Задача оптимального управления тепловым воздействием лазерного луча на двухслойный биоматериал

Обложка

Цитировать

Полный текст

Аннотация

Предложен конструктивный подход построения функции оптимального управления тепловым воздействием лазерного луча на двухслойный биоматериал. Под построенным тепловым воздействием распределение температурного состояния биоматериала переходит из заданного начального состояния на определенном временном промежутке в заданное конечное состояние, минимизируя значение критерия качества. В предложенном подходе используются метод разделения переменных и методы теории оптимального управления динамических систем.

Полный текст

1. Введение. Исследование задач в многослойных физических обьектах, которые находятся под воздействием сосредоточенных или распределенных источников, требует рассмотрения соответствующих адекватных математических моделей. При этом адекватностью должны обладать как математические модели, так и методы исследования.

В статье [14] представлен обзор литературы о медико-биологическом применении лазеров. Сфера применения лазерного излучения в медицине выходит далеко за пределы классических понятий о лазере (см. [6, 13]); невозможно представить современную медицину без применения лазеров. Одно из многочисленных направлений медико-биологического применения лазеров MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  использование их в качестве инструмента воздействия на биологические объекты. С появлением новых областей применения лазерного излучения для обработки биологических материалов возникает необходимость выработки методик воздействия и критериев параметров лазерных излучателей. Поэтому разрабатываются новые математические модели, призванные решать различные задачи лазерного воздействия и оценки результатов (см. [14]), в частности, задачу выбора режимов теплового воздействия лазерного луча на биологическую среду. Как отмечают авторы работы [14], способы воздействия лазерного луча на биологическую среду пока еще недостаточно исследованы. Поэтому необходимо проведение разносторонних исследований по поиску режимов лазерного излучения для развития возможностей лазерного воздействия и повышения эффективности воздействия на биологическую среду.

Многослойный биологический материал, который подвергается действию на него лазерного излучения, является системой с распределёнными параметрами (см. [5, 9–12, 15, 22]). Математический модель процесса действия лазерного луча на многослойный биологический материал описывается с помощью дифференциальных уравнений теплопроводности в частных производных с краевыми условиями начала и конца лазерного нагрева, граничными условиями взаимодействия внешнего слоя биологического материала и окружающей среды, а также условиями сопряжения между слоями. Математические модели указанных объектов характеризуются как разнородные составные системы с распределёнными параметрами, поэтому целесообразно использовать методы исследования задач управления составных систем (переменной структуры), которым посвящены, в частности, статьи [2–4, 16–21].

В настоящей работе в качестве многослойной системы рассмотрен объект, состоящий из двух неоднородных по своим теплофизическим характеристикам биологических слоев, подвергаемый действию на него лазерного излучения. Предполагается, что управление процессом теплового воздействия лазерного луча на двухслойный биоматериал осуществляется следующим образом: изменяя на верхней (левой) границе двухслойного биоматериала интенсивность температуры лазерного луча, влияем на тепловое состояние в двухслойном биоматериале. Цель статьи состоит в разработке аналитического подхода построения функции оптимального управления тепловым воздействием лазерного луча на двухслойный биоматериал, под воздействием которого распределение температурного состояния из заданного начального состояния на определенном промежутке времени переходит в заданное конечное состояние. Работа примыкает к исследованиям, выполненным в [2, 4, 16].

2. Математическая модель двухслойного биоматериала и постановка задачи. Рассмотрим бесконечный по координатам x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5baaaa@32BB@  двухслойный биологический материал (см. рис. 1) с различными теплофизическими характеристиками (коэффициенты теплопроводности, плотность и теплоемкость) слоев.

 

Рис. 1. Структурная схема воздействия лазерного луча на двухслойный биологический материал

 

В соответствии с многослойной структурой биоматериала (см. [10, 11, 15, 22]), в случае, когда временные и пространственные параметры функции распределения объемной плотности тепловых нагрузок в биологическом материале и коэффициенты теплопроводности постоянны, дифференциальное уравнение теплопроводности преобразуется в следующую систему дифференциальных уравнений теплопроводности:

ρ 1 c 1 T 1 (z,t) t = K 1 2 T 1 (z,t) z 2 , z 0, l 1 , ρ 2 c 2 T 2 (z,t) t = K 2 2 T 2 (z,t) z 2 , z l 1 , l 1 + l 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaacqaHbpGCdaWgaa WcbaGaaGymaaqabaGccaWGJbWaaSbaaSqaaiaaigdaaeqaaOWaaSaa aeaacqGHciITcaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadQ hacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG0baaaaqaaiaai2da caWGlbWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiaadQhacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG6bWaaWbaaS qabeaacaaIYaaaaaaakiaaiYcaaeaacaaMf8oabaGaamOEaiabgIGi opaadmaabaGaaGimaiaaiYcacaWGSbWaaSbaaSqaaiaaigdaaeqaaa GccaGLBbGaayzxaaGaaGilaaqaaiabeg8aYnaaBaaaleaacaaIYaaa beaakiaadogadaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiabgkGi2k aadsfadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamOEaiaaiYcacaWG 0bGaaGykaaqaaiabgkGi2kaadshaaaaabaGaaGypaiaadUeadaWgaa WcbaGaaGOmaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOm aaaakiaadsfadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamOEaiaaiY cacaWG0bGaaGykaaqaaiabgkGi2kaadQhadaahaaWcbeqaaiaaikda aaaaaOGaaGilaaqaaiaaywW7aeaacaWG6bGaeyicI48aamWaaeaaca WGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadYgadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGSbWaaSbaaSqaaiaaikdaaeqaaaGcca GLBbGaayzxaaGaaGilaaaaaaa@840A@  (1)

где ρ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHbpGCdaWgaaWcbaGaamOAaaqaba aaaa@3498@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коэффициент плотности j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32AC@  -го слоя биологического материала, j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ ; c j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaadQgaaeqaaa aa@33C0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коэффициент теплоемкости j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32AC@  -го слоя биологического материала; T j (z,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadQgaaeqaaO GaaGikaiaadQhacaaISaGaamiDaiaaiMcaaaa@37CE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  температурное поле j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32AC@  -го слоя в биологическом материале; z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6baaaa@32BC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  глубина проникновения лазерного луча в биологическом материале; t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  длительность теплового воздействия; K j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaadQgaaeqaaa aa@33A8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  коэффициент теплопроводности j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32AC@  -го слоя биологического материала.

Предположим, что граничные условия теплового воздействия на двухслойный биологический материал следующие:

T 1 (z,t )| z=0 =u(t), T 2 (z,t )| z= l 1 + l 2 =P(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadQhacaaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaa dQhacaaI9aGaaGimaaqabaGccaaI9aGaamyDaiaaiIcacaWG0bGaaG ykaiaaiYcacaaMf8UaamivamaaBaaaleaacaaIYaaabeaakiaaiIca caWG6bGaaGilaiaadshacaaIPaGaaGiFamaaBaaaleaacaWG6bGaaG ypaiaadYgadaWgaaqaaiaaigdaaeqaaiabgUcaRiaadYgadaWgaaqa aiaaikdaaeqaaaqabaGccaaI9aGaamiuaiaaiIcacaWG0bGaaGykai aaiYcaaaa@53C6@  (2)

где u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  температура действия лазерного луча на левой границе двухслойного биоматериала, которая изменяется по времени и является неизвестной; P(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadshacaaIPaaaaa@34F0@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  температура действия лазерного луча в конце (на правой границе) двухслойного биологического материала, которая считается известной. Введем условия сопряжения между слоями, которые выражают равенства непрерывности температурных полей по временной координате и условия идеального теплового контакта слоев, следующим образом:

T 1 (z,t )| z= l 1 0 = T 2 (z,t )| z= l 1 +0 , K 1 T 1 (z,t) z | z= l 1 0 = K 2 T 2 (z,t) z | z= l 1 +0 , t[ t 0 , t 2 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaGaamivamaaBaaale aacaaIXaaabeaakiaaiIcacaWG6bGaaGilaiaadshacaaIPaGaaGiF amaaBaaaleaacaWG6bGaaGypaiaadYgadaWgaaqaaiaaigdaaeqaai abgkHiTiaaicdaaeqaaaGcbaGaaGypaiaadsfadaWgaaWcbaGaaGOm aaqabaGccaaIOaGaamOEaiaaiYcacaWG0bGaaGykaiaaiYhadaWgaa WcbaGaamOEaiaai2dacaWGSbWaaSbaaeaacaaIXaaabeaacqGHRaWk caaIWaaabeaakiaaiYcaaeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaO WaaSaaaeaacqGHciITcaWGubWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiaadQhacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG6baaaiaaiY hadaWgaaWcbaGaamOEaiaai2dacaWGSbWaaSbaaeaacaaIXaaabeaa cqGHsislcaaIWaaabeaaaOqaaiaai2dacaWGlbWaaSbaaSqaaiaaik daaeqaaOWaaSaaaeaacqGHciITcaWGubWaaSbaaSqaaiaaikdaaeqa aOGaaGikaiaadQhacaaISaGaamiDaiaaiMcaaeaacqGHciITcaWG6b aaaiaaiYhadaWgaaWcbaGaamOEaiaai2dacaWGSbWaaSbaaeaacaaI XaaabeaacqGHRaWkcaaIWaaabeaakiaaiYcaaaGaaGzbVlaadshacq GHiiIZcaaIBbGaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG 0bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiaai6caaaa@7C50@  (3)

Предполагается, что заданы начальное (при t= t 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadshadaWgaaWcba GaaGimaaqabaaaaa@355C@  )

T 1 (z,t )| t= t 0 = T H (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadQhacaaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaa dshacaaI9aGaamiDamaaBaaabaGaaGimaaqabaaabeaakiaai2daca WGubWaaSbaaSqaaiaadIeaaeqaaOGaaGikaiaadQhacaaIPaaaaa@4171@  (4)

и конечное (при t= t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiaadshadaWgaaWcba GaaGOmaaqabaaaaa@355E@  ) условия

T 2 (z,t )| t= t 2 = T K (z). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadQhacaaISaGaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaa dshacaaI9aGaamiDamaaBaaabaGaaGOmaaqabaaabeaakiaai2daca WGubWaaSbaaSqaaiaadUeaaeqaaOGaaGikaiaadQhacaaIPaGaaGOl aaaa@422F@  (5)

Предполагается, что управление процессом теплового воздействия лазерного луча на двухслойный биоматериал осуществляется следующим образом: изменяя на левой границе (в конце) двухслойного биоматериала интенсивность (температуру) лазерного луча, влияем тем самым на тепловое состояние в двухслойном биоматериале. Граничная функция u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@  является управляющим воздействием (т.е. граничным управлением).

Предполагается, что допустимое управление u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@  принадлежит пространству L 2 ( t 0 , t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaa BaaaleaacaaIYaaabeaakiaaiMcaaaa@396F@ . Функция T j (z,t) L 2 (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadQgaaeqaaO GaaGikaiaadQhacaaISaGaamiDaiaaiMcacqGHiiIZcaWGmbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiabfM6axjaaiMcaaaa@3E08@ , j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ , где Ω={(z,t):z[0, l 1 + l 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHPoWvcaaI9aGaaG4EaiaaiIcaca WG6bGaaGilaiaadshacaaIPaGaaGOoaiaadQhacqGHiiIZcaaIBbGa aGimaiaaiYcacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam iBamaaBaaaleaacaaIYaaabeaakiaai2faaaa@4454@ , t[ t 0 , t 2 ]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2facaaI9baaaa@3B97@  и T H (z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadIeaaeqaaO GaaGikaiaadQhacaaIPaaaaa@35FD@ , T K (z) L 2 (0, l 1 + l 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadUeaaeqaaO GaaGikaiaadQhacaaIPaGaeyicI4SaamitamaaBaaaleaacaaIYaaa beaakiaaiIcacaaIWaGaaGilaiaadYgadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@40C3@ . Предполагается также, что все функции удовлетворяют следующим условиям согласования:

u( t 0 )= T H (0),P( t 0 )= T H ( l 1 + l 2 ),u( t 2 )= T K (0),P( t 2 )= T K ( l 1 + l 2 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshadaWgaaWcba GaaGimaaqabaGccaaIPaGaaGypaiaadsfadaWgaaWcbaGaamisaaqa baGccaaIOaGaaGimaiaaiMcacaaISaGaaGzbVlaadcfacaaIOaGaam iDamaaBaaaleaacaaIWaaabeaakiaaiMcacaaI9aGaamivamaaBaaa leaacaWGibaabeaakiaaiIcacaWGSbWaaSbaaSqaaiaaigdaaeqaaO Gaey4kaSIaamiBamaaBaaaleaacaaIYaaabeaakiaaiMcacaaISaGa aGzbVlaadwhacaaIOaGaamiDamaaBaaaleaacaaIYaaabeaakiaaiM cacaaI9aGaamivamaaBaaaleaacaWGlbaabeaakiaaiIcacaaIWaGa aGykaiaaiYcacaaMf8UaamiuaiaaiIcacaWG0bWaaSbaaSqaaiaaik daaeqaaOGaaGykaiaai2dacaWGubWaaSbaaSqaaiaadUeaaeqaaOGa aGikaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGSbWaaS baaSqaaiaaikdaaeqaaOGaaGykaiaai6caaaa@6503@  (6)

Задачу оптимального управления процессом теплового воздействия лазерного луча на двухслойный биоматериал можно сформулировать следующим образом.

Задача оптимального управления. Требуется найти такой закон u 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIWaaaaO GaaGikaiaadshacaaIPaaaaa@3606@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ , оптимального управления теплового воздействия лазерного луча на двухслойный биоматериал, под воздействием которого распределение температурного состояния (1) из начального состояния (4) за промежуток времени [ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa @3813@  переходит в заданное конечное состояние (5) и минимизирует функционал

t 0 t 2 u 2 (t)dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8 aOGaamyDamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG0bGaaGykai aadsgacaWG0bGaaGOlaaaa@3EC0@  (7)

Таким образом, имеем задачу оптимального управления с неоднородными граничными условиями. Для построения решения целесообразно перейти к задаче с нулевыми граничными условиями.

3. Сведение задачи к задаче с нулевыми граничными условиями. Введем обозначение a j 2 = K j /( c j ρ j ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaa0baaSqaaiaadQgaaeaaca aIYaaaaOGaaGypaiaadUeadaWgaaWcbaGaamOAaaqabaGccaaIVaGa aGikaiaadogadaWgaaWcbaGaamOAaaqabaGccqaHbpGCdaWgaaWcba GaamOAaaqabaGccaaIPaaaaa@3E51@ , j=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A0@ . Для построения решения поставленной задачи целесообразно перейти к новой переменной

ξ= z, z[0, l 1 ], a 1 a 2 z+ l 1 1 a 1 a 2 , z[ l 1 , l 1 + l 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aWaaiqaaeaafaqaae GaeaaaaeaaaeaacaWG6bGaaGilaaqaaiaaywW7aeaacaWG6bGaeyic I4SaaG4waiaaicdacaaISaGaamiBamaaBaaaleaacaaIXaaabeaaki aai2facaaISaaabaaabaWaaSaaaeaacaWGHbWaaSbaaSqaaiaaigda aeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaaGccaWG6bGaey 4kaSIaamiBamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymaiab gkHiTmaalaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadg gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaaGilaaqa aiaaywW7aeaacaWG6bGaeyicI4SaaG4waiaadYgadaWgaaWcbaGaaG ymaaqabaGccaaISaGaaGjbVlaadYgadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaaaiaawU haaaaa@5EE1@  (8)

(см. [2, 4]). Замена переменной (8) приводит к растяжению или сжатию отрезка [ l 1 , l 1 + l 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiBamaaBaaaleaacaaIXa aabeaakiaaiYcacaaMe8UaamiBamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadYgadaWgaaWcbaGaaGOmaaqabaGccaaIDbaaaa@3C55@  относительно точки z= l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaadYgadaWgaaWcba GaaGymaaqabaaaaa@355B@ . При этом отрезок [ l 1 , l 1 + l 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiBamaaBaaaleaacaaIXa aabeaakiaaiYcacaaMe8UaamiBamaaBaaaleaacaaIXaaabeaakiab gUcaRiaadYgadaWgaaWcbaGaaGOmaaqabaGccaaIDbaaaa@3C55@  переходит в отрезок [ l 1 ,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiBamaaBaaaleaacaaIXa aabeaakiaaiYcacaaMe8Uaamitaiaai2faaaa@387F@ , где L= l 1 + a 1 l 2 / a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaGypaiaadYgadaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdaaeqaaOGa amiBamaaBaaaleaacaaIYaaabeaakiaai+cacaWGHbWaaSbaaSqaai aaikdaaeqaaaaa@3C5A@ . Для удобства все вышеприведенные функции после замены переменной (8) оставляем в исходных обозначениях.

Таким образом, (1) запишется в виде

T 1 (ξ,t) t = a 1 2 2 T 1 (ξ,t) ξ 2 , ξ[0, l 1 ], T 2 (ξ,t) t = a 1 2 2 T 2 (ξ,t) ξ 2 , ξ[ l 1 ,L]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGaeaaaaeaaaeaadaWcaaqaai abgkGi2kaadsfadaWgaaWcbaGaaGymaaqabaGccaaIOaGaeqOVdGNa aGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI9aGaamyyam aaDaaaleaacaaIXaaabaGaaGOmaaaakmaalaaabaGaeyOaIy7aaWba aSqabeaacaaIYaaaaOGaamivamaaBaaaleaacaaIXaaabeaakiaaiI cacqaH+oaEcaaISaGaamiDaiaaiMcaaeaacqGHciITcqaH+oaEdaah aaWcbeqaaiaaikdaaaaaaOGaaGilaaqaaiaaywW7aeaacqaH+oaEcq GHiiIZcaaIBbGaaGimaiaaiYcacaWGSbWaaSbaaSqaaiaaigdaaeqa aOGaaGyxaiaaiYcaaeaaaeaadaWcaaqaaiabgkGi2kaadsfadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaeqOVdGNaaGilaiaadshacaaIPaaa baGaeyOaIyRaamiDaaaacaaI9aGaamyyamaaDaaaleaacaaIXaaaba GaaGOmaaaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGa amivamaaBaaaleaacaaIYaaabeaakiaaiIcacqaH+oaEcaaISaGaam iDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaikdaaaaa aOGaaGilaaqaaiaaywW7aeaacqaH+oaEcqGHiiIZcaaIBbGaamiBam aaBaaaleaacaaIXaaabeaakiaaiYcacaWGmbGaaGyxaiaai6caaaaa aa@7E99@  (9)

Положим

T(ξ,t)= T 1 (ξ,t), ξ[0, l 1 ], T 2 (ξ,t), ξ[ l 1 ,L]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaGabaqaauaabaqacqaaaaqaaaqaaiaadsfa daWgaaWcbaGaaGymaaqabaGccaaIOaGaeqOVdGNaaGilaiaadshaca aIPaGaaGilaaqaaiaaywW7aeaacqaH+oaEcqGHiiIZcaaIBbGaaGim aiaaiYcacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGyxaiaaiYcaae aaaeaacaWGubWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiabe67a4jaa iYcacaWG0bGaaGykaiaaiYcaaeaacaaMf8oabaGaeqOVdGNaeyicI4 SaaG4waiaadYgadaWgaaWcbaGaaGymaaqabaGccaaISaGaamitaiaa i2facaaIUaaaaaGaay5Eaaaaaa@5D7D@  (10)

Следовательно, два одинаковых уравнения (9) с введенной по правилу (10) функцией T(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376D@ , ξ[0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcqGHiiIZcaaIBbGaaGimai aaiYcacaWGmbGaaGyxaaaa@3911@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ , запишутся в виде

T(ξ,t) t = a 1 2 2 T(ξ,t) ξ 2 ,ξ[0,L],t[ t 0 , t 2 ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadsfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 9aGaamyyamaaDaaaleaacaaIXaaabaGaaGOmaaaakmaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaamivaiaaiIcacqaH+oaEcaaI SaGaamiDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaik daaaaaaOGaaGilaiaaywW7cqaH+oaEcqGHiiIZcaaIBbGaaGimaiaa iYcacaWGmbGaaGyxaiaaiYcacaaMf8UaamiDaiabgIGiolaaiUfaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGilaiaadshadaWgaaWcbaGa aGOmaaqabaGccaaIDbGaaGilaaaa@6037@  (11)

с соответствующими граничными условиями

T(0,t)=u(t),T(L,t)=P(t), t 0 t t 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaWG0bGaaGykaiaaiYcacaaM f8UaamivaiaaiIcacaWGmbGaaGilaiaadshacaaIPaGaaGypaiaadc facaaIOaGaamiDaiaaiMcacaaISaGaaGzbVlaadshadaWgaaWcbaGa aGimaaqabaGccqGHKjYOcaWG0bGaeyizImQaamiDamaaBaaaleaaca aIYaaabeaakiaaiYcaaaa@50B0@  (12)

начальным условием

T(ξ, t 0 )= T H (ξ),ξ[0,L], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGubWaaSba aSqaaiaadIeaaeqaaOGaaGikaiabe67a4jaaiMcacaaISaGaaGzbVl abe67a4jabgIGiolaaiUfacaaIWaGaaGilaiaadYeacaaIDbGaaGil aaaa@4876@  (13)

конечным условием

T(ξ, t 2 )= T K (ξ),ξ[0,L], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacaWGubWaaSba aSqaaiaadUeaaeqaaOGaaGikaiabe67a4jaaiMcacaaISaGaaGzbVl abe67a4jabgIGiolaaiUfacaaIWaGaaGilaiaadYeacaaIDbGaaGil aaaa@487B@  (14)

и условиями сопряжения в точке ξ= l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaamiBamaaBaaale aacaaIXaaabeaaaaa@361F@  соединения участков:

T(ξ,t )| ξ= l 1 0 =T(ξ,t )| ξ= l 1 +0 , a 2 K 1 T(ξ,t) ξ | ξ= l 1 0 = a 1 K 2 T(ξ,t) ξ | ξ= l 1 +0 ,t[ t 0 , t 2 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaaiYhadaWgaaWcbaGaeqOVdGNaaGypaiaadYgadaWg aaqaaiaaigdaaeqaaiabgkHiTiaaicdaaeqaaOGaaGypaiaadsfaca aIOaGaeqOVdGNaaGilaiaadshacaaIPaGaaGiFamaaBaaaleaacqaH +oaEcaaI9aGaamiBamaaBaaabaGaaGymaaqabaGaey4kaSIaaGimaa qabaGccaaISaGaaGzbVlaadggadaWgaaWcbaGaaGOmaaqabaGccaWG lbWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaacqGHciITcaWGubGaaG ikaiabe67a4jaaiYcacaWG0bGaaGykaaqaaiabgkGi2kabe67a4baa caaI8bWaaSbaaSqaaiabe67a4jaai2dacaWGSbWaaSbaaeaacaaIXa aabeaacqGHsislcaaIWaaabeaakiaai2dacaWGHbWaaSbaaSqaaiaa igdaaeqaaOGaam4samaaBaaaleaacaaIYaaabeaakmaalaaabaGaey OaIyRaamivaiaaiIcacqaH+oaEcaaISaGaamiDaiaaiMcaaeaacqGH ciITcqaH+oaEaaGaaGiFamaaBaaaleaacqaH+oaEcaaI9aGaamiBam aaBaaabaGaaGymaaqabaGaey4kaSIaaGimaaqabaGccaaISaGaaGzb VlaadshacqGHiiIZcaaIBbGaamiDamaaBaaaleaacaaIWaaabeaaki aaiYcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaiaai6caaaa@8560@  (15)

Учитывая неоднородность граничных условий (12), решение уравнения (11) построим в виде суммы

T(ξ,t)=V(ξ,t)+W(ξ,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dacaWGwbGaaGikaiabe67a4jaaiYcacaWG0bGa aGykaiabgUcaRiaadEfacaaIOaGaeqOVdGNaaGilaiaadshacaaIPa GaaGilaaaa@4531@  (16)

где V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  функция с однородными граничными условиями

V(0,t)=V(L,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamOvaiaaiIcacaWGmbGaaGilaiaadshacaaI PaGaaGypaiaaicdacaaISaaaaa@3E24@  (17)

требующая определения, а функция W(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@3770@  есть решение (11) с условиями

W(0,t)=u(t),W(L,t)=P(t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaWG0bGaaGykaiaaiYcacaaM f8Uaam4vaiaaiIcacaWGmbGaaGilaiaadshacaaIPaGaaGypaiaadc facaaIOaGaamiDaiaaiMcacaaISaaaaa@463B@  (18)

которая представляется в виде

W(ξ,t)=u(t)+ ξ L [P(t)u(t)]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dacaWG1bGaaGikaiaadshacaaIPaGaey4kaSYa aSaaaeaacqaH+oaEaeaacaWGmbaaaiaaiUfacaWGqbGaaGikaiaads hacaaIPaGaeyOeI0IaamyDaiaaiIcacaWG0bGaaGykaiaai2facaaI Uaaaaa@4911@  (19)

Из формул (11), (16), (19) для нахождения функции V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  получим:

V(ξ,t) t = a 1 2 2 V(ξ,t) ξ 2 +F(ξ,t),ξ[0,L],t[ t 0 , t 2 ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2kaadAfacaaIOa GaeqOVdGNaaGilaiaadshacaaIPaaabaGaeyOaIyRaamiDaaaacaaI 9aGaamyyamaaDaaaleaacaaIXaaabaGaaGOmaaaakmaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaamOvaiaaiIcacqaH+oaEcaaI SaGaamiDaiaaiMcaaeaacqGHciITcqaH+oaEdaahaaWcbeqaaiaaik daaaaaaOGaey4kaSIaamOraiaaiIcacqaH+oaEcaaISaGaamiDaiaa iMcacaaISaGaaGzbVlabe67a4jabgIGiolaaiUfacaaIWaGaaGilai aadYeacaaIDbGaaGilaiaaywW7caWG0bGaeyicI4SaaG4waiaadsha daWgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYa aabeaakiaai2facaaISaaaaa@66BF@  (20)

где

F(ξ,t)= ξ L [ u ˙ (t) P ˙ (t)] u ˙ (t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaWcaaqaaiabe67a4bqaaiaadYeaaaGaaG4w aiqadwhagaGaaiaaiIcacaWG0bGaaGykaiabgkHiTiqadcfagaGaai aaiIcacaWG0bGaaGykaiaai2facqGHsislceWG1bGbaiaacaaIOaGa amiDaiaaiMcacaaIUaaaaa@4926@  (21)

Функция V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  удовлетворяет соответствующему условию сопряжения (15) в точке ξ= l 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcaaI9aGaamiBamaaBaaale aacaaIXaaabeaaaaa@361F@  соединения участков. Отметим, что согласно (8) из условия (6) будем иметь

T H ( l 1 + l 2 )= T H (L), T K ( l 1 + l 2 )= T K (L). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadIeaaeqaaO GaaGikaiaadYgadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGSbWa aSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacaWGubWaaSbaaSqaai aadIeaaeqaaOGaaGikaiaadYeacaaIPaGaaGilaiaaywW7caWGubWa aSbaaSqaaiaadUeaaeqaaOGaaGikaiaadYgadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGSbWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaa i2dacaWGubWaaSbaaSqaaiaadUeaaeqaaOGaaGikaiaadYeacaaIPa GaaGOlaaaa@4E41@  (22)

Используя подходы, приведенные в [2–4, 19–21], и учитывая условия согласования, из условий (13), (14) получим, что функция V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  должна удовлетворять начальным условиям

V(ξ, t 0 )= T H (ξ)u( t 0 ) ξ L [P( t 0 )u( t 0 )] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGubWaaSba aSqaaiaadIeaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsislcaWG1b GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0Ya aSaaaeaacqaH+oaEaeaacaWGmbaaaiaaiUfacaWGqbGaaGikaiaads hadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaamyDaiaaiIca caWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2faaaa@5214@  (23)

и конечным условиям

V(ξ, t 2 )= T K (ξ)u( t 2 ) ξ L [P( t 2 )u( t 2 )]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacaWGubWaaSba aSqaaiaadUeaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsislcaWG1b GaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaeyOeI0Ya aSaaaeaacqaH+oaEaeaacaWGmbaaaiaaiUfacaWGqbGaaGikaiaads hadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaeyOeI0IaamyDaiaaiIca caWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2facaaIUaaaaa@52D7@  (24)

С учетом условий (6) и (22) соотношения (23), (24) запишутся следующим образом:

V(ξ, t 0 )= T H (ξ) T H (0) ξ L [P( t 0 ) T H (0)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2dacaWGubWaaSba aSqaaiaadIeaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsislcaWGub WaaSbaaSqaaiaadIeaaeqaaOGaaGikaiaaicdacaaIPaGaeyOeI0Ya aSaaaeaacqaH+oaEaeaacaWGmbaaaiaaiUfacaWGqbGaaGikaiaads hadaWgaaWcbaGaaGimaaqabaGccaaIPaGaeyOeI0IaamivamaaBaaa leaacaWGibaabeaakiaaiIcacaaIWaGaaGykaiaai2facaaISaaaaa@5230@  (25)

V(ξ, t 2 )= T K (ξ) T K (0) ξ L [P( t 2 ) T K (0)]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaiaai2dacaWGubWaaSba aSqaaiaadUeaaeqaaOGaaGikaiabe67a4jaaiMcacqGHsislcaWGub WaaSbaaSqaaiaadUeaaeqaaOGaaGikaiaaicdacaaIPaGaeyOeI0Ya aSaaaeaacqaH+oaEaeaacaWGmbaaaiaaiUfacaWGqbGaaGikaiaads hadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaeyOeI0IaamivamaaBaaa leaacaWGlbaabeaakiaaiIcacaaIWaGaaGykaiaai2facaaIUaaaaa@523F@  (26)

Таким образом, решение исходной задачи сведено к задаче оптимального управления процессом теплового воздействия лазерного луча на двухслойный биоматериал, описываемый неоднородным уравнением (20) с однородными граничными условиями (17). Полученная задача формулируется следующим образом: требуется найти такой закон оптимального управления u 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIWaaaaO GaaGikaiaadshacaaIPaaaaa@3606@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ , под воздействием которого распределение температурного состояния, описываемое уравнением (20) с граничными условиями (17), из заданного начального состояния (25) на указанном промежутке времени [ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiDamaaBaaaleaacaaIWa aabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa @3813@  переходит в конечное состояние (26) и минимизирует функционал (7).

4. Сведение решения задачи с нулевыми граничными условиями к проблеме моментов. Учитывая граничные условия (17) и условия согласованности, ищем решение уравнения (20) в виде

V(ξ,t)= k=1 V k (t)sin πkξ L , V k (t)= 2 L 0 L V(ξ,t)sin πkξ L dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqa aiabg6HiLcqdcqGHris5aOGaamOvamaaBaaaleaacaWGRbaabeaaki aaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiW daNaam4Aaiabe67a4bqaaiaadYeaaaGaaGilaiaaywW7caWGwbWaaS baaSqaaiaadUgaaeqaaOGaaGikaiaadshacaaIPaGaaGypamaalaaa baGaaGOmaaqaaiaadYeaaaWaa8qCaeqaleaacaaIWaaabaGaamitaa qdcqGHRiI8aOGaamOvaiaaiIcacqaH+oaEcaaISaGaamiDaiaaiMca ciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWjaadUgacqaH+oaEae aacaWGmbaaaiaadsgacqaH+oaEcaaIUaaaaa@6933@  (27)

Представим функции F(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@375F@ , V(ξ, t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@385F@ , V(ξ, t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3861@  в виде рядов Фурье по базису {sinπkξ/L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaci4CaiaacMgacaGGUbGaeq iWdaNaam4Aaiabe67a4jaai+cacaWGmbaaaa@3B94@ , k=1,2,} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaI9baaaa@3880@ ; подставив их значения вместе с V(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376F@  в уравнения (20), (21) и в условия (25), (26), получим, что коэффициенты Фурье V k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@361C@  удовлетворяют счетному набору систем обыкновенных дифференциальных уравнений

V ˙ k (t)+ λ k V k (t)= F k (t), λ k = a 1 πk L 2 ,k=1,2,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaiaadaWgaaWcbaGaam4Aaa qabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcqaH7oaBdaWgaaWcbaGa am4AaaqabaGccaWGwbWaaSbaaSqaaiaadUgaaeqaaOGaaGikaiaads hacaaIPaGaaGypaiaadAeadaWgaaWcbaGaam4AaaqabaGccaaIOaGa amiDaiaaiMcacaaISaGaaGzbVlabeU7aSnaaBaaaleaacaWGRbaabe aakiaai2dadaqadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGcdaWc aaqaaiabec8aWjaadUgaaeaacaWGmbaaaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakiaaiYcacaaMf8Uaam4Aaiaai2dacaaIXaGa aGilaiaaikdacaaISaGaeSOjGSKaaGilaaaa@59D2@  (28)

F k (t)= 2 πk [( 1) k P ˙ (t) u ˙ (t)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypamaalaaabaGaaGOmaaqaaiabec8a WjaadUgaaaGaaG4waiaaiIcacqGHsislcaaIXaGaaGykamaaCaaale qabaGaam4AaaaakiqadcfagaGaaiaaiIcacaWG0bGaaGykaiabgkHi TiqadwhagaGaaiaaiIcacaWG0bGaaGykaiaai2facaaISaaaaa@488C@  (29)

V k ( t 0 )= T k (H) 2 πk [ T H (0) (1) k P( t 0 )], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiaa dsfadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGibGaaGykaaaakiabgk HiTmaalaaabaGaaGOmaaqaaiabec8aWjaadUgaaaGaaG4waiaadsfa daWgaaWcbaGaamisaaqabaGccaaIOaGaaGimaiaaiMcacqGHsislca aIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccaWG qbGaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGyxai aaiYcaaaa@502C@  (30)

V k ( t 2 )= T k (K) 2 πk [ T K (0) (1) k P( t 2 )]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaa dsfadaqhaaWcbaGaam4AaaqaaiaaiIcacaWGlbGaaGykaaaakiabgk HiTmaalaaabaGaaGOmaaqaaiabec8aWjaadUgaaaGaaG4waiaadsfa daWgaaWcbaGaam4saaqabaGccaaIOaGaaGimaiaaiMcacqGHsislca aIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaGccaWG qbGaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGyxai aai6caaaa@5038@  (31)

Здесь коэффициенты Фурье функций F(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@375F@ , V(ξ, t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaicdaaeqaaOGaaGykaaaa@385F@ , V(ξ, t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbGaaGikaiabe67a4jaaiYcaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3861@ , T H (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadIeaaeqaaO GaaGikaiabe67a4jaaiMcaaaa@36C1@  и T K (ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaadUeaaeqaaO GaaGikaiabe67a4jaaiMcaaaa@36C4@  обозначены через F k (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaaaaa@360C@ , V k ( t 0 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGimaaqabaGccaaIPaaaaa@370C@ , V k ( t 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshadaWgaaWcbaGaaGOmaaqabaGccaaIPaaaaa@370E@ , T k (H) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaadUgaaeaaca aIOaGaamisaiaaiMcaaaaaaa@35E5@  и T k (K) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaadUgaaeaaca aIOaGaam4saiaaiMcaaaaaaa@35E8@ . Общее решение уравнения (28) с начальным условием (30) имеет вид

V k (t)= V k ( t 0 ) e λ k (t t 0 ) + t 0 t F k (τ) e λ k (tτ) dτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiaadAfadaWgaaWcbaGaam4Aaaqa baGccaaIOaGaamiDamaaBaaaleaacaaIWaaabeaakiaaiMcacaWGLb WaaWbaaSqabeaacqGHsislcqaH7oaBdaWgaaqaaiaadUgaaeqaaiaa iIcacaWG0bGaeyOeI0IaamiDamaaBaaabaGaaGimaaqabaGaaGykaa aakiabgUcaRmaapehabeWcbaGaamiDamaaBaaabaGaaGimaaqabaaa baGaamiDaaqdcqGHRiI8aOGaamOramaaBaaaleaacaWGRbaabeaaki aaiIcacqaHepaDcaaIPaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4U dW2aaSbaaeaacaWGRbaabeaacaaIOaGaamiDaiabgkHiTiabes8a0j aaiMcaaaGccaWGKbGaeqiXdqhaaa@5DF3@  (32)

(см. [9]). Теперь, учитывая конечное условие (31), получим, что функции F k (τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaadUgaaeqaaO GaaGikaiabes8a0jaaiMcaaaa@36D8@ , τ[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcqGHiiIZcaaIBbGaamiDam aaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWaaSbaaSqaaiaaikda aeqaaOGaaGyxaaaa@3B5C@ , для каждого k=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYsaaa@3779@  должны удовлетворять следующему соотношению:

t 0 t 2 F k (τ) e λ k ( t 2 τ) dτ= V k ( t 2 ) V k ( t 0 ) e λ k ( t 2 t 0 ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8 aOGaamOramaaBaaaleaacaWGRbaabeaakiaaiIcacqaHepaDcaaIPa GaamyzamaaCaaaleqabaGaeyOeI0Iaeq4UdW2aaSbaaeaacaWGRbaa beaacaaIOaGaamiDamaaBaaabaGaaGOmaaqabaGaeyOeI0IaeqiXdq NaaGykaaaakiaadsgacqaHepaDcaaI9aGaamOvamaaBaaaleaacaWG RbaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGykai abgkHiTiaadAfadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaa BaaaleaacaaIWaaabeaakiaaiMcacaWGLbWaaWbaaSqabeaacqGHsi slcqaH7oaBdaWgaaqaaiaadUgaaeqaaiaaiIcacaWG0bWaaSbaaeaa caaIYaaabeaacqGHsislcaWG0bWaaSbaaeaacaaIWaaabeaacaaIPa aaaOGaaGOlaaaa@623F@  (33)

Используя подходы, приведенные в [19–21], получим, что функция управления u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@  для каждого k=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYsaaa@3779@  должна удовлетворять интегральному соотношению

t 0 t 2 u(τ) e λ k τ dτ= C k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8 aOGaamyDaiaaiIcacqaHepaDcaaIPaGaamyzamaaCaaaleqabaGaeq 4UdW2aaSbaaeaacaWGRbaabeaacqaHepaDaaGccaWGKbGaeqiXdqNa aGypaiaadoeadaWgaaWcbaGaam4AaaqabaGccaaISaaaaa@47C3@  (34)

где

C k = 1 λ k πk 2 [ V k ( t 2 ) e λ k t 2 V k ( t 0 ) e λ k t 0 ]+ T K (0) e λ k t 2 T H (0) e λ k t 0 (1) k t 0 t 2 P ˙ (τ) e λ k τ dτ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadUgaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiabeU7aSnaaBaaaleaacaWGRbaa beaaaaGcdaGadaqaamaalaaabaGaeqiWdaNaam4Aaaqaaiaaikdaaa GaaG4waiaadAfadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDamaa BaaaleaacaaIYaaabeaakiaaiMcacaWGLbWaaWbaaSqabeaacqaH7o aBdaWgaaqaaiaadUgaaeqaaiaadshadaWgaaqaaiaaikdaaeqaaaaa kiabgkHiTiaadAfadaWgaaWcbaGaam4AaaqabaGccaaIOaGaamiDam aaBaaaleaacaaIWaaabeaakiaaiMcacaWGLbWaaWbaaSqabeaacqaH 7oaBdaWgaaqaaiaadUgaaeqaaiaadshadaWgaaqaaiaaicdaaeqaaa aakiaai2facqGHRaWkcaWGubWaaSbaaSqaaiaadUeaaeqaaOGaaGik aiaaicdacaaIPaGaamyzamaaCaaaleqabaGaeq4UdW2aaSbaaeaaca WGRbaabeaacaWG0bWaaSbaaeaacaaIYaaabeaaaaGccqGHsislcaWG ubWaaSbaaSqaaiaadIeaaeqaaOGaaGikaiaaicdacaaIPaGaamyzam aaCaaaleqabaGaeq4UdW2aaSbaaeaacaWGRbaabeaacaWG0bWaaSba aeaacaaIWaaabeaaaaGccqGHsislcaaIOaGaeyOeI0IaaGymaiaaiM cadaahaaWcbeqaaiaadUgaaaGcdaWdXbqabSqaaiaadshadaWgaaqa aiaaicdaaeqaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRi I8aOGabmiuayaacaGaaGikaiabes8a0jaaiMcacaWGLbWaaWbaaSqa beaacqaH7oaBdaWgaaqaaiaadUgaaeqaaiabes8a0baakiaadsgacq aHepaDaiaawUhacaGL9baacaaIUaaaaa@8426@

Отметим, что значения C k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadUgaaeqaaa aa@33A1@  известны для любого k=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYsaaa@3779@ . На практике обычно выбираются несколько первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  ( k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@  ) соотношений (34) и с помощью методов теории оптимального управления конечномерными системами (см. [1, 7, 20, 21]) решается задача синтеза оптимального управления. Следовательно, для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  соотношений из (34) будем иметь

t 0 t 2 H n (τ) u n (τ)dτ= η n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8 aOGaamisamaaBaaaleaacaWGUbaabeaakiaaiIcacqaHepaDcaaIPa GaaGjcVlaadwhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaeqiXdqNa aGykaiaadsgacqaHepaDcaaI9aGaeq4TdG2aaSbaaSqaaiaad6gaae qaaOGaaGilaaaa@4AD9@  (35)

где

H n (τ)=( e λ 1 τ , e λ 2 τ ,, e λ n τ ) T , η n =( C 1 , C 2 ,, C n ) T . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGibWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiabes8a0jaaiMcacaaI9aGaaGikaiaadwgadaahaaWcbeqa aiabeU7aSnaaBaaabaGaaGymaaqabaGaeqiXdqhaaOGaaGilaiaays W7caWGLbWaaWbaaSqabeaacqaH7oaBdaWgaaqaaiaaikdaaeqaaiab es8a0baakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGLbWaaW baaSqabeaacqaH7oaBdaWgaaqaaiaad6gaaeqaaiabes8a0baakiaa iMcadaahaaWcbeqaaiaadsfaaaGccaaISaGaaGzbVlabeE7aOnaaBa aaleaacaWGUbaabeaakiaai2dacaaIOaGaam4qamaaBaaaleaacaaI XaaabeaakiaaiYcacaaMe8Uaam4qamaaBaaaleaacaaIYaaabeaaki aaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGdbWaaSbaaSqaaiaa d6gaaeqaaOGaaGykamaaCaaaleqabaGaamivaaaakiaai6caaaa@68FB@

Здесь и далее символ << n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  >> в нижнем индексе будет означать <<для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  мод>>.

Из соотношения (35) следует справедливость следующего утверждения о вполне управляемости (см. [1, 7]).

Теорема 1. Первые n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  мод динамического процесса, описываемого уравнением (28) с условиями (29) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (31), вполне управляемы тогда и только тогда, когда для любого вектора η n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAdaWgaaWcbaGaamOBaaqaba aaaa@3488@  можно найти управление u n (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaaaaa@363E@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ , удовлетворяющее условию (35).

Таким образом, требуется найти такой закон оптимального управления u 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIWaaaaO GaaGikaiaadshacaaIPaaaaa@3606@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ , который для каждого k=1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYsaaa@3779@  удовлетворяет интегральным соотношениям (34) (или (35)) и доставляет минимум функционалу (7).

Задачу оптимального управления при функционале (7) с интегральными условиями (35) можно рассматривать как задачу условного экстремума из вариационного исчисления.

Так как функционал (7) является квадратом нормы линейного нормированного пространства, а интегральные соотношения (34) (или (35)), порожденные функцией u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaaaaa@3515@ , линейны, то задачу определения оптимального управления для каждого k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@  можно рассматривать как проблему моментов (см. [7, 8, 14]). Следовательно, решение можно построить с помощью алгоритма решения проблемы моментов.

5. Решение задачи. Поскольку на практике обычно решается задача синтеза управлений для нескольких первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  гармоник колебаний, используем методы теории оптимального управления конечномерыми системами. Будем строить решение задачи (7), (34) при k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@  с помощью алгоритма решения конечномерной проблемы моментов. Для решения конечномерной (при k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@  ) проблемы моментов (7), (34), следуя [7], нужно найти величины γ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaam4Aaaqaba aaaa@3480@ , k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@ , связанные условием

k=1 n γ k C k =1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadUgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakiabeo7aNnaaBaaaleaacaWGRbaa beaakiaadoeadaWgaaWcbaGaam4AaaqabaGccaaI9aGaaGymaiaaiY caaaa@3E62@  (36)

для которых

( ρ n 0 ) 2 = min (36) t 0 t 2 h n 2 (t)dt, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyWdi3aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiaai2da daGfqbqabSqaaiaaiIcacaaIZaGaaGOnaiaaiMcaaeqakeaaciGGTb GaaiyAaiaac6gaaaWaa8qCaeqaleaacaWG0bWaaSbaaeaacaaIWaaa beaaaeaacaWG0bWaaSbaaeaacaaIYaaabeaaa0Gaey4kIipakiaadI gadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIOaGaamiDaiaaiMca caWGKbGaamiDaiaaiYcaaaa@4C9F@  (37)

где

h n (t)= k=1 n γ k e λ k t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaaSbaaSqaaiaad6gaaeqaaO GaaGikaiaadshacaaIPaGaaGypamaaqahabeWcbaGaam4Aaiaai2da caaIXaaabaGaamOBaaqdcqGHris5aOGaeq4SdC2aaSbaaSqaaiaadU gaaeqaaOGaamyzamaaCaaaleqabaGaeq4UdW2aaSbaaeaacaWGRbaa beaacaWG0baaaOGaaGOlaaaa@450E@  (38)

Для определения величин γ k 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaqhaaWcbaGaam4Aaaqaai aaicdaaaaaaa@353B@ , k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@ , минимизирующих (37) с условиями (36), применим метод неопределенных множителей Лагранжа. Введем функцию

f( γ 1 ,, γ n )= t 0 t 2 k=1 n γ k e λ k t 2 dt+β k=1 n γ k C k 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeo7aNnaaBaaale aacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaeq4SdC2aaSbaaSqa aiaad6gaaeqaaOGaaGykaiaai2dadaWdXbqabSqaaiaadshadaWgaa qaaiaaicdaaeqaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGH RiI8aOWaamWaaeaadaaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaai aad6gaa0GaeyyeIuoakiabeo7aNnaaBaaaleaacaWGRbaabeaakiaa dwgadaahaaWcbeqaaiabeU7aSnaaBaaabaGaam4AaaqabaGaamiDaa aaaOGaay5waiaaw2faamaaCaaaleqabaGaaGOmaaaakiaadsgacaWG 0bGaey4kaSIaeqOSdi2aamWaaeaadaaeWbqabSqaaiaadUgacaaI9a GaaGymaaqaaiaad6gaa0GaeyyeIuoakiabeo7aNnaaBaaaleaacaWG RbaabeaakiaadoeadaWgaaWcbaGaam4AaaqabaGccqGHsislcaaIXa aacaGLBbGaayzxaaGaaGilaaaa@664D@

где β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  неопределенный множитель Лагранжа. На основе этого метода, приравнивая к нулю производные функции f( γ 1 ,, γ n ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeo7aNnaaBaaale aacaaIXaaabeaakiaaiYcacqWIMaYscaaISaGaeq4SdC2aaSbaaSqa aiaad6gaaeqaaOGaaGykaaaa@3C03@  по γ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaam4Aaaqaba aaaa@3480@ , k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@ , получаем следующую систему алгебраических уравнений:

a 11 γ 1 + a 12 γ 2 ++ a 1n γ n = β 2 C 1 , a 21 γ 1 + a 22 γ 2 ++ a 2n γ n = β 2 C 2 , a n1 γ 1 + a n2 γ 2 ++ a nn γ n = β 2 C n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeabcaaaaeaaaeaacaWGHbWaaS baaSqaaiaaigdacaaIXaaabeaakiabeo7aNnaaBaaaleaacaaIXaaa beaakiabgUcaRiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaeq 4SdC2aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeSOjGSKaey4kaSIa amyyamaaBaaaleaacaaIXaGaamOBaaqabaGccqaHZoWzdaWgaaWcba GaamOBaaqabaGccaaI9aGaeyOeI0YaaSaaaeaacqaHYoGyaeaacaaI YaaaaiaadoeadaWgaaWcbaGaaGymaaqabaGccaaISaaabaaabaGaam yyamaaBaaaleaacaaIYaGaaGymaaqabaGccqaHZoWzdaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdacaaIYaaabe aakiabeo7aNnaaBaaaleaacaaIYaaabeaakiabgUcaRiablAciljab gUcaRiaadggadaWgaaWcbaGaaGOmaiaad6gaaeqaaOGaeq4SdC2aaS baaSqaaiaad6gaaeqaaOGaaGypaiabgkHiTmaalaaabaGaeqOSdiga baGaaGOmaaaacaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaaGilaaqaaa qaaiablAciljablAciljablAciljablAciljablAciljablAciljab lAciljablAciljablAciljablAciljablAciljablAcilbqaaaqaai aadggadaWgaaWcbaGaamOBaiaaigdaaeqaaOGaeq4SdC2aaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWGUbGaaGOmaa qabaGccqaHZoWzdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqWIMaYs cqGHRaWkcaWGHbWaaSbaaSqaaiaad6gacaWGUbaabeaakiabeo7aNn aaBaaaleaacaWGUbaabeaakiaai2dacqGHsisldaWcaaqaaiabek7a IbqaaiaaikdaaaGaam4qamaaBaaaleaacaWGUbaabeaakiaaiYcaaa aaaa@8F26@  (39)

где приняты следующие обозначения:

a sk = t 0 t 2 e λ s t e λ k t dt= 1 λ s + λ k e λ s + λ k t 2 e λ s + λ k t 0 ,s,k=1,2,,n. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadohacaWGRb aabeaakiaai2dadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqa aaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGaamyzam aaCaaaleqabaGaeq4UdW2aaSbaaeaacaWGZbaabeaacaWG0baaaOGa amyzamaaCaaaleqabaGaeq4UdW2aaSbaaeaacaWGRbaabeaacaWG0b aaaOGaamizaiaadshacaaI9aWaaSaaaeaacaaIXaaabaGaeq4UdW2a aSbaaSqaaiaadohaaeqaaOGaey4kaSIaeq4UdW2aaSbaaSqaaiaadU gaaeqaaaaakmaabmaabaGaamyzamaaCaaaleqabaWaaeWaaeaacqaH 7oaBdaWgaaqaaiaadohaaeqaaiabgUcaRiabeU7aSnaaBaaabaGaam 4AaaqabaaacaGLOaGaayzkaaGaamiDamaaBaaabaGaaGOmaaqabaaa aOGaeyOeI0IaamyzamaaCaaaleqabaWaaeWaaeaacqaH7oaBdaWgaa qaaiaadohaaeqaaiabgUcaRiabeU7aSnaaBaaabaGaam4Aaaqabaaa caGLOaGaayzkaaGaamiDamaaBaaabaGaaGimaaqabaaaaaGccaGLOa GaayzkaaGaaGilaiaaywW7caWGZbGaaGilaiaadUgacaaI9aGaaGym aiaaiYcacaaIYaGaaGilaiablAciljaaiYcacaWGUbGaaGOlaaaa@73E9@  (40)

Заметим, что a sk = a ks MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaadohacaWGRb aabeaakiaai2dacaWGHbWaaSbaaSqaaiaadUgacaWGZbaabeaaaaa@3882@ . Присоединяя к уравнениям (39) условие (36), получим замкнутую систему алгебраических уравнений относительно неизвестных величин γ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaam4Aaaqaba aaaa@3480@ , k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@ , и β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@ .

Обозначим через

Δ n = a 11 a 12 a 1n a 21 a 22 a 2n a n1 a n2 a nn MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOBaaqaba GccaaI9aWaaqWaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGa aGymaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGOmaa qabaaakeaacqWIMaYsaeaacaWGHbWaaSbaaSqaaiaaigdacaWGUbaa beaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaam yyamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacqWIMaYsaeaacaWG HbWaaSbaaSqaaiaaikdacaWGUbaabeaaaOqaaiabl+Uimbqaaaqaaa qaaaqaaiaadggadaWgaaWcbaGaamOBaiaaigdaaeqaaaGcbaGaamyy amaaBaaaleaacaWGUbGaaGOmaaqabaaakeaacqWIMaYsaeaacaWGHb WaaSbaaSqaaiaad6gacaWGUbaabeaaaaaakiaawEa7caGLiWoaaaa@5621@

главный определитель системы алгебраических уравнений (39), а через Δ ¯ n (k) = β 2 Δ n (k) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHuoargaqeamaaDaaaleaacaWGUb aabaGaaGikaiaadUgacaaIPaaaaOGaaGypaiabgkHiTmaalaaabaGa eqOSdigabaGaaGOmaaaacqqHuoardaqhaaWcbaGaamOBaaqaaiaaiI cacaWGRbGaaGykaaaaaaa@3FB6@  ( k=1,2,,n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG OmaiaaiYcacqWIMaYscaaISaGaamOBaaaa@3922@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@   k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbaaaa@32AD@  -й столбец этого определителя, замененный на значения правых частей этой системы; предположим, что Δ n 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaamOBaaqaba GccqGHGjsUcaaIWaaaaa@36CD@ . Тогда решение системы (39) с условием (36) можно представить в виде

γ k 0 = Δ n (k) j=1 n Δ n (j) C j ,k=1,2,,n,β= 2 Δ n j=1 n Δ n (j) C j . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaqhaaWcbaGaam4Aaaqaai aaicdaaaGccaaI9aWaaSaaaeaacqqHuoardaqhaaWcbaGaamOBaaqa aiaaiIcacaWGRbGaaGykaaaaaOqaamaaqahabeWcbaGaamOAaiaai2 dacaaIXaaabaGaamOBaaqdcqGHris5aOGaeuiLdq0aa0baaSqaaiaa d6gaaeaacaaIOaGaamOAaiaaiMcaaaGccaWGdbWaaSbaaSqaaiaadQ gaaeqaaaaakiaaiYcacaaMf8Uaam4Aaiaai2dacaaIXaGaaGilaiaa ikdacaaISaGaeSOjGSKaaGilaiaad6gacaaISaGaaGzbVlabek7aIj aai2dadaWcaaqaaiabgkHiTiaaikdacqqHuoardaWgaaWcbaGaamOB aaqabaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaGymaaqaaiaad6 gaa0GaeyyeIuoakiabfs5aenaaDaaaleaacaWGUbaabaGaaGikaiaa dQgacaaIPaaaaOGaam4qamaaBaaaleaacaWGQbaabeaaaaGccaaIUa aaaa@675A@  (41)

Подставляя из (41) значения для γ k 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaqhaaWcbaGaam4Aaaqaai aaicdaaaaaaa@353B@  в (38), получим

h n 0 (t)= k=1 n γ k 0 e λ k t = k=1 n Δ n (k) j=1 n Δ n (j) C j e λ k t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaGaaGypamaaqahabeWcbaGaam4A aiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOGaeq4SdC2aa0baaS qaaiaadUgaaeaacaaIWaaaaOGaamyzamaaCaaaleqabaGaeq4UdW2a aSbaaeaacaWGRbaabeaacaWG0baaaOGaaGypamaaqahabeWcbaGaam 4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWaaSaaaeaacqqH uoardaqhaaWcbaGaamOBaaqaaiaaiIcacaWGRbGaaGykaaaaaOqaam aaqahabeWcbaGaamOAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5 aOGaeuiLdq0aa0baaSqaaiaad6gaaeaacaaIOaGaamOAaiaaiMcaaa GccaWGdbWaaSbaaSqaaiaadQgaaeqaaaaakiaadwgadaahaaWcbeqa aiabeU7aSnaaBaaabaGaam4AaaqabaGaamiDaaaakiaai6caaaa@6353@  (42)

Из (37) для оптимальной функции h n 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaaaaa@36EC@  будем иметь

( ρ n 0 ) 2 = t 0 t 2 ( h n 0 (t)) 2 dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqyWdi3aa0baaSqaaiaad6 gaaeaacaaIWaaaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiaai2da daWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadshada WgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOGaaGikaiaadIgadaqhaaWc baGaamOBaaqaaiaaicdaaaGccaaIOaGaamiDaiaaiMcacaaIPaWaaW baaSqabeaacaaIYaaaaOGaamizaiaadshacaaIUaaaaa@48BF@

Согласно [4, 5]] искомое оптимальное управление u n 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaaaaa@36F9@  определяется выражением

u n 0 (t)= 1 ( ρ n 0 ) 2 h n 0 (t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqa aiaaiIcacqaHbpGCdaqhaaWcbaGaamOBaaqaaiaaicdaaaGccaaIPa WaaWbaaSqabeaacaaIYaaaaaaakiaadIgadaqhaaWcbaGaamOBaaqa aiaaicdaaaGccaaIOaGaamiDaiaaiMcacaaIUaaaaa@446E@  (43)

Имея выражение для функции u n 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaaaaa@36F9@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ , из формул (29) и (32) получим явный вид для функции V k 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaaaaa@36D7@ . Из (27), получим явное выражение для функции V n 0 (ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaaa@3953@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ . Далее, с помощью (16) и (19) оптимальная функция температурного состояния T n 0 (ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiabe67a4jaaiYcacaWG0bGaaGykaaaa@3951@ , 0ξL MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqOVdGNaeyizIm Qaamitaaaa@3875@ , для первых n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  мод запишется в виде

T n 0 (ξ,t)= k=1 n V k 0 (t)sin πkξ L + u n 0 (t)+ ξ L [P(t) u n 0 (t)],ξ[0,L],t[ t 0 , t 2 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaad6gaaeaaca aIWaaaaOGaaGikaiabe67a4jaaiYcacaWG0bGaaGykaiaai2dadaae WbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoaki aadAfadaqhaaWcbaGaam4AaaqaaiaaicdaaaGccaaIOaGaamiDaiaa iMcaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWjaadUgacqaH+o aEaeaacaWGmbaaaiabgUcaRiaadwhadaqhaaWcbaGaamOBaaqaaiaa icdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkdaWcaaqaaiabe67a4b qaaiaadYeaaaGaaG4waiaadcfacaaIOaGaamiDaiaaiMcacqGHsisl caWG1bWaa0baaSqaaiaad6gaaeaacaaIWaaaaOGaaGikaiaadshaca aIPaGaaGyxaiaaiYcacaaMf8UaeqOVdGNaeyicI4SaaG4waiaaicda caaISaGaamitaiaai2facaaISaGaaGzbVlaadshacqGHiiIZcaaIBb GaamiDamaaBaaaleaacaaIWaaabeaakiaaiYcacaWG0bWaaSbaaSqa aiaaikdaaeqaaOGaaGyxaiaai6caaaa@7740@  (44)

Учитывая обозначение (10) для функций T(ξ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGikaiabe67a4jaaiYcaca WG0bGaaGykaaaa@376D@ , ξ[0,L] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEcqGHiiIZcaaIBbGaaGimai aaiYcacaWGmbGaaGyxaaaa@3911@ , t[ t 0 , t 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyicI4SaaG4waiaadshada WgaaWcbaGaaGimaaqabaGccaaISaGaamiDamaaBaaaleaacaaIYaaa beaakiaai2faaaa@3A90@ , и обозначение (8), представим функции T 1n (z,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaigdacaWGUb aabeaakiaaiIcacaWG6bGaaGilaiaadshacaaIPaaaaa@388D@ , z[0, l 1 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyicI4SaaG4waiaaicdaca aISaGaamiBamaaBaaaleaacaaIXaaabeaakiaai2faaaa@395E@  и T 2n (z,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaikdacaWGUb aabeaakiaaiIcacaWG6bGaaGilaiaadshacaaIPaaaaa@388E@ , z[ l 1 , l 1 + l 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyicI4SaaG4waiaadYgada WgaaWcbaGaaGymaaqabaGccaaISaGaamiBamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadYgadaWgaaWcbaGaaGOmaaqabaGccaaIDbaaaa@3D4B@ , представляются в виде

T 1n 0 (z,t)= k=1 n V k 0 (t)sin πkz L + 1 z L u n 0 (t)+ z L P(t),z[0, l 1 ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaaigdacaWGUb aabaGaaGimaaaakiaaiIcacaWG6bGaaGilaiaadshacaaIPaGaaGyp amaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHri s5aOGaamOvamaaDaaaleaacaWGRbaabaGaaGimaaaakiaaiIcacaWG 0bGaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdaNaam4Aai aadQhaaeaacaWGmbaaaiabgUcaRmaabmaabaGaaGymaiabgkHiTmaa laaabaGaamOEaaqaaiaadYeaaaaacaGLOaGaayzkaaGaamyDamaaDa aaleaacaWGUbaabaGaaGimaaaakiaaiIcacaWG0bGaaGykaiabgUca RmaalaaabaGaamOEaaqaaiaadYeaaaGaamiuaiaaiIcacaWG0bGaaG ykaiaaiYcacaaMf8UaamOEaiabgIGiolaaiUfacaaIWaGaaGilaiaa dYgadaWgaaWcbaGaaGymaaqabaGccaaIDbGaaGilaaaa@67FF@  (45)

T 2n 0 (z,t)= k=1 n V k 0 (t)sin πkz L a 1 a 2 z+ l 1 1 a 1 a 2 + 1 1 L a 1 a 2 z+ l 1 1 a 1 a 2 u n 0 (t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaaikdacaWGUb aabaGaaGimaaaakiaaiIcacaWG6bGaaGilaiaadshacaaIPaGaaGyp amaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaaqdcqGHri s5aOGaamOvamaaDaaaleaacaWGRbaabaGaaGimaaaakiaaiIcacaWG 0bGaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdaNaam4Aai aadQhaaeaacaWGmbaaamaadmaabaWaaSaaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaaGcca WG6bGaey4kaSIaamiBamaaBaaaleaacaaIXaaabeaakmaabmaabaGa aGymaiabgkHiTmaalaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaO qaaiaadggadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaa caGLBbGaayzxaaGaey4kaSYaaiWaaeaacaaIXaGaeyOeI0YaaSaaae aacaaIXaaabaGaamitaaaadaWadaqaamaalaaabaGaamyyamaaBaaa leaacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaaaO GaamOEaiabgUcaRiaadYgadaWgaaWcbaGaaGymaaqabaGcdaqadaqa aiaaigdacqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaaGymaaqaba aakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMca aaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaadwhadaqhaaWcbaGaam OBaaqaaiaaicdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkaaa@797E@

+ 1 L a 1 a 2 z+ l 1 1 a 1 a 2 P(t),z[ l 1 , l 1 + l 2 ]. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca WGmbaaamaadmaabaWaaSaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqa aaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaaGccaWG6bGaey4kaS IaamiBamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymaiabgkHi TmaalaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggada WgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzx aaGaamiuaiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaamOEaiabgI GiolaaiUfacaWGSbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadYga daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGSbWaaSbaaSqaaiaaik daaeqaaOGaaGyxaiaai6caaaa@565C@  (46)

Если предполагать, что в граничных условиях (2) известная функция температурного поля P(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadshacaaIPaaaaa@34F0@  постоянна, то формулы (45) и (46) принимают более простой вид.

6. Построение решения в случае n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ Проиллюстрируем вышеизложенный подход в случае n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ , при P(t)=const=P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGqbGaaGikaiaadshacaaIPaGaaG ypaiaadogacaWGVbGaamOBaiaadohacaWG0bGaaGypaiaadcfaaaa@3C13@ . В этом случае из (34) следует

t 0 t 2 u 2 τ e λ 1 τ dτ= C 1 , t 0 t 2 u 2 τ e λ 2 τ dτ= C 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXbqabSqaaiaadshadaWgaaqaai aaicdaaeqaaaqaaiaadshadaWgaaqaaiaaikdaaeqaaaqdcqGHRiI8 aOGaamyDamaaBaaaleaacaaIYaaabeaakmaabmaabaGaeqiXdqhaca GLOaGaayzkaaGaamyzamaaCaaaleqabaGaeq4UdW2aaSbaaeaacaaI XaaabeaacqaHepaDaaGccaWGKbGaeqiXdqNaaGypaiaadoeadaWgaa WcbaGaaGymaaqabaGccaaISaGaaGzbVpaapehabeWcbaGaamiDamaa BaaabaGaaGimaaqabaaabaGaamiDamaaBaaabaGaaGOmaaqabaaani abgUIiYdGccaWG1bWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacqaH epaDaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqaH7oaBdaWgaa qaaiaaikdaaeqaaiabes8a0baakiaadsgacqaHepaDcaaI9aGaam4q amaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@60B1@

где

C 1 = 1 λ 1 π 2 V 1 ( t 2 ) e λ 1 t 2 V 1 ( t 0 ) e λ 1 t 0 + T K (0) e λ 1 t 2 T H (0) e λ 1 t 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiabeU7aSnaaBaaaleaacaaIXaaa beaaaaGcdaGadaqaamaalaaabaGaeqiWdahabaGaaGOmaaaadaWada qaaiaadAfadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDamaaBaaa leaacaaIYaaabeaakiaaiMcacaWGLbWaaWbaaSqabeaacqaH7oaBda WgaaqaaiaaigdaaeqaaiaadshadaWgaaqaaiaaikdaaeqaaaaakiab gkHiTiaadAfadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDamaaBa aaleaacaaIWaaabeaakiaaiMcacaWGLbWaaWbaaSqabeaacqaH7oaB daWgaaqaaiaaigdaaeqaaiaadshadaWgaaqaaiaaicdaaeqaaaaaaO Gaay5waiaaw2faaiabgUcaRiaadsfadaWgaaWcbaGaam4saaqabaGc caaIOaGaaGimaiaaiMcacaWGLbWaaWbaaSqabeaacqaH7oaBdaWgaa qaaiaaigdaaeqaaiaadshadaWgaaqaaiaaikdaaeqaaaaakiabgkHi TiaadsfadaWgaaWcbaGaamisaaqabaGccaaIOaGaaGimaiaaiMcaca WGLbWaaWbaaSqabeaacqaH7oaBdaWgaaqaaiaaigdaaeqaaiaadsha daWgaaqaaiaaicdaaeqaaaaaaOGaay5Eaiaaw2haaiaaiYcaaaa@6A12@

C 2 = 1 λ 2 π V 2 ( t 2 ) e λ 2 t 2 V 2 ( t 0 ) e λ 2 t 0 + T K (0) e λ 2 t 2 T H (0) e λ 2 t 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaaikdaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiabeU7aSnaaBaaaleaacaaIYaaa beaaaaGcdaGadaqaaiabec8aWnaadmaabaGaamOvamaaBaaaleaaca aIYaaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaaGyk aiaadwgadaahaaWcbeqaaiabeU7aSnaaBaaabaGaaGOmaaqabaGaam iDamaaBaaabaGaaGOmaaqabaaaaOGaeyOeI0IaamOvamaaBaaaleaa caaIYaaabeaakiaaiIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaG ykaiaadwgadaahaaWcbeqaaiabeU7aSnaaBaaabaGaaGOmaaqabaGa amiDamaaBaaabaGaaGimaaqabaaaaaGccaGLBbGaayzxaaGaey4kaS IaamivamaaBaaaleaacaWGlbaabeaakiaaiIcacaaIWaGaaGykaiaa dwgadaahaaWcbeqaaiabeU7aSnaaBaaabaGaaGOmaaqabaGaamiDam aaBaaabaGaaGOmaaqabaaaaOGaeyOeI0IaamivamaaBaaaleaacaWG ibaabeaakiaaiIcacaaIWaGaaGykaiaadwgadaahaaWcbeqaaiabeU 7aSnaaBaaabaGaaGOmaaqabaGaamiDamaaBaaabaGaaGimaaqabaaa aaGccaGL7bGaayzFaaGaaGOlaaaa@6950@

Из (39) будем иметь

a 11 γ 1 + a 12 γ 2 = β 2 C 1 , a 21 γ 1 + a 22 γ 2 = β 2 C 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaIXa aabeaakiabeo7aNnaaBaaaleaacaaIXaaabeaakiabgUcaRiaadgga daWgaaWcbaGaaGymaiaaikdaaeqaaOGaeq4SdC2aaSbaaSqaaiaaik daaeqaaOGaaGypaiabgkHiTmaalaaabaGaeqOSdigabaGaaGOmaaaa caWGdbWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaaywW7caWGHbWaaS baaSqaaiaaikdacaaIXaaabeaakiabeo7aNnaaBaaaleaacaaIXaaa beaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeq 4SdC2aaSbaaSqaaiaaikdaaeqaaOGaaGypaiabgkHiTmaalaaabaGa eqOSdigabaGaaGOmaaaacaWGdbWaaSbaaSqaaiaaikdaaeqaaOGaaG Olaaaa@56E0@

Решение γ 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaqhaaWcbaGaaGymaaqaai aaicdaaaaaaa@3506@ , γ 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaqhaaWcbaGaaGOmaaqaai aaicdaaaaaaa@3507@  этой системы запишется по формуле (41), в которой

Δ 2 = a 11 a 22 a 12 a 21 , Δ 2 (1) = C 1 a 22 C 2 a 12 , Δ 2 (2) = C 2 a 11 C 1 a 21 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoardaWgaaWcbaGaaGOmaaqaba GccaaI9aGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGHbWa aSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiaadggadaWgaaWcba GaaGymaiaaikdaaeqaaOGaamyyamaaBaaaleaacaaIYaGaaGymaaqa baGccaaISaGaaGzbVlabfs5aenaaDaaaleaacaaIYaaabaGaaGikai aaigdacaaIPaaaaOGaaGypaiaadoeadaWgaaWcbaGaaGymaaqabaGc caWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTiaadoeada WgaaWcbaGaaGOmaaqabaGccaWGHbWaaSbaaSqaaiaaigdacaaIYaaa beaakiaaiYcacaaMf8UaeuiLdq0aa0baaSqaaiaaikdaaeaacaaIOa GaaGOmaiaaiMcaaaGccaaI9aGaam4qamaaBaaaleaacaaIYaaabeaa kiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaeyOeI0Iaam4qam aaBaaaleaacaaIXaaabeaakiaadggadaWgaaWcbaGaaGOmaiaaigda aeqaaOGaaGOlaaaa@62E2@

Подставляя значения для γ 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaqhaaWcbaGaaGymaaqaai aaicdaaaaaaa@3506@ , γ 2 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaqhaaWcbaGaaGOmaaqaai aaicdaaaaaaa@3507@  в (42), согласно (43), искомое оптимальное управление u 2 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaaaaa@36C2@  определяется выражением

u 2 0 (t)= γ 1 0 e λ 1 t + γ 2 0 e λ 2 t ( ρ 2 0 ) 2 , ( ρ 2 0 ) 2 = t 0 t 2 γ 1 0 e λ 1 t + γ 2 0 e λ 2 t 2 dt. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaa0baaSqaaiaaikdaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaGaaGypamaalaaabaGaeq4SdC2a a0baaSqaaiaaigdaaeaacaaIWaaaaOGaamyzamaaCaaaleqabaGaeq 4UdW2aaSbaaeaacaaIXaaabeaacaWG0baaaOGaey4kaSIaeq4SdC2a a0baaSqaaiaaikdaaeaacaaIWaaaaOGaamyzamaaCaaaleqabaGaeq 4UdW2aaSbaaeaacaaIYaaabeaacaWG0baaaaGcbaGaaGikaiabeg8a YnaaDaaaleaacaaIYaaabaGaaGimaaaakiaaiMcadaahaaWcbeqaai aaikdaaaaaaOGaaGilaiaaywW7caaIOaGaeqyWdi3aa0baaSqaaiaa ikdaaeaacaaIWaaaaOGaaGykamaaCaaaleqabaGaaGOmaaaakiaai2 dadaWdXbqabSqaaiaadshadaWgaaqaaiaaicdaaeqaaaqaaiaadsha daWgaaqaaiaaikdaaeqaaaqdcqGHRiI8aOWaaeWaaeaacqaHZoWzda qhaaWcbaGaaGymaaqaaiaaicdaaaGccaWGLbWaaWbaaSqabeaacqaH 7oaBdaWgaaqaaiaaigdaaeqaaiaadshaaaGccqGHRaWkcqaHZoWzda qhaaWcbaGaaGOmaaqaaiaaicdaaaGccaWGLbWaaWbaaSqabeaacqaH 7oaBdaWgaaqaaiaaikdaaeqaaiaadshaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccaWGKbGaamiDaiaai6caaaa@731E@

Далее, с помощью (45) и (46) оптимальные функции температурного состояния для первых двух мод можно записать в следующем виде:

T 1n 0 (z,t)= V 1 0 (t)sin πz L + V 2 0 (t)sin 2πz L + 1 z L u 2 0 (t)+ z L P,z[0, l 1 ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaaigdacaWGUb aabaGaaGimaaaakiaaiIcacaWG6bGaaGilaiaadshacaaIPaGaaGyp aiaadAfadaqhaaWcbaGaaGymaaqaaiaaicdaaaGccaaIOaGaamiDai aaiMcaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWjaadQhaaeaa caWGmbaaaiabgUcaRiaadAfadaqhaaWcbaGaaGOmaaqaaiaaicdaaa GccaaIOaGaamiDaiaaiMcaciGGZbGaaiyAaiaac6gadaWcaaqaaiaa ikdacqaHapaCcaWG6baabaGaamitaaaacqGHRaWkdaqadaqaaiaaig dacqGHsisldaWcaaqaaiaadQhaaeaacaWGmbaaaaGaayjkaiaawMca aiaadwhadaqhaaWcbaGaaGOmaaqaaiaaicdaaaGccaaIOaGaamiDai aaiMcacqGHRaWkdaWcaaqaaiaadQhaaeaacaWGmbaaaiaadcfacaaI SaGaaGzbVlaadQhacqGHiiIZcaaIBbGaaGimaiaaiYcacaWGSbWaaS baaSqaaiaaigdaaeqaaOGaaGyxaiaaiYcaaaa@6B8C@

T 2n 0 (z,t)= k=1 2 V k 0 (t)sin πkz L a 1 a 2 z+ l 1 1 a 1 a 2 + 1 1 L a 1 a 2 z+ l 1 1 a 1 a 2 u 2 0 (t)+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaa0baaSqaaiaaikdacaWGUb aabaGaaGimaaaakiaaiIcacaWG6bGaaGilaiaadshacaaIPaGaaGyp amaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaaGOmaaqdcqGHri s5aOGaamOvamaaDaaaleaacaWGRbaabaGaaGimaaaakiaaiIcacaWG 0bGaaGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdaNaam4Aai aadQhaaeaacaWGmbaaamaadmaabaWaaSaaaeaacaWGHbWaaSbaaSqa aiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaaGcca WG6bGaey4kaSIaamiBamaaBaaaleaacaaIXaaabeaakmaabmaabaGa aGymaiabgkHiTmaalaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaO qaaiaadggadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaa caGLBbGaayzxaaGaey4kaSYaaiWaaeaacaaIXaGaeyOeI0YaaSaaae aacaaIXaaabaGaamitaaaadaWadaqaamaalaaabaGaamyyamaaBaaa leaacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaaqabaaaaO GaamOEaiabgUcaRiaadYgadaWgaaWcbaGaaGymaaqabaGcdaqadaqa aiaaigdacqGHsisldaWcaaqaaiaadggadaWgaaWcbaGaaGymaaqaba aakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMca aaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaadwhadaqhaaWcbaGaaG OmaaqaaiaaicdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkaaa@7910@

+ 1 L a 1 a 2 z+ l 1 1 a 1 a 2 P,z[ l 1 , l 1 + l 2 ], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkdaWcaaqaaiaaigdaaeaaca WGmbaaamaadmaabaWaaSaaaeaacaWGHbWaaSbaaSqaaiaaigdaaeqa aaGcbaGaamyyamaaBaaaleaacaaIYaaabeaaaaGccaWG6bGaey4kaS IaamiBamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGymaiabgkHi TmaalaaabaGaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadggada WgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzx aaGaamiuaiaaiYcacaaMf8UaamOEaiabgIGiolaaiUfacaWGSbWaaS baaSqaaiaaigdaaeqaaOGaaGilaiaaysW7caWGSbWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaamiBamaaBaaaleaacaaIYaaabeaakiaai2 facaaISaaaaa@5589@

где V k 0 (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaa0baaSqaaiaadUgaaeaaca aIWaaaaOGaaGikaiaadshacaaIPaaaaa@36D7@ , k=1,2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG Omaaaa@35A1@ , определяются согласно (32).

Таким образом, используя предложенный подход, при n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@  построены явные выражения функции оптимального управления тепловым процессом, решающие поставленную задачу, и явное выражение соответствующей функций оптимального распределения температуры в двухслойном биоматериале.

7. Заключение. Предложен конструктивный подход построения функции оптимального управления теплового воздействия лазерного луча на двухслойный биоматериал. При построенном оптимальном законе теплового воздействия распределение температурного состояния двухслойного биоматериала из заданного начального состояния на определенном промежутке времени переходит в заданное конечное состояние. В предложенном подходе используются метод разделения переменных и методы теории оптимального управления динамических систем.

×

Об авторах

Ваня Рафаелович Барсегян

Институт механики НАН Армении; Ереванский государственный университет

Автор, ответственный за переписку.
Email: barseghyan@sci.am
Армения, Ереван; Ереван

Светлана Витальевна Солодуша

Институт систем энергетики им. Л. А. Мелентьева Сибирского отделения РАН; Иркутский государственный университет

Email: solodusha@isem.irk.ru
Россия, Иркутск; Иркутск

Список литературы

  1. Барсегян В. Р., Барсегян Т. В. Об одном подходе к решению задач управления динамическими системами с неразделенными многоточечными промежуточными условиями// Автомат. телемех. — 2015. — № 4. — С. 3–15.
  2. Барсегян В. Р. Оптимальное граничное управление смещением на двух концах при колебании стержня, состоящего из двух участков разной плотности и упругости// Диффер. уравн. процессы управл. — 2022. — № 2. — С. 41–54.
  3. Барсегян В. Р. Оптимальное граничное управление распределенной неоднородной колебательной системой с заданными состояниями в промежуточные моменты времени//Ж. вычисл. мат. мат. физ. — 2023. — 63, № 1. — С. 74–84.
  4. Барсегян В. Р. Задача граничного управления смещением на двух концах процессом колебания стержня, состоящего из двух участков разной плотности и упругости// Изв. РАН. Мах. тв. тела. — 2023. — № 2. — С. 125–135.
  5. Белозеров Л. Г., Киреев В. А. Композитные оболочки при силовых и тепловых воздействиях. — М.: Физматлит, 2003.
  6. Елагин В. В., Шахова М. А., Карабут М. М., Кузнецова Д. С., Бредихин В. И., Проданец Н. Н., Снопова Л. Б., Баскина О. С., Шахов А. В., Каменский В. А. Оценка режущих свойств лазерного скальпеля, оснащенного сильно поглощающим покрытием оптического волокна// Совр. технол. В медицине. — 2015. — 7, № 3. — С. 55–60.
  7. Зубов В. И. Лекции по теории управления. — М.: Наука, 1975.
  8. Красовский Н. Н. Теория управления движением. — М.: Наука, 1968.
  9. Малая Ю. А., Губин А. И. Математическое моделирование тепловых процессов при лазерной обработке материалов на основе нелинейного гиперболического уравнения теплопроводности// Техн. теплофиз. пром. теплоэнерг. — 2011. — № 3. — С. 72–85.
  10. Мегель Ю. Е., Левкин Д. А. Математическая модельтеплового нагрева многослойного микробиологического объекта// Вост.-Евр. ж. передовых технол. — 2012. — 57, № 3/4. — С. 4–7.
  11. Пятков С. Г. Некоторые обратные задачи для параболических уравнений// Фундам. прикл. мат. — 2006. — 12, № 4. — С. 187–202.
  12. Свет Е. В. Нестационарная задача теплопроводности в трехмерной постановке для многослойных пластин сложной формы// Вiсн. НТУ «ХПI». — 2013. — № 63 (1036). — С. 4–7.
  13. Скобелкин О. К. Лазеры в хирургии. — М.: Медицина, 1989.
  14. Шангина О. Р., Гайнутдинова Р. Д. DВзаимодействие лазерного излучения с биологическими тканями// Практ. мадицина. — 2019. — 17, № 1. — С. 24–27.
  15. Шупиков А. Н., Бузько Я. П., Сметанкина Н. В., Угримов С. В. Нестационарные колебания многослойных пластин и оболочек и их оптимизация. — Харьков: Изд. ХНЭУ, 2004.
  16. Barsegyan V. R. The problem of control of rod heating process with nonseparated conditions at intermediate moments of time// Arch. Control Sci. — 2021. — 31, № 3. — P. 481—493.
  17. Barsegyan V. R. Control of stage by stage changing linear dynamic systems// Yugoslav. J. Oper. Res. — 2012. — 22, № 1. — P. 31—39.
  18. Barsegyan V. R. On the controllability and observability of linear dynamic systems with variable structure// 2016 Int. Conf. “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy’s Conf.) (Moscow, Russia, June 1-3, 2016), 2016. — P. 1–4.
  19. Barsegyan V. R., Solodusha S. V. On the optimal control problem for vibrations of the rod/string consisting of two non-homogeneous sections with the condition at an intermediate time// Mathematics. — 2022. — 23, № 10. — 4444.
  20. Barsegyan V. R., Solodusha S. V. On one boundary control problem of string vibrations with given velocity of points at an intermediate moment of time// J. Phys. Conf. Ser. — 2021. — 1847. — 012016.
  21. Barsegyan V. R., Solodusha S. V. Control of string vibrations by displacement of one end with the other end fixed, given the deflection Form at an intermediate moment of time// Axioms. — 2022. — 11, № 4. — 157.
  22. Kantor B. Y., Smetankina N. V., Shupikov A. N. Analysis of non-stationary temperature fields in laminated strips and plates// Int. J. Solids Struct. — 2001. — 38, № 4. — P. 187–202.
  23. Yamaoka N., Sugie J. Multilayer structures of second-order linear differential equations of Euler type and their application to nonlinear oscillations// Ukr. Math. J. — 2006. — 58, № 12. — P. 72–85.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структурная схема воздействия лазерного луча на двухслойный биологический материал

Скачать (25KB)

© Барсегян В.Р., Солодуша С.В., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».