacqGHsislcaaIXaaaniabggHiLdGccqaHipqEda ahaaWcbeqaaiaaicdaaaGcdaahaaWcbeqaaiaadEcaaaGccaaIOaGa amiDaiaaiYcacaWG4bGaaGykamaabmaabaGaamOzaiaaiIcacaWG0b GaaGilaiaadIhacaaISaGabmOEayaaraGaaGikaiaadshacaaISaGa amiEaiaaiMcacaaISaGabmyDayaaraGaaGikaiaadshacaaIPaGaaG ykaiabgkHiTiaadAgacaaIOaGaamiDaiaaiYcacaWG4bGaaGilaiaa dQhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiYcacaWG4b GaaGykaiaaiYcacaWG1bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaa dshacaaIPaGaaGykaaGaayjkaiaawMcaaiaaiYcaaaa@6FDD@  (11)

x= x 0 x 1 1 p 0 ' Δ β (Δy(x+1)= x= x 0 x 1 1 p 0 ' g(x, y ¯ (x), v ¯ (x))g(x, y 0 (x), v 0 (x)) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadIhacaaI9aGaam iEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOGaamiCamaaCaaaleqabaGaaG imaaaakmaaCaaaleqabaGaam4jaaaakiabfs5aenaaCaaaleqabaGa eqOSdigaaOGaaGikaiabfs5aejaadMhacaaIOaGaamiEaiabgUcaRi aaigdacaaIPaGaaGypamaaqahabeWcbaGaamiEaiaai2dacaWG4bWa aSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaabeaacq GHsislcaaIXaaaniabggHiLdGccaWGWbWaaWbaaSqabeaacaaIWaaa aOWaaWbaaSqabeaacaWGNaaaaOWaaeWaaeaacaWGNbGaaGikaiaadI hacaaISaGabmyEayaaraGaaGikaiaadIhacaaIPaGaaGilaiqadAha gaqeaiaaiIcacaWG4bGaaGykaiaaiMcacqGHsislcaWGNbGaaGikai aadIhacaaISaGaamyEamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG 4bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaacaaIWaaaaOGaaGikai aadIhacaaIPaGaaGykaaGaayjkaiaawMcaaiaai6caaaa@716B@  (12)

Положим

H(t,x,z,u,ψ)= ψ ' f(t,x,z,u),M(x,y,v,p)= p ' g(x,y,v). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bGaaGilaiaadwhacaaISaGaeqiYdKNaaGykaiaa i2dacqaHipqEdaahaaWcbeqaaiaadEcaaaGccaWGMbGaaGikaiaads hacaaISaGaamiEaiaaiYcacaWG6bGaaGilaiaadwhacaaIPaGaaGil aiaaywW7caWGnbGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG2b GaaGilaiaadchacaaIPaGaaGypaiaadchadaahaaWcbeqaaiaadEca aaGccaWGNbGaaGikaiaadIhacaaISaGaamyEaiaaiYcacaWG2bGaaG ykaiaai6caaaa@5CEF@

Функции H(t,x,z,u,ψ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bGaaGilaiaadwhacaaISaGaeqiYdKNaaGykaaaa @3C84@ , M(x,y,v,p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbGaaGikaiaadIhacaaISaGaam yEaiaaiYcacaWG2bGaaGilaiaadchacaaIPaaaaa@3A01@  являются аналогами функций Гамильтона MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Понтрягина для рассматриваемой задачи (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (6). С учетом тождеств (11), (12) формула для приращения критерия качества (6) записывается в виде

ΔS( u 0 , v 0 )=S( u ¯ , v ¯ )S( u 0 , v 0 )= φ 1 ( y ¯ ( x 1 )) φ 1 ( y 0 ( x 1 ))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGtbGaaGikaiaadwhada ahaaWcbeqaaiaaicdaaaGccaaISaGaamODamaaCaaaleqabaGaaGim aaaakiaaiMcacaaI9aGaam4uaiaaiIcaceWG1bGbaebacaaISaGabm ODayaaraGaaGykaiabgkHiTiaadofacaaIOaGaamyDamaaCaaaleqa baGaaGimaaaakiaaiYcacaWG2bWaaWbaaSqabeaacaaIWaaaaOGaaG ykaiaai2dacqaHgpGAdaWgaaWcbaGaaGymaaqabaGccaaIOaGabmyE ayaaraGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaG ykaiabgkHiTiabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG 5bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaaGykaiabgUcaRaaa@5BEA@

+ x 0 x 1 ( φ 2 (x, z ¯ ( t 1 ,x)) φ 2 (x, z 0 ( t 1 ,x)))+ t= t 0 t 1 1 x= x 0 x 1 1 ψ 0 ' (t,x) Δ α (Δz(t+1,x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadIhada WgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaaigdaaeqaaaqd cqGHris5aOGaaGikaiabeA8aQnaaBaaaleaacaaIYaaabeaakiaaiI cacaWG4bGaaGilaiqadQhagaqeaiaaiIcacaWG0bWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiaadIhacaaIPaGaaGykaiabgkHiTiabeA8aQn aaBaaaleaacaaIYaaabeaakiaaiIcacaWG4bGaaGilaiaadQhadaah aaWcbeqaaiaaicdaaaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabe aakiaaiYcacaWG4bGaaGykaiaaiMcacaaIPaGaey4kaSYaaabCaeqa leaacaWG0bGaaGypaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaads hadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakmaa qahabeWcbaGaamiEaiaai2dacaWG4bWaaSbaaeaacaaIWaaabeaaae aacaWG4bWaaSbaaeaacaaIXaaabeaacqGHsislcaaIXaaaniabggHi LdGccqaHipqEdaahaaWcbeqaaiaaicdaaaGcdaahaaWcbeqaaiaadE caaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabfs5aenaaCaaa leqabaGaeqySdegaaOGaaGikaiabfs5aejaadQhacaaIOaGaamiDai abgUcaRiaaigdacaaISaGaamiEaiaaiMcacaaIPaGaeyOeI0caaa@7C86@

t= t 0 t 1 1 x= x 0 x 1 1 H(t,x, z ¯ (t,x), u ¯ (t), ψ 0 (t,x))H(t,x, z 0 (t,x), u 0 (t), ψ 0 (t,x)) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakmaabmaaba GaamisaiaaiIcacaWG0bGaaGilaiaadIhacaaISaGabmOEayaaraGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGabmyDayaaraGaaG ikaiaadshacaaIPaGaaGilaiabeI8a5naaCaaaleqabaGaaGimaaaa kiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGykaiabgkHiTiaadI eacaaIOaGaamiDaiaaiYcacaWG4bGaaGilaiaadQhadaahaaWcbeqa aiaaicdaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYcaca WG1bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshacaaIPaGaaGil aiabeI8a5naaCaaaleqabaGaaGimaaaakiaaiIcacaWG0bGaaGilai aadIhacaaIPaGaaGykaaGaayjkaiaawMcaaiabgUcaRaaa@774C@

+ x= x 0 x 1 1 p 0 ' (x) Δ β (Δy(x+1) x= x 0 x 1 1 M(x, y ¯ (x), v ¯ (x), p 0 (x))M(x, y 0 (x), v 0 (x), p 0 (x)) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadIhaca aI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOGaamiCamaaCaaale qabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG4bGa aGykaiabfs5aenaaCaaaleqabaGaeqOSdigaaOGaaGikaiabfs5aej aadMhacaaIOaGaamiEaiabgUcaRiaaigdacaaIPaGaeyOeI0YaaabC aeqaleaacaWG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaai aadIhadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoa kmaabmaabaGaamytaiaaiIcacaWG4bGaaGilaiqadMhagaqeaiaaiI cacaWG4bGaaGykaiaaiYcaceWG2bGbaebacaaIOaGaamiEaiaaiMca caaISaGaamiCamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaG ykaiaaiMcacqGHsislcaWGnbGaaGikaiaadIhacaaISaGaamyEamaa CaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG2b WaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGilaiaa dchadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPa aacaGLOaGaayzkaaGaaGOlaaaa@7BD4@  (13)

Займемся преобразованием отдельных слагаемых в этой формуле. С этой целью рассмотрим выражение

t= t 0 t 1 1 x= x 0 x 1 1 ψ 0 ' (t,x) Δ α (Δz(t+1,x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadshacaaI9aGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabeI8a5naaCaaale qabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bGa aGilaiaadIhacaaIPaGaeuiLdq0aaWbaaSqabeaacqaHXoqyaaGcca aIOaGaeuiLdqKaamOEaiaaiIcacaWG0bGaey4kaSIaaGymaiaaiYca caWG4bGaaGykaiaaiMcacaaIUaaaaa@59A4@

Сделав в нем замену переменных t+1=τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaey4kaSIaaGymaiaai2dacq aHepaDaaa@36DF@ , получим

t= t 0 t 1 1 x= x 0 x 1 1 ψ 0 ' (t,x) Δ α (Δz(t+1,x))= t= t 0 +1 t 1 x= x 0 +1 x 1 ψ 0 ' (t1,x) Δ α (Δz(t,x))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadshacaaI9aGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabeI8a5naaCaaale qabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bGa aGilaiaadIhacaaIPaGaeuiLdq0aaWbaaSqabeaacqaHXoqyaaGcca aIOaGaeuiLdqKaamOEaiaaiIcacaWG0bGaey4kaSIaaGymaiaaiYca caWG4bGaaGykaiaaiMcacaaI9aWaaabCaeqaleaacaWG0bGaaGypai aadshadaWgaaqaaiaaicdaaeqaaiabgUcaRiaaigdaaeaacaWG0bWa aSbaaeaacaaIXaaabeaaa0GaeyyeIuoakmaaqahabeWcbaGaamiEai aai2dacaWG4bWaaSbaaeaacaaIWaaabeaacqGHRaWkcaaIXaaabaGa amiEamaaBaaabaGaaGymaaqabaaaniabggHiLdGccqaHipqEdaahaa WcbeqaaiaaicdaaaGcdaahaaWcbeqaaiaadEcaaaGccaaIOaGaamiD aiabgkHiTiaaigdacaaISaGaamiEaiaaiMcacqqHuoardaahaaWcbe qaaiabeg7aHbaakiaaiIcacqqHuoarcaWG6bGaaGikaiaadshacaaI SaGaamiEaiaaiMcacaaIPaGaaGypaaaa@819E@

= x= x 0 x 1 1 ψ 0 ' ( t 1 1,x) Δ α (Δz( t 1 ,x))+ x= x 0 x 1 1 ψ 0 ' ( t 0 1,x) Δ α (Δz( t 0 ,x))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabeI8a5naaCaaale qabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGymaiaaiYcacaWG4bGaaG ykaiabfs5aenaaCaaaleqabaGaeqySdegaaOGaaGikaiabfs5aejaa dQhacaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4b GaaGykaiaaiMcacqGHRaWkdaaeWbqabSqaaiaadIhacaaI9aGaamiE amaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqaba GaeyOeI0IaaGymaaqdcqGHris5aOGaeqiYdK3aaWbaaSqabeaacaaI WaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccqGHsislcaaIXaGaaGilaiaadIhacaaIPaGaeuiL dq0aaWbaaSqabeaacqaHXoqyaaGccaaIOaGaeuiLdqKaamOEaiaaiI cacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadIhacaaIPaGa aGykaiabgUcaRaaa@73C2@

+ t= t 0 t 1 1 x= x 0 x 1 1 ψ 0 ' (t1,x) Δ α (Δz(t,x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabeI8a5n aaCaaaleqabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIca caWG0bGaeyOeI0IaaGymaiaaiYcacaWG4bGaaGykaiabfs5aenaaCa aaleqabaGaeqySdegaaOGaaGikaiabfs5aejaadQhacaaIOaGaamiD aiaaiYcacaWG4bGaaGykaiaaiMcacaaIUaaaaa@5A91@  (14)

Делая замену переменных x+1=s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaey4kaSIaaGymaiaai2daca WGZbaaaa@3616@ , легко убедиться в справедливости следующих тождеств:

x= x 0 x 1 1 p 0 ' (x) Δ β (Δy(x+1))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadIhacaaI9aGaam iEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOGaamiCamaaCaaaleqabaGaaG imaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG4bGaaGykaiab fs5aenaaCaaaleqabaGaeqOSdigaaOGaaGikaiabfs5aejaadMhaca aIOaGaamiEaiabgUcaRiaaigdacaaIPaGaaGykaiaai2daaaa@4C1F@

= p 0 ' ( x 1 1) Δ β (Δy( x 1 )) p 0 ' ( x 0 1) Δ β (Δy( x 0 ))+ x= x 0 x 1 1 p 0 ' (x1) Δ β (Δy(x))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamiCamaaCaaaleqabaGaaG imaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyOeI0IaaGymaiaaiMcacqqHuoardaahaaWcbe qaaiabek7aIbaakiaaiIcacqqHuoarcaWG5bGaaGikaiaadIhadaWg aaWcbaGaaGymaaqabaGccaaIPaGaaGykaiabgkHiTiaadchadaahaa WcbeqaaiaaicdaaaGcdaahaaWcbeqaaiaadEcaaaGccaaIOaGaamiE amaaBaaaleaacaaIWaaabeaakiabgkHiTiaaigdacaaIPaGaeuiLdq 0aaWbaaSqabeaacqaHYoGyaaGccaaIOaGaeuiLdqKaamyEaiaaiIca caWG4bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaaiMcacqGHRaWkda aeWbqabSqaaiaadIhacaaI9aGaamiEamaaBaaabaGaaGimaaqabaaa baGaamiEamaaBaaabaGaaGymaaqabaGaeyOeI0IaaGymaaqdcqGHri s5aOGaamiCamaaCaaaleqabaGaaGimaaaakmaaCaaaleqabaGaam4j aaaakiaaiIcacaWG4bGaeyOeI0IaaGymaiaaiMcacqqHuoardaahaa Wcbeqaaiabek7aIbaakiaaiIcacqqHuoarcaWG5bGaaGikaiaadIha caaIPaGaaGykaiaai2daaaa@72FA@

= p 0 ' ( x 1 1) Δ β (Δy( x 1 ))+ x= x 0 x1 p 0 ' (x1) Δ β (Δy(x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamiCamaaCaaaleqabaGaaG imaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaeyOeI0IaaGymaiaaiMcacqqHuoardaahaaWcbe qaaiabek7aIbaakiaaiIcacqqHuoarcaWG5bGaaGikaiaadIhadaWg aaWcbaGaaGymaaqabaGccaaIPaGaaGykaiabgUcaRmaaqahabeWcba GaamiEaiaai2dacaWG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bGa eyOeI0IaaGymaaqdcqGHris5aOGaamiCamaaCaaaleqabaGaaGimaa aakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG4bGaeyOeI0IaaGym aiaaiMcacqqHuoardaahaaWcbeqaaiabek7aIbaakiaaiIcacqqHuo arcaWG5bGaaGikaiaadIhacaaIPaGaaGykaiaai6caaaa@5F06@  (15)

Далее, с учетом теоремы дробного суммирования по частям (см. [8]) имеем

x= x 0 x 1 1 ψ 0 ' ( t 0 1,x) Δ α (Δz( t 0 ,x))= x= x 0 x 1 1 ψ 0 ' ( t 0 1,x) Δ α (Δy(x))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadIhacaaI9aGaam iEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOGaeqiYdK3aaWbaaSqabeaaca aIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccqGHsislcaaIXaGaaGilaiaadIhacaaIPaGaeu iLdq0aaWbaaSqabeaacqaHXoqyaaGccaaIOaGaeuiLdqKaamOEaiaa iIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadIhacaaIPa GaaGykaiaai2dadaaeWbqabSqaaiaadIhacaaI9aGaamiEamaaBaaa baGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqabaGaeyOeI0 IaaGymaaqdcqGHris5aOGaeqiYdK3aaWbaaSqabeaacaaIWaaaaOWa aWbaaSqabeaacaWGNaaaaOGaaGikaiaadshadaWgaaWcbaGaaGimaa qabaGccqGHsislcaaIXaGaaGilaiaadIhacaaIPaGaeuiLdq0aaWba aSqabeaacqaHXoqyaaGccaaIOaGaeuiLdqKaamyEaiaaiIcacaWG4b GaaGykaiaaiMcacaaI9aaaaa@7023@

= ψ 0 ' ( t 0 1, x 1 )(Δy( x 1 )) ψ 0 ' ( t 0 1, x 0 )(Δy( x 0 ))+ x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' ( t 0 1,x)(Δy(x))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaWbaaSqabeaaca aIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccqGHsislcaaIXaGaaGilaiaadIhadaWgaaWcba GaaGymaaqabaGccaaIPaGaaGikaiabfs5aejaadMhacaaIOaGaamiE amaaBaaaleaacaaIXaaabeaakiaaiMcacaaIPaGaeyOeI0IaeqiYdK 3aaWbaaSqabeaacaaIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGik aiaadshadaWgaaWcbaGaaGimaaqabaGccqGHsislcaaIXaGaaGilai aadIhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGikaiabfs5aejaa dMhacaaIOaGaamiEamaaBaaaleaacaaIWaaabeaakiaaiMcacaaIPa Gaey4kaSYaaabCaeqaleaacaWG4bGaaGypaiaadIhadaWgaaqaaiaa icdaaeqaaaqaaiaadIhadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaig daa0GaeyyeIuoakiabfs5aenaaDaaaleaacqaHbpGCcaaIOaGaamiD amaaBaaabaGaaGymaaqabaGaaGykaaqaaiabeg7aHbaakiabeI8a5n aaCaaaleqabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIca caWG0bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaaGymaiaaiYcaca WG4bGaaGykaiaaiIcacqqHuoarcaWG5bGaaGikaiaadIhacaaIPaGa aGykaiabgUcaRaaa@7BF9@

+ μ Γ(μ) Δy( x 0 )( x= x 0 x 1 1 (x+μ x 0 ) ( μ1) ψ 0 ( t 0 ,x) x=σ( x 0 ) x 1 1 (x+μσ( x 0 )) ( μ1) ψ 0 ( t 0 ,x))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiabeY7aTbqaai abfo5ahjaaiIcacqaH8oqBcaaIPaaaaiabfs5aejaadMhacaaIOaGa amiEamaaBaaaleaacaaIWaaabeaakiaaiMcacaaIOaWaaabCaeqale aacaWG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIha daWgaaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaaiI cacaWG4bGaey4kaSIaeqiVd0MaeyOeI0IaamiEamaaBaaaleaacaaI WaaabeaakiaaiMcadaahaaWcbeqaaiaaiIcaaaGccqaH8oqBcqGHsi slcaaIXaGaaGykaiabeI8a5naaCaaaleqabaGaaGimaaaakiaaiIca caWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadIhacaaIPaGaey OeI0YaaabCaeqaleaacaWG4bGaaGypaiabeo8aZjaaiIcacaWG4bWa aSbaaeaacaaIWaaabeaacaaIPaaabaGaamiEamaaBaaabaGaaGymaa qabaGaeyOeI0IaaGymaaqdcqGHris5aOGaaGikaiaadIhacqGHRaWk cqaH8oqBcqGHsislcqaHdpWCcaaIOaGaamiEamaaBaaaleaacaaIWa aabeaakiaaiMcacaaIPaWaaWbaaSqabeaacaaIOaaaaOGaeqiVd0Ma eyOeI0IaaGymaiaaiMcacqaHipqEdaahaaWcbeqaaiaaicdaaaGcca aIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG4bGaaGyk aiaaiMcacaaI9aaaaa@83F7@

= ψ 0 ' ( t 0 1, x 1 )(Δy( x 1 ))+ x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' (t1,x)(Δy(x)), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaWbaaSqabeaaca aIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadshadaWgaaWc baGaaGimaaqabaGccqGHsislcaaIXaGaaGilaiaadIhadaWgaaWcba GaaGymaaqabaGccaaIPaGaaGikaiabfs5aejaadMhacaaIOaGaamiE amaaBaaaleaacaaIXaaabeaakiaaiMcacaaIPaGaey4kaSYaaabCae qaleaacaWG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaa dIhadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoaki abfs5aenaaDaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGym aaqabaGaaGykaaqaaiabeg7aHbaakiabeI8a5naaCaaaleqabaGaaG imaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bGaeyOeI0Ia aGymaiaaiYcacaWG4bGaaGykaiaaiIcacqqHuoarcaWG5bGaaGikai aadIhacaaIPaGaaGykaiaaiYcaaaa@679A@  (16)

x= x 0 x 1 1 ψ 0 ' ( t 1 1,x) Δ α (Δz( t 1 ,x))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadIhacaaI9aGaam iEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOGaeqiYdK3aaWbaaSqabeaaca aIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadshadaWgaaWc baGaaGymaaqabaGccqGHsislcaaIXaGaaGilaiaadIhacaaIPaGaeu iLdq0aaWbaaSqabeaacqaHXoqyaaGccaaIOaGaeuiLdqKaamOEaiaa iIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadIhacaaIPa GaaGykaiaai2daaaa@5242@

= ψ 0 ' ( t 1 1, x 1 )(Δz( t 1 , x 1 ))+ x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' ( t 1 1,x)(Δz( t 1 ,x)), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiYdK3aaWbaaSqabeaaca aIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadshadaWgaaWc baGaaGymaaqabaGccqGHsislcaaIXaGaaGilaiaadIhadaWgaaWcba GaaGymaaqabaGccaaIPaGaaGikaiabfs5aejaadQhacaaIOaGaamiD amaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bWaaSbaaSqaaiaaig daaeqaaOGaaGykaiaaiMcacqGHRaWkdaaeWbqabSqaaiaadIhacaaI 9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaG ymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOGaeuiLdq0aa0baaSqa aiabeg8aYjaaiIcacaWG0bWaaSbaaeaacaaIXaaabeaacaaIPaaaba GaeqySdegaaOGaeqiYdK3aaWbaaSqabeaacaaIWaaaaOWaaWbaaSqa beaacaWGNaaaaOGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGccq GHsislcaaIXaGaaGilaiaadIhacaaIPaGaaGikaiabfs5aejaadQha caaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bGaaG ykaiaaiMcacaaISaaaaa@6DCE@  (17)

t= t 0 t 1 1 x= x 0 x 1 1 ψ 0 ' (t1,x) Δ α (Δz(t,x))= x= x 0 x 1 1 ψ 0 ' ( t 1 1,x) Δ α (Δz( t 1 ,x))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadshacaaI9aGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabeI8a5naaCaaale qabaGaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bGa eyOeI0IaaGymaiaaiYcacaWG4bGaaGykaiabfs5aenaaCaaaleqaba GaeqySdegaaOGaaGikaiabfs5aejaadQhacaaIOaGaamiDaiaaiYca caWG4bGaaGykaiaaiMcacaaI9aWaaabCaeqaleaacaWG4bGaaGypai aadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaaigda aeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabeI8a5naaCaaaleqaba GaaGimaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bWaaSba aSqaaiaaigdaaeqaaOGaeyOeI0IaaGymaiaaiYcacaWG4bGaaGykai abfs5aenaaCaaaleqabaGaeqySdegaaOGaaGikaiabfs5aejaadQha caaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bGaaG ykaiaaiMcacqGHRaWkaaa@7A5E@

+ x= x 0 x 1 1 ψ 0 ' ( t 0 1,x) Δ α (Δz( t 0 ,x))+ t= t 0 t 1 1 x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' (t1,x)(Δz(t,x))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadIhaca aI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOGaeqiYdK3aaWbaaS qabeaacaaIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadsha daWgaaWcbaGaaGimaaqabaGccqGHsislcaaIXaGaaGilaiaadIhaca aIPaGaeuiLdq0aaWbaaSqabeaacqaHXoqyaaGccaaIOaGaeuiLdqKa amOEaiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadI hacaaIPaGaaGykaiabgUcaRmaaqahabeWcbaGaamiDaiaai2dacaWG 0bWaaSbaaeaacaaIWaaabeaaaeaacaWG0bWaaSbaaeaacaaIXaaabe aacqGHsislcaaIXaaaniabggHiLdGcdaaeWbqabSqaaiaadIhacaaI 9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaG ymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOGaeuiLdq0aa0baaSqa aiabeg8aYjaaiIcacaWG0bWaaSbaaeaacaaIXaaabeaacaaIPaaaba GaeqySdegaaOGaeqiYdK3aaWbaaSqabeaacaaIWaaaaOWaaWbaaSqa beaacaWGNaaaaOGaaGikaiaadshacqGHsislcaaIXaGaaGilaiaadI hacaaIPaGaaGikaiabfs5aejaadQhacaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiaaiMcacqGHRaWkaaa@8053@

+ μ Γ(μ) Δz( t 0 ,x)[ t= t 0 t 1 1 x= x 0 x 1 1 (t+μ t 0 ) ( μ1) ψ 0 (t1,x) x=σ( t 0 ) x 1 1 (t+μσ( t 0 )) ( μ1) ψ 0 (t,x)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiabeY7aTbqaai abfo5ahjaaiIcacqaH8oqBcaaIPaaaaiabfs5aejaadQhacaaIOaGa amiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG4bGaaGykaiaaiU fadaaeWbqabSqaaiaadshacaaI9aGaamiDamaaBaaabaGaaGimaaqa baaabaGaamiDamaaBaaabaGaaGymaaqabaGaeyOeI0IaaGymaaqdcq GHris5aOWaaabCaeqaleaacaWG4bGaaGypaiaadIhadaWgaaqaaiaa icdaaeqaaaqaaiaadIhadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaig daa0GaeyyeIuoakiaaiIcacaWG0bGaey4kaSIaeqiVd0MaeyOeI0Ia amiDamaaBaaaleaacaaIWaaabeaakiaaiMcadaahaaWcbeqaaiaaiI caaaGccqaH8oqBcqGHsislcaaIXaGaaGykaiabeI8a5naaCaaaleqa baGaaGimaaaakiaaiIcacaWG0bGaeyOeI0IaaGymaiaaiYcacaWG4b GaaGykaiabgkHiTmaaqahabeWcbaGaamiEaiaai2dacqaHdpWCcaaI OaGaamiDamaaBaaabaGaaGimaaqabaGaaGykaaqaaiaadIhadaWgaa qaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaaiIcacaWG 0bGaey4kaSIaeqiVd0MaeyOeI0Iaeq4WdmNaaGikaiaadshadaWgaa WcbaGaaGimaaqabaGccaaIPaGaaGykamaaCaaaleqabaGaaGikaaaa kiabeY7aTjabgkHiTiaaigdacaaIPaGaeqiYdK3aaWbaaSqabeaaca aIWaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaIDbGaaGil aaaa@8F0F@  (18)

x= x 0 x 1 1 p 0 ' (x1) Δ β (Δy(x))= p 0 ' ( x 1 1) Δ β (Δy( x 1 ))+ x= x 0 x1 Δ ρ( t 1 ) β p 0 ' (x1) Δ β (Δy(x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadIhacaaI9aGaam iEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOGaamiCamaaCaaaleqabaGaaG imaaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG4bGaeyOeI0Ia aGymaiaaiMcacqqHuoardaahaaWcbeqaaiabek7aIbaakiaaiIcacq qHuoarcaWG5bGaaGikaiaadIhacaaIPaGaaGykaiaai2dacaWGWbWa aWbaaSqabeaacaaIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikai aadIhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaIXaGaaGykaiab fs5aenaaCaaaleqabaGaeqOSdigaaOGaaGikaiabfs5aejaadMhaca aIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaIPaGaey4k aSYaaabCaeqaleaacaWG4bGaaGypaiaadIhadaWgaaqaaiaaicdaae qaaaqaaiaadIhacqGHsislcaaIXaaaniabggHiLdGccqqHuoardaqh aaWcbaGaeqyWdiNaaGikaiaadshadaWgaaqaaiaaigdaaeqaaiaaiM caaeaacqaHYoGyaaGccaWGWbWaaWbaaSqabeaacaaIWaaaaOWaaWba aSqabeaacaWGNaaaaOGaaGikaiaadIhacqGHsislcaaIXaGaaGykai abfs5aenaaCaaaleqabaGaeqOSdigaaOGaaGikaiabfs5aejaadMha caaIOaGaamiEaiaaiMcacaaIPaGaaGOlaaaa@80E4@  (19)

Принимая во внимание тождества (14) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (18) и (13), получим

ΔS( u 0 , v 0 )=S( u ¯ , v ¯ )S( u 0 , v 0 )= φ 1 ( y ¯ ( x 1 )) φ 1 ( y 0 ( x 1 ))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGtbGaaGikaiaadwhada ahaaWcbeqaaiaaicdaaaGccaaISaGaamODamaaCaaaleqabaGaaGim aaaakiaaiMcacaaI9aGaam4uaiaaiIcaceWG1bGbaebacaaISaGabm ODayaaraGaaGykaiabgkHiTiaadofacaaIOaGaamyDamaaCaaaleqa baGaaGimaaaakiaaiYcacaWG2bWaaWbaaSqabeaacaaIWaaaaOGaaG ykaiaai2dacqaHgpGAdaWgaaWcbaGaaGymaaqabaGccaaIOaGabmyE ayaaraGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaG ykaiabgkHiTiabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiIcacaWG 5bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhadaWgaaWcbaGaaG ymaaqabaGccaaIPaGaaGykaiabgUcaRaaa@5BEA@

+ x 0 x 1 1 ( φ 2 (x, z ¯ ( t 1 ,x)) φ 2 (x, z 0 ( t 1 ,x)))+2 ψ 0 ' ( t 1 1, x 1 )(Δz( t 1 , x 1 ))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadIhada WgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaaigdaaeqaaiab gkHiTiaaigdaa0GaeyyeIuoakiaaiIcacqaHgpGAdaWgaaWcbaGaaG OmaaqabaGccaaIOaGaamiEaiaaiYcaceWG6bGbaebacaaIOaGaamiD amaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bGaaGykaiaaiMcacq GHsislcqaHgpGAdaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiEaiaa iYcacaWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshadaWgaa WcbaGaaGymaaqabaGccaaISaGaamiEaiaaiMcacaaIPaGaaGykaiab gUcaRiaaikdacqaHipqEdaahaaWcbeqaaiaaicdaaaGcdaahaaWcbe qaaiaadEcaaaGccaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiab gkHiTiaaigdacaaISaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiM cacaaIOaGaeuiLdqKaamOEaiaaiIcacaWG0bWaaSbaaSqaaiaaigda aeqaaOGaaGilaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaaG ykaiabgUcaRaaa@6CAA@

+2 x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' ( t 1 1,x)Δz( t 1 ,x)+2 ψ 0 ' ( t 0 1, x 1 )(Δy( x 1 ))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabfs5aen aaDaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGymaaqabaGa aGykaaqaaiabeg7aHbaakiabeI8a5naaCaaaleqabaGaaGimaaaakm aaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0IaaGymaiaaiYcacaWG4bGaaGykaiabfs5aejaadQ hacaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bGa aGykaiabgUcaRiaaikdacqaHipqEdaahaaWcbeqaaiaaicdaaaGcda ahaaWcbeqaaiaadEcaaaGccaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiabgkHiTiaaigdacaaISaGaamiEamaaBaaaleaacaaIXaaabe aakiaaiMcacaaIOaGaeuiLdqKaamyEaiaaiIcacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaaGykaiaaiMcacqGHRaWkaaa@6B86@

+2 x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' ( t 0 1,x)Δy(x)++ t= t 0 t 1 1 x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' (t1,x)Δz(t,x)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabfs5aen aaDaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGymaaqabaGa aGykaaqaaiabeg7aHbaakiabeI8a5naaCaaaleqabaGaaGimaaaakm aaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaeyOeI0IaaGymaiaaiYcacaWG4bGaaGykaiabfs5aejaadM hacaaIOaGaamiEaiaaiMcacqGHRaWkcqGHRaWkdaaeWbqabSqaaiaa dshacaaI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBa aabaGaaGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqa leaacaWG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadI hadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiab fs5aenaaDaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGymaa qabaGaaGykaaqaaiabeg7aHbaakiabeI8a5naaCaaaleqabaGaaGim aaaakmaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bGaeyOeI0IaaG ymaiaaiYcacaWG4bGaaGykaiabfs5aejaadQhacaaIOaGaamiDaiaa iYcacaWG4bGaaGykaiabgUcaRaaa@8181@

+ μ Γ(μ) Δy(x)[ t= t 0 t 1 1 x= x 0 x 1 1 (t+μ t 0 ) ( μ1) ψ 0 (t1,x) t= t 0 t 1 1 x= x 0 x 1 1 (t+μσ( t 0 )) (μ1) ψ 0 (t1,x)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiabeY7aTbqaai abfo5ahjaaiIcacqaH8oqBcaaIPaaaaiabfs5aejaadMhacaaIOaGa amiEaiaaiMcacaaIBbWaaabCaeqaleaacaWG0bGaaGypaiaadshada WgaaqaaiaaicdaaeqaaaqaaiaadshadaWgaaqaaiaaigdaaeqaaiab gkHiTiaaigdaa0GaeyyeIuoakmaaqahabeWcbaGaamiEaiaai2daca WG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaa beaacqGHsislcaaIXaaaniabggHiLdGccaaIOaGaamiDaiabgUcaRi abeY7aTjabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaWa aWbaaSqabeaacaaIOaaaaOGaeqiVd0MaeyOeI0IaaGymaiaaiMcacq aHipqEdaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiabgkHiTiaa igdacaaISaGaamiEaiaaiMcacqGHsisldaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaaiIcaca WG0bGaey4kaSIaeqiVd0MaeyOeI0Iaeq4WdmNaaGikaiaadshadaWg aaWcbaGaaGimaaqabaGccaaIPaGaaGykamaaCaaaleqabaGaaGikai abeY7aTjabgkHiTiaaigdacaaIPaaaaOGaeqiYdK3aaWbaaSqabeaa caaIWaaaaOGaaGikaiaadshacqGHsislcaaIXaGaaGilaiaadIhaca aIPaGaaGyxaiabgkHiTaaa@9488@

t= t 0 t 1 1 x= x 0 x 1 1 H(t,x, z ¯ (t,x), u ¯ (t), ψ 0 )(t,x)H(t,x, z 0 (t,x), u 0 (t), ψ 0 )(t,x) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakmaabmaaba GaamisaiaaiIcacaWG0bGaaGilaiaadIhacaaISaGabmOEayaaraGa aGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGabmyDayaaraGaaG ikaiaadshacaaIPaGaaGilaiabeI8a5naaCaaaleqabaGaaGimaaaa kiaaiMcacaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiabgkHiTiaadI eacaaIOaGaamiDaiaaiYcacaWG4bGaaGilaiaadQhadaahaaWcbeqa aiaaicdaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYcaca WG1bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshacaaIPaGaaGil aiabeI8a5naaCaaaleqabaGaaGimaaaakiaaiMcacaaIOaGaamiDai aaiYcacaWG4bGaaGykaaGaayjkaiaawMcaaiabgUcaRaaa@774C@

+ p 0 ' ( x 1 1)Δy( x 1 )+ x= x 0 x 1 1 Δ ρ( t 1 ) β Δy(x) x= x 0 x 1 1 M(x, y ¯ (x), v ¯ (x), p 0 (x))M(x, y 0 (x), v 0 (x), p 0 (x)) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGWbWaaWbaaSqabeaaca aIWaaaaOWaaWbaaSqabeaacaWGNaaaaOGaaGikaiaadIhadaWgaaWc baGaaGymaaqabaGccqGHsislcaaIXaGaaGykaiabfs5aejaadMhaca aIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacqGHRaWkdaae WbqabSqaaiaadIhacaaI9aGaamiEamaaBaaabaGaaGimaaqabaaaba GaamiEamaaBaaabaGaaGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5 aOGaeuiLdq0aa0baaSqaaiabeg8aYjaaiIcacaWG0bWaaSbaaeaaca aIXaaabeaacaaIPaaabaGaeqOSdigaaOGaeuiLdqKaamyEaiaaiIca caWG4bGaaGykaiabgkHiTmaaqahabeWcbaGaamiEaiaai2dacaWG4b WaaSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaabeaa cqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaad2eacaaIOaGaam iEaiaaiYcaceWG5bGbaebacaaIOaGaamiEaiaaiMcacaaISaGabmOD ayaaraGaaGikaiaadIhacaaIPaGaaGilaiaadchadaahaaWcbeqaai aaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPaGaeyOeI0Iaamytaiaa iIcacaWG4bGaaGilaiaadMhadaahaaWcbeqaaiaaicdaaaGccaaIOa GaamiEaiaaiMcacaaISaGaamODamaaCaaaleqabaGaaGimaaaakiaa iIcacaWG4bGaaGykaiaaiYcacaWGWbWaaWbaaSqabeaacaaIWaaaaO GaaGikaiaadIhacaaIPaGaaGykaaGaayjkaiaawMcaaiaai6caaaa@87B1@

Отсюда, используя формулу Тейлора и учитывая введенные обозначения, можно записать тождество (19) в следующем виде:

ΔS( u 0 , v 0 )= φ 1 ' ( y 0 ( x 1 )) y Δy( x 1 )+ x= x 0 x 1 1 φ 2 ' (x, z 0 ( t 1 ,x)) z Δz( t 1 ,x))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGtbGaaGikaiaadwhada ahaaWcbeqaaiaaicdaaaGccaaISaGaamODamaaCaaaleqabaGaaGim aaaakiaaiMcacaaI9aWaaSaaaeaacqGHciITcqaHgpGAdaqhaaWcba GaaGymaaqaaiaadEcaaaGccaaIOaGaamyEamaaCaaaleqabaGaaGim aaaakiaaiIcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiM caaeaacqGHciITcaWG5baaaiabfs5aejaadMhacaaIOaGaamiEamaa BaaaleaacaaIXaaabeaakiaaiMcacqGHRaWkdaaeWbqabSqaaiaadI hacaaI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaa baGaaGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaSaaaeaacq GHciITcqaHgpGAdaqhaaWcbaGaaGOmaaqaaiaadEcaaaGccaaIOaGa amiEaiaaiYcacaWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaads hadaWgaaWcbaGaaGymaaqabaGccaaISaGaamiEaiaaiMcacaaIPaaa baGaeyOaIyRaamOEaaaacqqHuoarcaWG6bGaaGikaiaadshadaWgaa WcbaGaaGymaaqabaGccaaISaGaamiEaiaaiMcacaaIPaGaey4kaSca aa@72D0@

+ o 1 (Δy( x 1 ))+ o 2 (Δz( t 1 ,x))+2 ψ 0 ' ( t 1 1, x 1 )(Δz( t 1 , x 1 ))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaWGVbWaaSbaaSqaaiaaig daaeqaaOGaaGikaebbfv3ySLgzGueE0jxyaGabaiab=vIiqjabfs5a ejaadMhacaaIOaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacq WFLicucaaIPaGaey4kaSIaam4BamaaBaaaleaacaaIYaaabeaakiaa iIcacqWFLicucqqHuoarcaWG6bGaaGikaiaadshadaWgaaWcbaGaaG ymaaqabaGccaaISaGaamiEaiaaiMcacqWFLicucaaIPaGaey4kaSIa aGOmaiabeI8a5naaCaaaleqabaGaaGimaaaakmaaCaaaleqabaGaam 4jaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Ia aGymaiaaiYcacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiaaiI cacqqHuoarcaWG6bGaaGikaiaadshadaWgaaWcbaGaaGymaaqabaGc caaISaGaamiEamaaBaaaleaacaaIXaaabeaakiaaiMcacaaIPaGaey 4kaScaaa@67B9@

+2 x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' ( t 1 1,x)Δz( t 1 ,x)+2 ψ 0 ' ( t 0 1, x 1 )(Δy( x 1 ))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabfs5aen aaDaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGymaaqabaGa aGykaaqaaiabeg7aHbaakiabeI8a5naaCaaaleqabaGaaGimaaaakm aaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0IaaGymaiaaiYcacaWG4bGaaGykaiabfs5aejaadQ hacaaIOaGaamiDamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG4bGa aGykaiabgUcaRiaaikdacqaHipqEdaahaaWcbeqaaiaaicdaaaGcda ahaaWcbeqaaiaadEcaaaGccaaIOaGaamiDamaaBaaaleaacaaIWaaa beaakiabgkHiTiaaigdacaaISaGaamiEamaaBaaaleaacaaIXaaabe aakiaaiMcacaaIOaGaeuiLdqKaamyEaiaaiIcacaWG4bWaaSbaaSqa aiaaigdaaeqaaOGaaGykaiaaiMcacqGHRaWkaaa@6B86@

+2 x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' ( t 0 1,x)Δy(x)+ t= t 0 t 1 1 x= x 0 x 1 1 Δ ρ( t 1 ) α ψ 0 ' (t1,x)Δz(t,x)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIYaWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabfs5aen aaDaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGymaaqabaGa aGykaaqaaiabeg7aHbaakiabeI8a5naaCaaaleqabaGaaGimaaaakm aaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaicda aeqaaOGaeyOeI0IaaGymaiaaiYcacaWG4bGaaGykaiabfs5aejaadM hacaaIOaGaamiEaiaaiMcacqGHRaWkdaaeWbqabSqaaiaadshacaaI 9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaG ymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG 4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaa qaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabfs5aenaa DaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGymaaqabaGaaG ykaaqaaiabeg7aHbaakiabeI8a5naaCaaaleqabaGaaGimaaaakmaa CaaaleqabaGaam4jaaaakiaaiIcacaWG0bGaeyOeI0IaaGymaiaaiY cacaWG4bGaaGykaiabfs5aejaadQhacaaIOaGaamiDaiaaiYcacaWG 4bGaaGykaiabgUcaRaaa@809F@

+ μ Γ(μ) Δy(x)[ t= t 0 t 1 1 x= x 0 x 1 1 (t+μ t 0 ) ( μ1) ψ 0 (t1,x) t= t 0 t 1 1 x= x 0 x 1 1 (t+μσ( t 0 )) (μ1) ψ 0 (t1,x)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiabeY7aTbqaai abfo5ahjaaiIcacqaH8oqBcaaIPaaaaiabfs5aejaadMhacaaIOaGa amiEaiaaiMcacaaIBbWaaabCaeqaleaacaWG0bGaaGypaiaadshada WgaaqaaiaaicdaaeqaaaqaaiaadshadaWgaaqaaiaaigdaaeqaaiab gkHiTiaaigdaa0GaeyyeIuoakmaaqahabeWcbaGaamiEaiaai2daca WG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaa beaacqGHsislcaaIXaaaniabggHiLdGccaaIOaGaamiDaiabgUcaRi abeY7aTjabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaWa aWbaaSqabeaacaaIOaaaaOGaeqiVd0MaeyOeI0IaaGymaiaaiMcacq aHipqEdaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiabgkHiTiaa igdacaaISaGaamiEaiaaiMcacqGHsisldaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaaiIcaca WG0bGaey4kaSIaeqiVd0MaeyOeI0Iaeq4WdmNaaGikaiaadshadaWg aaWcbaGaaGimaaqabaGccaaIPaGaaGykamaaCaaaleqabaGaaGikai abeY7aTjabgkHiTiaaigdacaaIPaaaaOGaeqiYdK3aaWbaaSqabeaa caaIWaaaaOGaaGikaiaadshacqGHsislcaaIXaGaaGilaiaadIhaca aIPaGaaGyxaiabgkHiTaaa@9488@

t= t 0 t 1 1 x= x 0 x 1 1 H(t,x, z 0 (t,x), u ¯ (t), ψ 0 )(t,x)H(t,x, z 0 (t,x), u 0 (t), ψ 0 )(t,x) + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakmaabmaaba GaamisaiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamOEamaaCaaa leqabaGaaGimaaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaG ilaiqadwhagaqeaiaaiIcacaWG0bGaaGykaiaaiYcacqaHipqEdaah aaWcbeqaaiaaicdaaaGccaaIPaGaaGikaiaadshacaaISaGaamiEai aaiMcacqGHsislcaWGibGaaGikaiaadshacaaISaGaamiEaiaaiYca caWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshacaaISaGaam iEaiaaiMcacaaISaGaamyDamaaCaaaleqabaGaaGimaaaakiaaiIca caWG0bGaaGykaiaaiYcacqaHipqEdaahaaWcbeqaaiaaicdaaaGcca aIPaGaaGikaiaadshacaaISaGaamiEaiaaiMcaaiaawIcacaGLPaaa cqGHRaWkaaa@7825@

t= t 0 t 1 1 x= x 0 x 1 1 H ' (t,x, z 0 (t,x), u 0 (t), ψ 0 (t,x)) z Δz(t,x)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakmaalaaaba GaeyOaIyRaamisamaaCaaaleqabaGaam4jaaaakiaaiIcacaWG0bGa aGilaiaadIhacaaISaGaamOEamaaCaaaleqabaGaaGimaaaakiaaiI cacaWG0bGaaGilaiaadIhacaaIPaGaaGilaiaadwhadaahaaWcbeqa aiaaicdaaaGccaaIOaGaamiDaiaaiMcacaaISaGaeqiYdK3aaWbaaS qabeaacaaIWaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaI PaaabaGaeyOaIyRaamOEaaaacqqHuoarcaWG6bGaaGikaiaadshaca aISaGaamiEaiaaiMcacqGHRaWkaaa@69A2@

+ t= t 0 t 1 1 x= x 0 x 1 1 [ H(t,x, z 0 (t,x), u ¯ (t), ψ 0 (t,x)) z (H(t,x, z 0 (t,x), u 0 (t), ψ 0 (t,x)) z ] ' Δz(t,x)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaaiUfada WcaaqaaiabgkGi2kaadIeacaaIOaGaamiDaiaaiYcacaWG4bGaaGil aiaadQhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiYcaca WG4bGaaGykaiaaiYcaceWG1bGbaebacaaIOaGaamiDaiaaiMcacaaI SaGaeqiYdK3aaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshacaaISa GaamiEaiaaiMcacaaIPaaabaGaeyOaIyRaamOEaaaacqGHsisldaWc aaqaaiabgkGi2kaaiIcacaWGibGaaGikaiaadshacaaISaGaamiEai aaiYcacaWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshacaaI SaGaamiEaiaaiMcacaaISaGaamyDamaaCaaaleqabaGaaGimaaaaki aaiIcacaWG0bGaaGykaiaaiYcacqaHipqEdaahaaWcbeqaaiaaicda aaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcaaeaacqGHci ITcaWG6baaaiaai2fadaahaaWcbeqaaiaadEcaaaGccqqHuoarcaWG 6bGaaGikaiaadshacaaISaGaamiEaiaaiMcacqGHRaWkaaa@881E@

+ t= t 0 t 1 1 x= x 0 x 1 1 o 3 (Δz(t,x))+ p 0 ' ( x 1 1)Δy( x 1 )+ x= x 0 x 1 1 Δ ρ( t 1 ) β Δy(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaad+gada WgaaWcbaGaaG4maaqabaGccaaIOaqeeuuDJXwAKbsr4rNCHbaceaGa e8xjIaLaeuiLdqKaamOEaiaaiIcacaWG0bGaaGilaiaadIhacaaIPa Gae8xjIaLaaGykaiabgUcaRiaadchadaahaaWcbeqaaiaaicdaaaGc daahaaWcbeqaaiaadEcaaaGccaaIOaGaamiEamaaBaaaleaacaaIXa aabeaakiabgkHiTiaaigdacaaIPaGaeuiLdqKaamyEaiaaiIcacaWG 4bWaaSbaaSqaaiaaigdaaeqaaOGaaGykaiabgUcaRmaaqahabeWcba GaamiEaiaai2dacaWG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bWa aSbaaeaacaaIXaaabeaacqGHsislcaaIXaaaniabggHiLdGccqqHuo ardaqhaaWcbaGaeqyWdiNaaGikaiaadshadaWgaaqaaiaaigdaaeqa aiaaiMcaaeaacqaHYoGyaaGccqqHuoarcaWG5bGaaGikaiaadIhaca aIPaGaeyOeI0caaa@7C90@

x= x 0 x 1 1 M(x, y 0 (x), v ¯ (x), p 0 (x))M(x, y 0 (x), v 0 (x), p 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadIhaca aI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaeWaaeaacaWGnb GaaGikaiaadIhacaaISaGaamyEamaaCaaaleqabaGaaGimaaaakiaa iIcacaWG4bGaaGykaiaaiYcaceWG2bGbaebacaaIOaGaamiEaiaaiM cacaaISaGaamiCamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGa aGykaiaaiMcacqGHsislcaWGnbGaaGikaiaadIhacaaISaGaamyEam aaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG 2bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGilai aadchadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaI PaaacaGLOaGaayzkaaGaeyOeI0caaa@6318@

x= x 0 x 1 1 M(x, y 0 (x), v 0 (x), p 0 (x)) y Δy(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadIhaca aI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaSaaaeaacqGHci ITcaWGnbGaaGikaiaadIhacaaISaGaamyEamaaCaaaleqabaGaaGim aaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaaca aIWaaaaOGaaGikaiaadIhacaaIPaGaaGilaiaadchadaahaaWcbeqa aiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPaaabaGaeyOaIyRaam yEaaaacqqHuoarcaWG5bGaaGikaiaadIhacaaIPaGaeyOeI0caaa@57DE@

x= x 0 x 1 1 M(x, y 0 (x), v ¯ (x), p 0 (x)) y M(x, y 0 (x), v 0 (x), p 0 (x)) y ' Δy(x) x= x 0 x 1 1 o 4 (Δy(x)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadIhaca aI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaamWaaeaadaWcaa qaaiabgkGi2kaad2eacaaIOaGaamiEaiaaiYcacaWG5bWaaWbaaSqa beaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGilaiqadAhagaqeai aaiIcacaWG4bGaaGykaiaaiYcacaWGWbWaaWbaaSqabeaacaaIWaaa aOGaaGikaiaadIhacaaIPaGaaGykaaqaaiabgkGi2kaadMhaaaGaey OeI0YaaSaaaeaacqGHciITcaWGnbGaaGikaiaadIhacaaISaGaamyE amaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYcaca WG2bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGil aiaadchadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcaca aIPaaabaGaeyOaIyRaamyEaaaaaiaawUfacaGLDbaadaahaaWcbeqa aiaadEcaaaGccqqHuoarcaWG5bGaaGikaiaadIhacaaIPaGaeyOeI0 YaaabCaeqaleaacaWG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqa aaqaaiaadIhadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0Gaey yeIuoakiaad+gadaWgaaWcbaGaaGinaaqabaGccaaIOaqeeuuDJXwA Kbsr4rNCHbaceaGae8xjIaLaeuiLdqKaamyEaiaaiIcacaWG4bGaaG ykaiab=vIiqjaaiMcacaaIUaaaaa@89E6@  (20)

Здесь α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHXoqycqWFLicuaaa@3A2F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  норма вектора ( α 1 ,, α n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqySde2aaSbaaSqaaiaaig daaeqaaOGaaGilaiablAciljaaiYcacqaHXoqydaWgaaWcbaGaamOB aaqabaGccaaIPaaaaa@3B08@ , определяемая формулой

α= i=1 n α i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaHXoqycqWFLicucaaI9aWaaabCaeqaleaacaWGPbGaaGypaiaa igdaaeaacaWGUbaaniabggHiLdGccqWFLicucqaHXoqydaWgaaWcba GaamyAaaqabaGccqWFLicucaaISaaaaa@4657@

а o(α) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGVbGaaGikaiabeg7aHjaaiMcaaa a@35B5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  величина более высокого порядка малости, чем α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqyaaa@335C@ , т.е. o(α)/α0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGVbGaaGikaiabeg7aHjaaiMcaca aIVaGaeqySdeMaeyOKH4QaaGimaaaa@3AB4@  при α0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycqGHsgIRcaaIWaaaaa@3603@ . Можно доказать, что

μ Γ(μ) Δy(x)[ t= t 0 t 1 1 x= x 0 x 1 1 (t+μ t 0 ) ( μ1) ψ 0 (t1,x) t= t 0 t 1 1 x= x 0 x 1 1 (t+μσ( t 0 )) (μ1) ψ 0 (t1,x)]= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabeY7aTbqaaiabfo5ahj aaiIcacqaH8oqBcaaIPaaaaiabfs5aejaadMhacaaIOaGaamiEaiaa iMcacaaIBbWaaabCaeqaleaacaWG0bGaaGypaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshadaWgaaqaaiaaigdaaeqaaiabgkHiTiaa igdaa0GaeyyeIuoakmaaqahabeWcbaGaamiEaiaai2dacaWG4bWaaS baaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaabeaacqGH sislcaaIXaaaniabggHiLdGccaaIOaGaamiDaiabgUcaRiabeY7aTj abgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaWaaWbaaSqa beaacaaIOaaaaOGaeqiVd0MaeyOeI0IaaGymaiaaiMcacqaHipqEda ahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiabgkHiTiaaigdacaaI SaGaamiEaiaaiMcacqGHsisldaaeWbqabSqaaiaadshacaaI9aGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaaiIcacaWG0bGaey 4kaSIaeqiVd0MaeyOeI0Iaeq4WdmNaaGikaiaadshadaWgaaWcbaGa aGimaaqabaGccaaIPaGaaGykamaaCaaaleqabaGaaGikaiabeY7aTj abgkHiTiaaigdacaaIPaaaaOGaeqiYdK3aaWbaaSqabeaacaaIWaaa aOGaaGikaiaadshacqGHsislcaaIXaGaaGilaiaadIhacaaIPaGaaG yxaiaai2daaaa@9380@

= μ Γ(μ) Δy(x)Γ(μ) x= x 0 x 1 1 ψ 0 ( t 0 ,x)=Δy(x) x= x 0 x 1 1 ψ 0 ( t 0 1,x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacqaH8oqBaeaacq qHtoWrcaaIOaGaeqiVd0MaaGykaaaacqqHuoarcaWG5bGaaGikaiaa dIhacaaIPaGaeu4KdCKaaGikaiabeY7aTjaaiMcadaaeWbqabSqaai aadIhacaaI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaa BaaabaGaaGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOGaeqiYdK 3aaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshadaWgaaWcbaGaaGim aaqabaGccaaISaGaamiEaiaaiMcacaaI9aGaeuiLdqKaamyEaiaaiI cacaWG4bGaaGykamaaqahabeWcbaGaamiEaiaai2dacaWG4bWaaSba aeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaabeaacqGHsi slcaaIXaaaniabggHiLdGccqaHipqEdaahaaWcbeqaaiaaicdaaaGc caaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiabgkHiTiaaigdaca aISaGaamiEaiaaiMcacaaIUaaaaa@6C57@

Теперь предположим, что (p(x),ψ(t,x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiCaiaaiIcacaWG4bGaaG ykaiaaiYcacqaHipqEcaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaa iMcaaaa@3D0E@  является решением следующей системы линейных однородных разностных уравнений дробного порядка:

Δ α ρ( t 1 ) ψ(t1,x1)= H z [t,x], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaahaaWcbeqaaiabeg7aHb aakmaaBaaaleaacqaHbpGCcaaIOaGaamiDamaaBaaabaGaaGymaaqa baGaaGykaaqabaGccqaHipqEcaaIOaGaamiDaiabgkHiTiaaigdaca aISaGaamiEaiabgkHiTiaaigdacaaIPaGaaGypaiaadIeadaWgaaWc baGaamOEaaqabaGccaaIBbGaamiDaiaaiYcacaWG4bGaaGyxaiaaiY caaaa@4B4F@  (21)

ψ( t 1 1,x)= φ 2 (z) 2z , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiDamaaBaaale aacaaIXaaabeaakiabgkHiTiaaigdacaaISaGaamiEaiaaiMcacaaI 9aGaeyOeI0YaaSaaaeaacqGHciITcqaHgpGAdaWgaaWcbaGaaGOmaa qabaGccaaIOaGaamOEaiaaiMcaaeaacaaIYaGaeyOaIyRaamOEaaaa caaISaaaaa@4649@  (22)

Δ ρ( t 1 ) α ψ 0 ( t 0 1,x)+ Δ ρ( t 1 ) β p(x1)+ ψ 0 ( t 0 1,x)= M y [x], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaqhaaWcbaGaeqyWdiNaaG ikaiaadshadaWgaaqaaiaaigdaaeqaaiaaiMcaaeaacqaHXoqyaaGc cqaHipqEdaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDamaaBaaale aacaaIWaaabeaakiabgkHiTiaaigdacaaISaGaamiEaiaaiMcacqGH RaWkcqqHuoardaqhaaWcbaGaeqyWdiNaaGikaiaadshadaWgaaqaai aaigdaaeqaaiaaiMcaaeaacqaHYoGyaaGccaWGWbGaaGikaiaadIha cqGHsislcaaIXaGaaGykaiabgUcaRiabeI8a5naaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0Ia aGymaiaaiYcacaWG4bGaaGykaiaai2dacaWGnbWaaSbaaSqaaiaadM haaeqaaOGaaG4waiaadIhacaaIDbGaaGilaaaa@620A@  (23)

p( x 1 1)= φ 1 (y) y , ψ 0 ( t 1 1, x 1 )=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbGaaGikaiaadIhadaWgaaWcba GaaGymaaqabaGccqGHsislcaaIXaGaaGykaiaai2dacqGHsisldaWc aaqaaiabgkGi2kabeA8aQnaaBaaaleaacaaIXaaabeaakiaaiIcaca WG5bGaaGykaaqaaiabgkGi2kaadMhaaaGaaGilaiaaywW7cqaHipqE daahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDamaaBaaaleaacaaIXa aabeaakiabgkHiTiaaigdacaaISaGaamiEamaaBaaaleaacaaIXaaa beaakiaaiMcacaaI9aGaaGimaiaai6caaaa@5123@  (24)

Тогда формула приращения (20) примет вид

ΔS( u 0 , v 0 )= t= t 0 t 1 1 x= x 0 x 1 1 H(t,x, z 0 (t,x), u ¯ (t), ψ 0 (t,x))H(t,x, z 0 (t,x), u 0 (t), ψ 0 (t,x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGtbGaaGikaiaadwhada ahaaWcbeqaaiaaicdaaaGccaaISaGaamODamaaCaaaleqabaGaaGim aaaakiaaiMcacaaI9aWaaabCaeqaleaacaWG0bGaaGypaiaadshada WgaaqaaiaaicdaaeqaaaqaaiaadshadaWgaaqaaiaaigdaaeqaaiab gkHiTiaaigdaa0GaeyyeIuoakmaaqahabeWcbaGaamiEaiaai2daca WG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaa beaacqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaadIeacaaIOa GaamiDaiaaiYcacaWG4bGaaGilaiaadQhadaahaaWcbeqaaiaaicda aaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiYcaceWG1bGbae bacaaIOaGaamiDaiaaiMcacaaISaGaeqiYdK3aaWbaaSqabeaacaaI WaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaIPaGaeyOeI0 IaamisaiaaiIcacaWG0bGaaGilaiaadIhacaaISaGaamOEamaaCaaa leqabaGaaGimaaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaG ilaiaadwhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiMca caaISaGaeqiYdK3aaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshaca aISaGaamiEaiaaiMcacaaIPaaacaGLOaGaayzkaaGaeyOeI0caaa@803A@

x= x 0 x 1 1 M(x, y 0 (x), v ¯ (x), p 0 (x))M(x, y 0 (x), v 0 (x), p 0 (x)) + η 1 ( u 0 , v 0 ,Δu,Δv). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadIhaca aI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaeWaaeaacaWGnb GaaGikaiaadIhacaaISaGaamyEamaaCaaaleqabaGaaGimaaaakiaa iIcacaWG4bGaaGykaiaaiYcaceWG2bGbaebacaaIOaGaamiEaiaaiM cacaaISaGaamiCamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGa aGykaiaaiMcacqGHsislcaWGnbGaaGikaiaadIhacaaISaGaamyEam aaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG 2bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGilai aadchadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaI PaaacaGLOaGaayzkaaGaey4kaSIaeq4TdG2aaSbaaSqaaiaaigdaae qaaOGaaGikaiaadwhadaahaaWcbeqaaiaaicdaaaGccaaISaGaamOD amaaCaaaleqabaGaaGimaaaakiaaiYcacqqHuoarcaWG1bGaaGilai abfs5aejaadAhacaaIPaGaaGOlaaaa@7281@  (25)

Здесь по определению

η 1 ( u 0 , v 0 ,Δu,Δv)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaWgaaWcbaGaaGymaaqaba GccaaIOaGaamyDamaaCaaaleqabaGaaGimaaaakiaaiYcacaWG2bWa aWbaaSqabeaacaaIWaaaaOGaaGilaiabfs5aejaadwhacaaISaGaeu iLdqKaamODaiaaiMcacaaI9aaaaa@4140@

= o 1 (Δy( x 1 ))+ o 2 (Δz( t 1 ,x))+ t= t 0 t 1 1 x= x 0 x 1 1 o 3 ((Δz(t,x)) x= x 0 x 1 1 o 4 (Δy(x))+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaam4BamaaBaaaleaacaaIXa aabeaakiaaiIcarqqr1ngBPrgifHhDYfgaiqaacqWFLicucqqHuoar caWG5bGaaGikaiaadIhadaWgaaWcbaGaaGymaaqabaGccaaIPaGae8 xjIaLaaGykaiabgUcaRiaad+gadaWgaaWcbaGaaGOmaaqabaGccaaI OaGae8xjIaLaeuiLdqKaamOEaiaaiIcacaWG0bWaaSbaaSqaaiaaig daaeqaaOGaaGilaiaadIhacaaIPaGae8xjIaLaaGykaiabgUcaRmaa qahabeWcbaGaamiDaiaai2dacaWG0bWaaSbaaeaacaaIWaaabeaaae aacaWG0bWaaSbaaeaacaaIXaaabeaacqGHsislcaaIXaaaniabggHi LdGcdaaeWbqabSqaaiaadIhacaaI9aGaamiEamaaBaaabaGaaGimaa qabaaabaGaamiEamaaBaaabaGaaGymaaqabaGaeyOeI0IaaGymaaqd cqGHris5aOGaam4BamaaBaaaleaacaaIZaaabeaakiaaiIcacaaIOa Gae8xjIaLaeuiLdqKaamOEaiaaiIcacaWG0bGaaGilaiaadIhacaaI PaGae8xjIaLaaGykaiabgkHiTmaaqahabeWcbaGaamiEaiaai2daca WG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaa beaacqGHsislcaaIXaaaniabggHiLdGccaWGVbWaaSbaaSqaaiaais daaeqaaOGaaGikaiab=vIiqjabfs5aejaadMhacaaIOaGaamiEaiaa iMcacqWFLicucaaIPaGaey4kaScaaa@85FE@

+ t= t 0 t 1 1 x= x 0 x 1 1 [ (H(t,x, z 0 (t,x), u ¯ (t), ψ 0 (t,x)) z (H(t,x, z 0 (t,x), u 0 (t), ψ 0 (t,x)) z ] ' Δz(t,x)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaaeWbqabSqaaiaadshaca aI9aGaamiDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaaca WG4bGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaaiUfada WcaaqaaiabgkGi2kaaiIcacaWGibGaaGikaiaadshacaaISaGaamiE aiaaiYcacaWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadshaca aISaGaamiEaiaaiMcacaaISaGabmyDayaaraGaaGikaiaadshacaaI PaGaaGilaiabeI8a5naaCaaaleqabaGaaGimaaaakiaaiIcacaWG0b GaaGilaiaadIhacaaIPaGaaGykaaqaaiabgkGi2kaadQhaaaGaeyOe I0YaaSaaaeaacqGHciITcaaIOaGaamisaiaaiIcacaWG0bGaaGilai aadIhacaaISaGaamOEamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG 0bGaaGilaiaadIhacaaIPaGaaGilaiaadwhadaahaaWcbeqaaiaaic daaaGccaaIOaGaamiDaiaaiMcacaaISaGaeqiYdK3aaWbaaSqabeaa caaIWaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaIPaaaba GaeyOaIyRaamOEaaaacaaIDbWaaWbaaSqabeaacaWGNaaaaOGaeuiL dqKaamOEaiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaey4kaScaaa@88D0@

x= x 0 x 1 1 [ M(x, y 0 (x), v ¯ (x), p 0 (x)) y M(x, y 0 (x), v 0 (x), p 0 (x)) y ]Δy(x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsisldaaeWbqabSqaaiaadIhaca aI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGa aGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOGaaG4wamaalaaaba GaeyOaIyRaamytaiaaiIcacaWG4bGaaGilaiaadMhadaahaaWcbeqa aiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaISaGabmODayaaraGaaG ikaiaadIhacaaIPaGaaGilaiaadchadaahaaWcbeqaaiaaicdaaaGc caaIOaGaamiEaiaaiMcacaaIPaaabaGaeyOaIyRaamyEaaaacqGHsi sldaWcaaqaaiabgkGi2kaad2eacaaIOaGaamiEaiaaiYcacaWG5bWa aWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGilaiaadA hadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaISaGa amiCamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiM caaeaacqGHciITcaWG5baaaiaai2facqqHuoarcaWG5bGaaGikaiaa dIhacaaIPaGaaGOlaaaa@6FA0@  (26)

Пусть ( u 0 (t), v 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaa caaIWaaaaOGaaGikaiaadIhacaaIPaGaaGykaaaa@3C6F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  фиксированное допустимое управление. Предположим, что множества

f(t,x, z 0 ,U)={τ:τ:=f(t,x,z,u),uU},g(x, y 0 ,V)={σ:σ:=g(x,y,v),vV} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGilaiaadwfa caaIPaGaaGypaiaaiUhacqaHepaDcaaI6aGaeqiXdqNaaGOoaiaai2 dacaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6bGaaGil aiaadwhacaaIPaGaaGilaiaaysW7caWG1bGaeyicI4Saamyvaiaai2 hacaaISaGaaGzbVlaadEgacaaIOaGaamiEaiaaiYcacaWG5bWaaWba aSqabeaacaaIWaaaaOGaaGilaiaadAfacaaIPaGaaGypaiaaiUhacq aHdpWCcaaI6aGaeq4WdmNaaGOoaiaai2dacaWGNbGaaGikaiaadIha caaISaGaamyEaiaaiYcacaWG2bGaaGykaiaaiYcacaaMe8UaamODai abgIGiolaadAfacaaI9baaaa@7057@

выпуклы. Тогда через ( u ε (t,x), v ε (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaBaaaleaacqaH1o qzaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGaamOD amaaBaaaleaacqaH1oqzaeqaaOGaaGikaiaadIhacaaIPaGaaGykaa aa@3FFA@  можно определить специальное приращение управления ( u 0 (t,x), v 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGilaiaadAha daahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPaaaaa@3E22@  в виде

Δ u ε (t,x)=u(t,x,ε) u 0 (t,x), Δ v γ (x)=v(x,γ) v 0 (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGabaqaauaabeqaceaaaeaacqqHuo arcaWG1bWaaSbaaSqaaiabew7aLbqabaGccaaIOaGaamiDaiaaiYca caWG4bGaaGykaiaai2dacaWG1bGaaGikaiaadshacaaISaGaamiEai aaiYcacqaH1oqzcaaIPaGaeyOeI0IaamyDamaaCaaaleqabaGaaGim aaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGilaaqaaiabfs 5aejaadAhadaWgaaWcbaGaeq4SdCgabeaakiaaiIcacaWG4bGaaGyk aiaai2dacaWG2bGaaGikaiaadIhacaaISaGaeq4SdCMaaGykaiabgk HiTiaadAhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMca caaIUaaaaaGaay5Eaaaaaa@5E14@  (27)

Здесь ε[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzcqGHiiIZcaaIBbGaaGimai aaiYcacaaIXaGaaGyxaaaa@38DF@ , γ[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcqGHiiIZcaaIBbGaaGimai aaiYcacaaIXaGaaGyxaaaa@38DF@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольные числа, а u(t;ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaI7aGaeq yTduMaaGykaaaa@3781@ , v(x;γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaI7aGaeq 4SdCMaaGykaaaa@3786@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольные допустимые управляющие функции, удовлетворяющие условиям

f(t,x, z 0 (t,x),u(t;ε))f(t,x, z 0 (t,x), u 0 (t))=ε[f(t,x, z 0 (t,x),u(t))f(t,x, z 0 (t,x), u 0 (t))], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadsha caaISaGaamiEaiaaiMcacaaISaGaamyDaiaaiIcacaWG0bGaaG4oai abew7aLjaaiMcacaaIPaGaeyOeI0IaamOzaiaaiIcacaWG0bGaaGil aiaadIhacaaISaGaamOEamaaCaaaleqabaGaaGimaaaakiaaiIcaca WG0bGaaGilaiaadIhacaaIPaGaaGilaiaadwhadaahaaWcbeqaaiaa icdaaaGccaaIOaGaamiDaiaaiMcacaaIPaGaaGypaiabew7aLjaaiU facaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6bWaaWba aSqabeaacaaIWaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcaca aISaGaamyDaiaaiIcacaWG0bGaaGykaiaaiMcacqGHsislcaWGMbGa aGikaiaadshacaaISaGaamiEaiaaiYcacaWG6bWaaWbaaSqabeaaca aIWaaaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaISaGaamyD amaaCaaaleqabaGaaGimaaaakiaaiIcacaWG0bGaaGykaiaaiMcaca aIDbGaaGilaaaa@7BD9@  (28)

g(x, y 0 (x),v(x;γ))g(x, y 0 (x), v 0 (x))=γ[g(x, y 0 (x),v(x))g(x, y 0 (x), v 0 (x))]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaISaGaam yEamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYca caWG2bGaaGikaiaadIhacaaI7aGaeq4SdCMaaGykaiaaiMcacqGHsi slcaWGNbGaaGikaiaadIhacaaISaGaamyEamaaCaaaleqabaGaaGim aaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaaca aIWaaaaOGaaGikaiaadIhacaaIPaGaaGykaiaai2dacqaHZoWzcaaI BbGaam4zaiaaiIcacaWG4bGaaGilaiaadMhadaahaaWcbeqaaiaaic daaaGccaaIOaGaamiEaiaaiMcacaaISaGaamODaiaaiIcacaWG4bGa aGykaiaaiMcacqGHsislcaWGNbGaaGikaiaadIhacaaISaGaamyEam aaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG 2bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGykai aai2facaaIUaaaaa@6E77@  (29)

Здесь u(t,x)U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaISaGaam iEaiaaiMcacqGHiiIZcaWGvbaaaa@3926@ , (t,x)T×Х MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiabgIGiolaadsfacqGHxdaTcaWGLqaaaa@3AF0@ , v(x)V,xX MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaGaey icI4SaamOvaiaaiYcacaWG4bGaeyicI4Saamiwaaaa@3B8D@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольные допустимые управляющие функции, соответствующие u(t;ε) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaI7aGaeq yTduMaaGykaaaa@3781@  и v(x;γ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaI7aGaeq 4SdCMaaGykaaaa@3786@ .

Через (Δ z ε (t,x),Δ y γ (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdqKaamOEamaaBaaale aacqaH1oqzaeqaaOGaaGikaiaadshacaaISaGaamiEaiaaiMcacaaI SaGaeuiLdqKaamyEamaaBaaaleaacqaHZoWzaeqaaOGaaGikaiaadI hacaaIPaGaaGykaaaa@42CE@  обозначим специальное приращение вектора состояния ( z 0 (t,x), y 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGilaiaadMha daahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPaaaaa@3E2A@ , отвечающее приращению (27) управления (u(t,x),v(x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiIcacaWG0bGaaG ilaiaadIhacaaIPaGaaGilaiaadAhacaaIOaGaamiEaiaaiMcacaaI Paaaaa@3C40@ . В [1, 12] доказаны следующие оценки:

Δy(x) L 1 j= x 0 x1 (1+ A α (x,j)) Δ v ¯ g[j], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqqHuoarcaWG5bGaaGikaiaadIhacaaIPaGae8xjIaLaeyizImQa amitamaaBaaaleaacaaIXaaabeaakmaarahabeWcbaGaamOAaiaai2 dacaWG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4bGaeyOeI0IaaGym aaqdcqGHpis1aOGaaGikaiaaigdacqGHRaWkcaWGbbWaaSbaaSqaai abeg7aHbqabaGccaaIOaGaamiEaiaaiYcacaWGQbGaaGykaiaaiMca cqWFLicucqqHuoardaWgaaWcbaGabmODayaaraaabeaakiaadEgaca aIBbGaamOAaiaai2facqWFLicucaaISaaaaa@5C24@  (30)

Δz(t,x) L 2 s= t 0 t1 (1+ R α (t,x,s)) Δ u ¯ f[s,x]+ L 3 j= x 0 x1 (1+ A α (x,j)) Δ u ¯ g[j], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqqHuoarcaWG6bGaaGikaiaadshacaaISaGaamiEaiaaiMcacqWF LicucqGHKjYOcaWGmbWaaSbaaSqaaiaaikdaaeqaaOWaaebCaeqale aacaWGZbGaaGypaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadsha cqGHsislcaaIXaaaniabg+GivdGccaaIOaGaaGymaiabgUcaRiaadk fadaWgaaWcbaGaeqySdegabeaakiaaiIcacaWG0bGaaGilaiaadIha caaISaGaam4CaiaaiMcacaaIPaGae8xjIaLaeuiLdq0aaSbaaSqaai qadwhagaqeaaqabaGccaWGMbGaaG4waiaadohacaaISaGaamiEaiaa i2facqWFLicucqGHRaWkcaWGmbWaaSbaaSqaaiaaiodaaeqaaOWaae bCaeqaleaacaWGQbGaaGypaiaadIhadaWgaaqaaiaaicdaaeqaaaqa aiaadIhacqGHsislcaaIXaaaniabg+GivdGccaaIOaGaaGymaiabgU caRiaadgeadaWgaaWcbaGaeqySdegabeaakiaaiIcacaWG4bGaaGil aiaadQgacaaIPaGaaGykaiab=vIiqjabfs5aenaaBaaaleaaceWG1b GbaebaaeqaaOGaam4zaiaaiUfacaWGQbGaaGyxaiab=vIiqjaaiYca aaa@7E9F@  (31)

L i =const>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaadMgaaeqaaO GaaGypaiaadogacaWGVbGaamOBaiaadohacaWG0bGaaGOpaiaaicda aaa@3ABB@ , i=1,2,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacaaIZaaaaa@3712@ , MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые постоянные. Из этих оценок следует, что

Δ z ε γ(t,x) L 4 ε+ L 5 γ,Δ y γ (x) L 6 γ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqqHuoarcaWG6bWaaSbaaSqaaiabew7aLbqabaGccqaHZoWzcaaI OaGaamiDaiaaiYcacaWG4bGaaGykaiab=vIiqjabgsMiJkaadYeada WgaaWcbaGaaGinaaqabaGccqaH1oqzcqGHRaWkcaWGmbWaaSbaaSqa aiaaiwdaaeqaaOGaeq4SdCMaaGilaiaaywW7cqWFLicucqqHuoarca WG5bWaaSbaaSqaaiabeo7aNbqabaGccaaIOaGaamiEaiaaiMcacqWF LicucqGHKjYOcaWGmbWaaSbaaSqaaiaaiAdaaeqaaOGaeq4SdCMaaG ilaaaa@5CF2@  (32)

где L 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaisdaaeqaaa aa@3378@ , L 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaiwdaaeqaaa aa@3379@ , L 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaiAdaaeqaaa aa@337A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  некоторые положительные числа.

Принимая во внимание оценки (32), формулы (27), (28), (29), в формуле (26) приходим к разложению

Δ S εγ ( u 0 , v 0 )=S( u 0 +Δ u ε , v 0 +Δ v γ )S( u 0 , v 0 )= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGtbWaaSbaaSqaaiabew 7aLjabeo7aNbqabaGccaaIOaGaamyDamaaCaaaleqabaGaaGimaaaa kiaaiYcacaWG2bWaaWbaaSqabeaacaaIWaaaaOGaaGykaiaai2daca WGtbGaaGikaiaadwhadaahaaWcbeqaaiaaicdaaaGccqGHRaWkcqqH uoarcaWG1bWaaSbaaSqaaiabew7aLbqabaGccaaISaGaamODamaaCa aaleqabaGaaGimaaaakiabgUcaRiabfs5aejaadAhadaWgaaWcbaGa eq4SdCgabeaakiaaiMcacqGHsislcaWGtbGaaGikaiaadwhadaahaa WcbeqaaiaaicdaaaGccaaISaGaamODamaaCaaaleqabaGaaGimaaaa kiaaiMcacaaI9aaaaa@57BF@

=ε t= t 0 t 1 1 x= x 0 x 1 1 H(t,x, z 0 (t,x),u(t), ψ 0 )(t,x)H(t,x, z 0 (t,x), u 0 (t), ψ 0 )(t,x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqyTdu2aaabCaeqaleaaca WG0bGaaGypaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadshadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakmaaqahabe WcbaGaamiEaiaai2dacaWG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG 4bWaaSbaaeaacaaIXaaabeaacqGHsislcaaIXaaaniabggHiLdGcda qadaqaaiaadIeacaaIOaGaamiDaiaaiYcacaWG4bGaaGilaiaadQha daahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaG ykaiaaiYcacaWG1bGaaGikaiaadshacaaIPaGaaGilaiabeI8a5naa CaaaleqabaGaaGimaaaakiaaiMcacaaIOaGaamiDaiaaiYcacaWG4b GaaGykaiabgkHiTiaadIeacaaIOaGaamiDaiaaiYcacaWG4bGaaGil aiaadQhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiYcaca WG4bGaaGykaiaaiYcacaWG1bWaaWbaaSqabeaacaaIWaaaaOGaaGik aiaadshacaaIPaGaaGilaiabeI8a5naaCaaaleqabaGaaGimaaaaki aaiMcacaaIOaGaamiDaiaaiYcacaWG4bGaaGykaaGaayjkaiaawMca aiabgkHiTaaa@7999@

γ x= x 0 x 1 1 M(x, y 0 (x),v(x), p 0 (x))M(x, y 0 (x), v 0 (x), p 0 (x)) + o 5 (ε+γ)+ o 6 (γ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHZoWzdaaeWbqabSqaai aadIhacaaI9aGaamiEamaaBaaabaGaaGimaaqabaaabaGaamiEamaa BaaabaGaaGymaaqabaGaeyOeI0IaaGymaaqdcqGHris5aOWaaeWaae aacaWGnbGaaGikaiaadIhacaaISaGaamyEamaaCaaaleqabaGaaGim aaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG2bGaaGikaiaadIhaca aIPaGaaGilaiaadchadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiE aiaaiMcacaaIPaGaeyOeI0IaamytaiaaiIcacaWG4bGaaGilaiaadM hadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaISaGa amODamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiY cacaWGWbWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGa aGykaaGaayjkaiaawMcaaiabgUcaRiaad+gadaWgaaWcbaGaaGynaa qabaGccaaIOaGaeqyTduMaey4kaSIaeq4SdCMaaGykaiabgUcaRiaa d+gadaWgaaWcbaGaaGOnaaqabaGccaaIOaGaeq4SdCMaaGykaiaai6 caaaa@72AA@  (33)

При помощи разложения (33), используя произвольность и независимость управляющих функций u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@ , v(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaaaaa@351A@ , приходим к следующему утверждению.

Теорема 1. Если множества

f(t,x, z 0 ,U)={τ:τ:=f(t,x,z,u),uU},g(x, y 0 ,V)={σ:σ:=g(x,y,v),vV} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bWaaWbaaSqabeaacaaIWaaaaOGaaGilaiaadwfa caaIPaGaaGypaiaaiUhacqaHepaDcaaI6aGaeqiXdqNaaGOoaiaai2 dacaWGMbGaaGikaiaadshacaaISaGaamiEaiaaiYcacaWG6bGaaGil aiaadwhacaaIPaGaaGilaiaadwhacqGHiiIZcaWGvbGaaGyFaiaaiY cacaaMf8Uaam4zaiaaiIcacaWG4bGaaGilaiaadMhadaahaaWcbeqa aiaaicdaaaGccaaISaGaamOvaiaaiMcacaaI9aGaaG4Eaiabeo8aZj aaiQdacqaHdpWCcaaI6aGaaGypaiaadEgacaaIOaGaamiEaiaaiYca caWG5bGaaGilaiaadAhacaaIPaGaaGilaiaadAhacqGHiiIZcaWGwb GaaGyFaaaa@6D3D@

выпуклы, то для оптимальности допустимого управления ( u 0 (t), v 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaa caaIWaaaaOGaaGikaiaadIhacaaIPaGaaGykaaaa@3C6F@  в задаче (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (5) необходимо, чтобы соотношения

t= t 0 t 1 1 x= x 0 x 1 1 Δ u(t) H[t,x]0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadshacaaI9aGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiabfs5aenaaBaaale aacaWG1bGaaGikaiaadshacaaIPaaabeaakiaadIeacaaIBbGaamiD aiaaiYcacaWG4bGaaGyxaiabgsMiJkaaicdacaaISaaaaa@51E3@  (34)

x= x 0 x 1 1 Δ v(x) M[x]0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadIhacaaI9aGaam iEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOGaeuiLdq0aaSbaaSqaaiaadA hacaaIOaGaamiEaiaaiMcaaeqaaOGaamytaiaaiUfacaWG4bGaaGyx aiabgsMiJkaaicdaaaa@462A@  (35)

выполнялись для любого u(t)U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI4Saamyvaaaa@3773@ , tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ , v(x)V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaGaey icI4SaamOvaaaa@3779@ , xX\ x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaamiwaiaacYfaca WG4bWaaSbaaSqaaiaaigdaaeqaaaaa@37DF@  соответственно.

Доказанная теорема является аналогом дискретного принципа максимума для рассматриваемой задачи.

Теперь предположим, что вектор-функции f(t,x,z,u) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bGaaGilaiaadwhacaaIPaaaaa@3A1E@ , g(x,y,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaISaGaam yEaiaaiYcacaWG2bGaaGykaaaa@3870@  непрерывны по совокупности переменных вместе с частными производными по (z,u) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEaiaaiYcacaWG1bGaaG ykaaaa@35D1@  и (y,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyEaiaaiYcacaWG2bGaaG ykaaaa@35D1@ , а множества U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@3297@  и V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbaaaa@3298@  являются выпуклыми. Тогда специальное приращение допустимого управления ( u 0 (t,x), v 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGilaiaadAha daahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPaaaaa@3E22@  можно определить по формуле

Δu(t,x, γ 1 )= γ 1 [u(t) u 0 (t)], Δv(x, γ 2 )= γ 2 [v(x) v 0 (x]). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGabaqaauaabeqaceaaaeaacqqHuo arcaWG1bGaaGikaiaadshacaaISaGaamiEaiaaiYcacqaHZoWzdaWg aaWcbaGaaGymaaqabaGccaaIPaGaaGypaiabeo7aNnaaBaaaleaaca aIXaaabeaakiaaiUfacaWG1bGaaGikaiaadshacaaIPaGaeyOeI0Ia amyDamaaCaaaleqabaGaaGimaaaakiaaiIcacaWG0bGaaGykaiaai2 facaaISaaabaGaeuiLdqKaamODaiaaiIcacaWG4bGaaGilaiabeo7a NnaaBaaaleaacaaIYaaabeaakiaaiMcacaaI9aGaeq4SdC2aaSbaaS qaaiaaikdaaeqaaOGaaG4waiaadAhacaaIOaGaamiEaiaaiMcacqGH sislcaWG2bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIDb GaaGykaiaai6caaaaacaGL7baaaaa@61A0@  (36)

Здесь γ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaaGymaaqaba aaaa@344B@ , γ 2 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaaGOmaaqaba GccqGHiiIZcaaIBbGaaGimaiaaiYcacaaIXaGaaGyxaaaa@39D1@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольные числа, а u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@  и v(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaaaaa@351A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  произвольные допустимые управляющие функции. Через (Δz(t,x; γ 1 , γ 2 ),Δy(x; γ 2 )) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeuiLdqKaamOEaiaaiIcaca WG0bGaaGilaiaadIhacaaI7aGaeq4SdC2aaSbaaSqaaiaaigdaaeqa aOGaaGilaiabeo7aNnaaBaaaleaacaaIYaaabeaakiaaiMcacaaISa GaeuiLdqKaamyEaiaaiIcacaWG4bGaaG4oaiabeo7aNnaaBaaaleaa caaIYaaabeaakiaaiMcacaaIPaaaaa@491E@  обозначим специальное приращение траектории ( z 0 (t,x), y 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGilaiaadMha daahaaWcbeqaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPaaaaa@3E2A@ , отвечающее приращению (35) управления (u(t),v(x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDaiaaiIcacaWG0bGaaG ykaiaaiYcacaWG2bGaaGikaiaadIhacaaIPaGaaGykaaaa@3A8D@ . Из оценок (30), (31) следует, что

Δz(t,x, γ 1 , γ 2 ) L 6 γ 1 + L 7 γ 2 ,Δy(x, γ 2 ) L 8 γ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqqHuoarcaWG6bGaaGikaiaadshacaaISaGaamiEaiaaiYcacqaH ZoWzdaWgaaWcbaGaaGymaaqabaGccaaISaGaeq4SdC2aaSbaaSqaai aaikdaaeqaaOGaaGykaiab=vIiqjabgsMiJkaadYeadaWgaaWcbaGa aGOnaaqabaGccqaHZoWzdaWgaaWcbaGaaGymaaqabaGccqGHRaWkca WGmbWaaSbaaSqaaiaaiEdaaeqaaOGaeq4SdC2aaSbaaSqaaiaaikda aeqaaOGaaGilaiaaywW7cqWFLicucqqHuoarcaWG5bGaaGikaiaadI hacaaISaGaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiab=vIi qjabgsMiJkaadYeadaWgaaWcbaGaaGioaaqabaGccqaHZoWzdaWgaa WcbaGaaGOmaaqabaGccaaIUaaaaa@645A@

С учетом этих оценок получаем справедливость разложения

ΔS( u 0 (t)+Δu(t, γ 1 ), v 0 (x)+Δv(x, γ 2 )S( u 0 (t), v 0 (x))= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGtbGaaGikaiaadwhada ahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkcqqH uoarcaWG1bGaaGikaiaadshacaaISaGaeq4SdC2aaSbaaSqaaiaaig daaeqaaOGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaacaaIWaaaaOGa aGikaiaadIhacaaIPaGaey4kaSIaeuiLdqKaamODaiaaiIcacaWG4b GaaGilaiabeo7aNnaaBaaaleaacaaIYaaabeaakiaaiMcacqGHsisl caWGtbGaaGikaiaadwhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaam iDaiaaiMcacaaISaGaamODamaaCaaaleqabaGaaGimaaaakiaaiIca caWG4bGaaGykaiaaiMcacaaI9aaaaa@5D1A@

= γ 1 t= t 0 t 1 1 x= x 0 x 1 1 H u ' (t,x, z 0 (t,x), u 0 (t), ψ 0 )(t,x))(u(t) u 0 (t)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeq4SdC2aaSbaaSqaaiaaig daaeqaaOWaaabCaeqaleaacaWG0bGaaGypaiaadshadaWgaaqaaiaa icdaaeqaaaqaaiaadshadaWgaaqaaiaaigdaaeqaaiabgkHiTiaaig daa0GaeyyeIuoakmaaqahabeWcbaGaamiEaiaai2dacaWG4bWaaSba aeaacaaIWaaabeaaaeaacaWG4bWaaSbaaeaacaaIXaaabeaacqGHsi slcaaIXaaaniabggHiLdGcdaqadaqaaiaadIeadaqhaaWcbaGaamyD aaqaaiaadEcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGilaiaadQ hadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiYcacaWG4bGa aGykaiaaiYcacaWG1bWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaads hacaaIPaGaaGilaiabeI8a5naaCaaaleqabaGaaGimaaaakiaaiMca caaIOaGaamiDaiaaiYcacaWG4bGaaGykaiaaiMcacaaIOaGaamyDai aaiIcacaWG0bGaaGykaiabgkHiTiaadwhadaahaaWcbeqaaiaaicda aaGccaaIOaGaamiDaiaaiMcacaaIPaaacaGLOaGaayzkaaGaeyOeI0 caaa@6EF7@

γ 2 x= x 0 x 1 1 M v ' (x, y 0 (x), v 0 (x), p 0 (x))(v(x) v 0 (x)) + o 7 ( γ 1 + γ 2 )+ o 8 ( γ 2 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHsislcqaHZoWzdaWgaaWcbaGaaG OmaaqabaGcdaaeWbqabSqaaiaadIhacaaI9aGaamiEamaaBaaabaGa aGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqabaGaeyOeI0IaaG ymaaqdcqGHris5aOWaaeWaaeaacaWGnbWaa0baaSqaaiaadAhaaeaa caWGNaaaaOGaaGikaiaadIhacaaISaGaamyEamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaa caaIWaaaaOGaaGikaiaadIhacaaIPaGaaGilaiaadchadaahaaWcbe qaaiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaIPaGaaGikaiaadAha caaIOaGaamiEaiaaiMcacqGHsislcaWG2bWaaWbaaSqabeaacaaIWa aaaOGaaGikaiaadIhacaaIPaGaaGykaaGaayjkaiaawMcaaiabgUca Riaad+gadaWgaaWcbaGaaG4naaqabaGccaaIOaGaeq4SdC2aaSbaaS qaaiaaigdaaeqaaOGaey4kaSIaeq4SdC2aaSbaaSqaaiaaikdaaeqa aOGaaGykaiabgUcaRiaad+gadaWgaaWcbaGaaGioaaqabaGccaaIOa Gaeq4SdC2aaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai6caaaa@7017@  (37)

Теорема 2. Пусть множества U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbaaaa@3297@  и V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbaaaa@3298@  выпуклы, а функции f(t,x,z,u) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaISaGaam iEaiaaiYcacaWG6bGaaGilaiaadwhacaaIPaaaaa@3A1E@ , g(x,y,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaISaGaam yEaiaaiYcacaWG2bGaaGykaaaa@3870@  непрерывны по совокупности переменных вместе с частными производными по (z,u) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOEaiaaiYcacaWG1bGaaG ykaaaa@35D1@ , (y,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyEaiaaiYcacaWG2bGaaG ykaaaa@35D1@ соответственно. Тогда для оптимальности допустимого управления ( u 0 (t), v 0 (x)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaCaaaleqabaGaaG imaaaakiaaiIcacaWG0bGaaGykaiaaiYcacaWG2bWaaWbaaSqabeaa caaIWaaaaOGaaGikaiaadIhacaaIPaGaaGykaaaa@3C6F@  необходимо, чтобы соотношения

t= t 0 t 1 1 x= x 0 x 1 1 H u ' (t,x, z 0 (t,x), u 0 (t), ψ 0 (t,x))(u(t) u 0 (t))0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadshacaaI9aGaam iDamaaBaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOWaaabCaeqaleaacaWG4bGaaG ypaiaadIhadaWgaaqaaiaaicdaaeqaaaqaaiaadIhadaWgaaqaaiaa igdaaeqaaiabgkHiTiaaigdaa0GaeyyeIuoakiaadIeadaqhaaWcba GaamyDaaqaaiaadEcaaaGccaaIOaGaamiDaiaaiYcacaWG4bGaaGil aiaadQhadaahaaWcbeqaaiaaicdaaaGccaaIOaGaamiDaiaaiYcaca WG4bGaaGykaiaaiYcacaWG1bWaaWbaaSqabeaacaaIWaaaaOGaaGik aiaadshacaaIPaGaaGilaiabeI8a5naaCaaaleqabaGaaGimaaaaki aaiIcacaWG0bGaaGilaiaadIhacaaIPaGaaGykaiaaiIcacaWG1bGa aGikaiaadshacaaIPaGaeyOeI0IaamyDamaaCaaaleqabaGaaGimaa aakiaaiIcacaWG0bGaaGykaiaaiMcacqGHKjYOcaaIWaGaaGilaaaa @6B94@  (38)

x= x 0 x 1 1 M v ' (x, y 0 (x), v 0 (x), p 0 (x))(v(x) v 0 (x))0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadIhacaaI9aGaam iEamaaBaaabaGaaGimaaqabaaabaGaamiEamaaBaaabaGaaGymaaqa baGaeyOeI0IaaGymaaqdcqGHris5aOGaamytamaaDaaaleaacaWG2b aabaGaam4jaaaakiaaiIcacaWG4bGaaGilaiaadMhadaahaaWcbeqa aiaaicdaaaGccaaIOaGaamiEaiaaiMcacaaISaGaamODamaaCaaale qabaGaaGimaaaakiaaiIcacaWG4bGaaGykaiaaiYcacaWGWbWaaWba aSqabeaacaaIWaaaaOGaaGikaiaadIhacaaIPaGaaGykaiaaiIcaca WG2bGaaGikaiaadIhacaaIPaGaeyOeI0IaamODamaaCaaaleqabaGa aGimaaaakiaaiIcacaWG4bGaaGykaiaaiMcacqGHKjYOcaaIWaaaaa@5BAE@  (39)

выполнялись для любого u(t)U MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaey icI4Saamyvaaaa@3773@ , tT MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4Saamivaaaa@3513@ , v(x)V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaIPaGaey icI4SaamOvaaaa@3779@ , xX\ x 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaamiwaiaacYfaca WG4bWaaSbaaSqaaiaaigdaaeqaaaaa@37DF@ соответственно.

Совокупность неравенств (38), (39) есть аналог линеаризованного условия максимума в задаче (1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (5) (см. [2, 3]).

×

About the authors

Saadat T. Aliyeva

Baku State University; Institute of Control Systems of the National Academy of Sciences of Azerbaijan

Author for correspondence.
Email: saadata@mail.ru
Azerbaijan, Baku; Baku

Kamil B. Mansimov

Baku State University; Institute of Control Systems of the National Academy of Sciences of Azerbaijan

Email: kamilbmansimov@gmail.com
Azerbaijan, Baku; Baku

References

  1. Алиева С. Т. Принцип максимума Понтрягина для нелинейных разностных уравнений дробного порядка// Вестн. Томск. гос. ун-та. Управл. вычисл. техн. — 2021. — 54. — С. 4–11.
  2. Габасов Р., Кириллова Ф. М. Оптимизация линейных систем. — Минск: Изд-во Белорус. гос. ун-та, 1973.
  3. Габасов Р., Кириллова Ф. М. Методы оптимизации. — Минск: Изд-во Белорус. гос. ун-та, 1981.
  4. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка, и некоторые их приложения. — Минск: Наука и техника, 1987.
  5. Мансимов К. Б. Дискретные системы. — Баку: Изд-во Бакинск. гос. ун-та, 2013.
  6. Москаленко А. И. Об одном классе задач оптимального регулирования// Ж. вычисл. мат. мат. физ. — 1969. — 9, № 1. — С. 68–95.
  7. Москаленко А. И. Дисс. на соиск. уч. степ. канд. физ. мат. наук, 1971.
  8. Bastos N. R. O., Ferreira R. A. C., Torres D. F.M. Necessary optimality conditions for fractional difference problems of the calculus of variations// Discret. Contin. Dynam. Syst. — 2011. — 29, № 2. — P. 417–437.
  9. Christopher G., Peterson A. C. Discrete Fractional Calculus. — Springer, 2015.
  10. Feckan M., Wang J., Pospisil M. Fractional-Order Equations and Inclusions. — Berlin: De Gruyter, 2017.
  11. Jagan Mohan J., Deekshitulu G. V. S. R. Fractional order difference equations// Int. J. Differ. Equations. — 2012. — 780619.
  12. Miller K., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. —New York: Wiley, 1993.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Aliyeva S.T., Mansimov K.B

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».