On asymptotics of solution of nonlinear difference equation of convolution type

Cover Page

Cite item

Full Text

Abstract

Nonlinear difference equations appear in many problems of probability theory, computer science, and combinatorics. In this paper, a nonlinear difference equation of the convolution type with parameters is considered. Asymptotics of solutions of such equations are used for the enumeration of labeled connected graphs. To obtain the asymptotics, we apply Bender’s theorem for the coefficients of formal power series.

Full Text

Нелинейные разностные уравнения типа свертки возникают в теории вероятности при изучении броуновского движения (см. [12, 14]), информатике при анализе алгоритмов поиска (см. [10]) и хеширования (см. [11]) и комбинаторике при перечислении помеченных графов (см. [19]). Асимптотика решений таких уравнений исследовалась в [9, 10, 16, 17].

Рассмотрим нелинейное разностное уравнение типа свертки

a n+1 =(n+α) a n +β s=0 n a s a ns ,n0; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad6gacqGHRa WkcaaIXaaabeaakiaai2dacaaIOaGaamOBaiabgUcaRiabeg7aHjaa iMcacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaey4kaSIaeqOSdi2aaa bCaeqaleaacaWGZbGaaGypaiaaicdaaeaacaWGUbaaniabggHiLdGc caWGHbWaaSbaaSqaaiaadohaaeqaaOGaamyyamaaBaaaleaacaWGUb GaeyOeI0Iaam4CaaqabaGccaaISaGaaGzbVlaad6gacqGHLjYScaaI WaGaaG4oaaaa@51D8@  (1)

a 0 =a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadggaaaa@3540@ , где α MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqyaaa@335C@ , β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGyaaa@335E@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  параметры, β0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycqGHGjsUcaaIWaaaaa@35DF@ .

Асимптотика решений уравнений такого типа используется при перечислении помеченных связных графов (см. [1, 4, 7, 18, 19]) и в теории случайных графов (см. [13]).

Введем производящую функцию (формальный степенной ряд) для последовательности чисел { a n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyyamaaBaaaleaacaWGUb aabeaakiaai2haaaa@35D8@ , определяемой уравнением (1):

A(x)= n=0 a n x n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniab ggHiLdGccaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaale qabaGaamOBaaaakiaaysW7caaIUaaaaa@4259@

Теорема 1. Пусть Φ(a,b;x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaG4oaiaadIhacaaIPaaaaa@38E1@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  вырожденная гипергеометрическая функция Куммера. Тогда верна формула

A(x)= x β (lnΦ aβ,1α; 1 x ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypamaalaaabaGaamiEaaqaaiabek7aIbaacaaIOaGaciiBaiaac6ga cqqHMoGrdaqadaqaaiaadggacqaHYoGycaaISaGaaGymaiabgkHiTi abeg7aHjaaiUdacqGHsisldaWcaaqaaiaaigdaaeaacaWG4baaaaGa ayjkaiaawMcaaiqaiMcagaqbaiaai6caaaa@4968@  (2)

Доказательство. Умножим обе части уравнения (1) на x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bWaaWbaaSqabeaacaWGUbaaaa aa@33DA@  и просуммируем по n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  от 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaaaaa@3277@  до MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHEisPaaa@332E@ :

n=0 a n+1 x n = n=0 n a n x n +α n=0 a n x n +β n=0 s=0 n a s a ns x n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbGa ey4kaSIaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbaaaOGaaG ypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniab ggHiLdGccaWGUbGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhada ahaaWcbeqaaiaad6gaaaGccqGHRaWkcqaHXoqydaaeWbqabSqaaiaa d6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBa aaleaacaWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccqGH RaWkcqaHYoGydaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6 HiLcqdcqGHris5aOWaaabCaeqaleaacaWGZbGaaGypaiaaicdaaeaa caWGUbaaniabggHiLdGccaWGHbWaaSbaaSqaaiaadohaaeqaaOGaam yyamaaBaaaleaacaWGUbGaeyOeI0Iaam4CaaqabaGccaWG4bWaaWba aSqabeaacaWGUbaaaOGaaGOlaaaa@6E22@

Теперь имеем

n=0 a n+1 x n = 1 x n=0 a n+1 x n+1 = 1 x ( n=0 a n x n a 0 ), n=0 n a n x n =x( n=0 a n x n ) =x A (x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbGa ey4kaSIaaGymaaqabaGccaWG4bWaaWbaaSqabeaacaWGUbaaaOGaaG ypamaalaaabaGaaGymaaqaaiaadIhaaaWaaabCaeqaleaacaWGUbGa aGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoakiaadggadaWgaaWcba GaamOBaiabgUcaRiaaigdaaeqaaOGaamiEamaaCaaaleqabaGaamOB aiabgUcaRiaaigdaaaGccaaI9aWaaSaaaeaacaaIXaaabaGaamiEaa aacaaIOaWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisP a0GaeyyeIuoakiaadggadaWgaaWcbaGaamOBaaqabaGccaWG4bWaaW baaSqabeaacaWGUbaaaOGaeyOeI0IaamyyamaaBaaaleaacaaIWaaa beaakiaaiMcacaaISaGaaGzbVpaaqahabeWcbaGaamOBaiaai2daca aIWaaabaGaeyOhIukaniabggHiLdGccaWGUbGaamyyamaaBaaaleaa caWGUbaabeaakiaadIhadaahaaWcbeqaaiaad6gaaaGccaaI9aGaam iEaiaaiIcadaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6Hi LcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbaabeaakiaadIhada ahaaWcbeqaaiaad6gaaaGcceaIPaGbauaacaaI9aGaamiEaiqadgea gaqbaiaaiIcacaWG4bGaaGykaiaaiYcaaaa@7FFC@

n=0 s=0 n a s a ns x n = A 2 (x), 1 x (A(x) a 0 )=x A (x)+αA(x)+β A 2 (x). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOWaaabCaeqaleaacaWGZbGaaGyp aiaaicdaaeaacaWGUbaaniabggHiLdGccaWGHbWaaSbaaSqaaiaado haaeqaaOGaamyyamaaBaaaleaacaWGUbGaeyOeI0Iaam4CaaqabaGc caWG4bWaaWbaaSqabeaacaWGUbaaaOGaaGypaiaadgeadaahaaWcbe qaaiaaikdaaaGccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVpaalaaa baGaaGymaaqaaiaadIhaaaGaaGikaiaadgeacaaIOaGaamiEaiaaiM cacqGHsislcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiaai2da caWG4bGabmyqayaafaGaaGikaiaadIhacaaIPaGaey4kaSIaeqySde MaamyqaiaaiIcacaWG4bGaaGykaiabgUcaRiabek7aIjaadgeadaah aaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiMcacaaIUaaaaa@680C@

Получили для A(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaaaaa@34E5@  общее уравнение Риккати

A (x)= β x A 2 (x)+ 1 x ( 1 x α)A(x) a x 2 ,A(0)=a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGbbGbauaacaaIOaGaamiEaiaaiM cacaaI9aGaeyOeI0YaaSaaaeaacqaHYoGyaeaacaWG4baaaiaadgea daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiMcacqGHRaWkda WcaaqaaiaaigdaaeaacaWG4baaaiaaiIcadaWcaaqaaiaaigdaaeaa caWG4baaaiabgkHiTiabeg7aHjaaiMcacaWGbbGaaGikaiaadIhaca aIPaGaeyOeI0YaaSaaaeaacaWGHbaabaGaamiEamaaCaaaleqabaGa aGOmaaaaaaGccaaISaGaaGzbVlaadgeacaaIOaGaaGimaiaaiMcaca aI9aGaamyyaiaai6caaaa@545A@

После замены переменной

t= 1 x ,y(t)=A 1 t , A (x)= y t x = t 2 y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGypaiabgkHiTmaalaaaba GaaGymaaqaaiaadIhaaaGaaGilaiaaywW7caWG5bGaaGikaiaadsha caaIPaGaaGypaiaadgeadaqadaqaaiabgkHiTmaalaaabaGaaGymaa qaaiaadshaaaaacaGLOaGaayzkaaGaaGilaiaaywW7ceWGbbGbauaa caaIOaGaamiEaiaaiMcacaaI9aGabmyEayaafaGabmiDayaafaWaaS baaSqaaiaadIhaaeqaaOGaaGypaiaadshadaahaaWcbeqaaiaaikda aaGcceWG5bGbauaaaaa@4ED7@

оно принимает вид

y = β t y 2 +( α t +1)ya,y(t) t a. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aWaaSaaaeaacq aHYoGyaeaacaWG0baaaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIOaWaaSaaaeaacqaHXoqyaeaacaWG0baaaiabgUcaRiaaig dacaaIPaGaamyEaiabgkHiTiaadggacaaISaGaaGzbVlaadMhacaaI OaGaamiDaiaaiMcadaGdOaWcbeqaaiaaysW7caWG0bGaeyOKH4Qaey OeI0IaeyOhIuQaaGjbVdGccaGLsgcacaWGHbGaaGOlaaaa@52BE@

Известно (см. [5, с. 42]), что общее уравнение Риккати

y =f(t) y 2 +g(t)y+h(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG5bGbauaacaaI9aGaamOzaiaaiI cacaWG0bGaaGykaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caWGNbGaaGikaiaadshacaaIPaGaamyEaiabgUcaRiaadIgacaaIOa GaamiDaiaaiMcaaaa@421F@

заменой

u(t)=exp fydt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0Yaa8qaaeqaleqa beqdcqGHRiI8aOGaamOzaiaadMhacaaMi8UaamizaiaadshaaiaawI cacaGLPaaaaaa@428F@

приводится к линейному обыкновенному дифференциальному уравнению второго порядка:

u f f +g u +fhu=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbauGbauaacqGHsisldaqada qaamaalaaabaGabmOzayaafaaabaGaamOzaaaacqGHRaWkcaWGNbaa caGLOaGaayzkaaGabmyDayaafaGaey4kaSIaamOzaiaadIgacaWG1b GaaGypaiaaicdacaaIUaaaaa@3FF7@

В нашем случае

f(t)= β t ,g(t)= α t +1,h(t)=a,u(t)=exp β t ydt ,y= t β (lnu ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadshacaaIPaGaaG ypamaalaaabaGaeqOSdigabaGaamiDaaaacaaISaGaaGzbVlaadEga caaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacqaHXoqyaeaacaWG0b aaaiabgUcaRiaaigdacaaISaGaaGzbVlaadIgacaaIOaGaamiDaiaa iMcacaaI9aGaeyOeI0IaamyyaiaaiYcacaaMf8UaamyDaiaaiIcaca WG0bGaaGykaiaai2daciGGLbGaaiiEaiaacchadaqadaqaaiabgkHi TmaapeaabeWcbeqab0Gaey4kIipakmaalaaabaGaeqOSdigabaGaam iDaaaacaWG5bGaaGjcVlaadsgacaWG0baacaGLOaGaayzkaaGaaGil aiaaywW7caWG5bGaaGypaiabgkHiTmaalaaabaGaamiDaaqaaiabek 7aIbaacaaIOaGaciiBaiaac6gacaWG1bGabGykayaafaGaaGilaaaa @6CB4@

u 1 t + α t +1 u aβ t u=0,t u +(1αt) u au=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWG1bGbauGbauaacqGHsisldaqada qaaiabgkHiTmaalaaabaGaaGymaaqaaiaadshaaaGaey4kaSYaaSaa aeaacqaHXoqyaeaacaWG0baaaiabgUcaRiaaigdaaiaawIcacaGLPa aaceWG1bGbauaacqGHsisldaWcaaqaaiaadggacqaHYoGyaeaacaWG 0baaaiaadwhacaaI9aGaaGimaiaaiYcacaaMf8UaamiDaiqadwhaga qbgaqbaiabgUcaRiaaiIcacaaIXaGaeyOeI0IaeqySdeMaeyOeI0Ia amiDaiaaiMcaceWG1bGbauaacqGHsislcaWGHbGaamyDaiaai2daca aIWaGaaGOlaaaa@56E8@

Так как одно из решений уравнения

t u +(bt) u au=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGabmyDayaafyaafaGaey4kaS IaaGikaiaadkgacqGHsislcaWG0bGaaGykaiqadwhagaqbaiabgkHi TiaadggacaWG1bGaaGypaiaaicdaaaa@3E2F@

имеет вид u(t)=Φ(a,b,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiabfA6agjaaiIcacaWGHbGaaGilaiaadkgacaaISaGaamiDaiaa iMcaaaa@3CED@ , где Φ(a,b,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaGilaiaadshacaaIPaaaaa@38CE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  вырожденная гипергеометрическая функция (см. [5, с. 288]), то имеем u(t)=Φ(aβ,1α;t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadshacaaIPaGaaG ypaiabfA6agjaaiIcacaWGHbGaeqOSdiMaaGilaiaaigdacqGHsisl cqaHXoqycaaI7aGaamiDaiaaiMcaaaa@40FD@ .

Известны формулы

Φ (a,b,t)= a b Φ(a+1,b+1,t),Φ(a,b,t) Γ(b) Γ(ba) (t) a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuqHMoGrgaqbaiaaiIcacaWGHbGaaG ilaiaadkgacaaISaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaWGHbaa baGaamOyaaaacqqHMoGrcaaIOaGaamyyaiabgUcaRiaaigdacaaISa GaamOyaiabgUcaRiaaigdacaaISaGaamiDaiaaiMcacaaISaGaaGzb VlabfA6agjaaiIcacaWGHbGaaGilaiaadkgacaaISaGaamiDaiaaiM carqqr1ngBPrgifHhDYfgaiqaacqWF8iIodaWcaaqaaiabfo5ahjaa iIcacaWGIbGaaGykaaqaaiabfo5ahjaaiIcacaWGIbGaeyOeI0Iaam yyaiaaiMcaaaGaaGikaiabgkHiTiaadshacaaIPaWaaWbaaSqabeaa cqGHsislcaWGHbaaaaaa@636C@

при фиксированных значениях a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@ , b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGIbaaaa@32A4@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyOKH4QaeyOeI0IaeyOhIu kaaa@3701@  (см. [2, с. 242, 266]). Поэтому получим

y(t)= t β (lnΦ(aβ,1α;t) ) = t β Φ (aβ,1α;t) Φ(aβ,1α;t) = at 1α Φ(aβ+1,2α;t) Φ(aβ,1α;t) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamiDaaqaaiabek7aIbaacaaIOaGaciiB aiaac6gacqqHMoGrcaaIOaGaamyyaiabek7aIjaaiYcacaaIXaGaey OeI0IaeqySdeMaaG4oaiaadshacaaIPaGabGykayaafaGaaGypaiab gkHiTmaalaaabaGaamiDaaqaaiabek7aIbaadaWcaaqaaiqbfA6agz aafaGaaGikaiaadggacqaHYoGycaaISaGaaGymaiabgkHiTiabeg7a HjaaiUdacaWG0bGaaGykaaqaaiabfA6agjaaiIcacaWGHbGaeqOSdi MaaGilaiaaigdacqGHsislcqaHXoqycaaI7aGaamiDaiaaiMcaaaGa aGypaiabgkHiTmaalaaabaGaamyyaiaadshaaeaacaaIXaGaeyOeI0 IaeqySdegaamaalaaabaGaeuOPdyKaaGikaiaadggacqaHYoGycqGH RaWkcaaIXaGaaGilaiaaikdacqGHsislcqaHXoqycaaI7aGaamiDai aaiMcaaeaacqqHMoGrcaaIOaGaamyyaiabek7aIjaaiYcacaaIXaGa eyOeI0IaeqySdeMaaG4oaiaadshacaaIPaaaaiaai6caaaa@823B@

С учетом тождества для гамма-функции Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@ , найдем

y(t) at 1α Γ(2α)(t ) aβ1 Γ(1αaβ) Γ(1αaβ)Γ(1α)(t ) aβ = aΓ(2α) (1α)Γ(1α) =a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadshacaaIPaqeeu uDJXwAKbsr4rNCHbaceaGae8hpIOJaeyOeI0YaaSaaaeaacaWGHbGa amiDaaqaaiaaigdacqGHsislcqaHXoqyaaWaaSaaaeaacqqHtoWrca aIOaGaaGOmaiabgkHiTiabeg7aHjaaiMcacaaIOaGaeyOeI0IaamiD aiaaiMcadaahaaWcbeqaaiabgkHiTiaadggacqaHYoGycqGHsislca aIXaaaaOGaeu4KdCKaaGikaiaaigdacqGHsislcqaHXoqycqGHsisl caWGHbGaeqOSdiMaaGykaaqaaiabfo5ahjaaiIcacaaIXaGaeyOeI0 IaeqySdeMaeyOeI0Iaamyyaiabek7aIjaaiMcacqqHtoWrcaaIOaGa aGymaiabgkHiTiabeg7aHjaaiMcacaaIOaGaeyOeI0IaamiDaiaaiM cadaahaaWcbeqaaiabgkHiTiaadggacqaHYoGyaaaaaOGaaGypamaa laaabaGaamyyaiabfo5ahjaaiIcacaaIYaGaeyOeI0IaeqySdeMaaG ykaaqaaiaaiIcacaaIXaGaeyOeI0IaeqySdeMaaGykaiabfo5ahjaa iIcacaaIXaGaeyOeI0IaeqySdeMaaGykaaaacaaI9aGaamyyaaaa@8410@

при t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaeyOKH4QaeyOeI0IaeyOhIu kaaa@3701@ , т.е. начальное условие выполнено. Возвращаясь к переменной x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , имеем

y(t)= t β (lnΦ(aβ,1α;t) ) ,t= 1 x ,x= 1 t , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bGaaGikaiaadshacaaIPaGaaG ypaiabgkHiTmaalaaabaGaamiDaaqaaiabek7aIbaacaaIOaGaciiB aiaac6gacqqHMoGrcaaIOaGaamyyaiabek7aIjaaiYcacaaIXaGaey OeI0IaeqySdeMaaG4oaiaadshacaaIPaGabGykayaafaGaaGilaiaa ywW7caWG0bGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaadIhaaa GaaGilaiaaywW7caWG4bGaaGypaiabgkHiTmaalaaabaGaaGymaaqa aiaadshaaaGaaGilaaaa@5615@

A(x)=y 1 x = 1 xβ lnΦ aβ,1α; 1 x x x t = x β lnΦ aβ,1α; 1 x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypaiaadMhadaqadaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaadIha aaaacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiaadIhacq aHYoGyaaWaaeWaaeaaciGGSbGaaiOBaiabfA6agnaabmaabaGaamyy aiabek7aIjaaiYcacaaIXaGaeyOeI0IaeqySdeMaaG4oaiabgkHiTm aalaaabaGaaGymaaqaaiaadIhaaaaacaGLOaGaayzkaaaacaGLOaGa ayzkaaWaaSbaaSqaaiaadIhaaeqaaOGabmiEayaafaWaaSbaaSqaai aadshaaeqaaOGaaGypamaalaaabaGaamiEaaqaaiabek7aIbaadaqa daqaaiGacYgacaGGUbGaeuOPdy0aaeWaaeaacaWGHbGaeqOSdiMaaG ilaiaaigdacqGHsislcqaHXoqycaaI7aGaeyOeI0YaaSaaaeaacaaI XaaabaGaamiEaaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaIUa aaaa@678C@

Лемма 1. Пусть

T n = 1 Γ(n+δ+1) k=0 n Γ(k+δ+1)Γ(nk+δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiabfo5ahjaaiIcacaWGUbGaey4k aSIaeqiTdqMaey4kaSIaaGymaiaaiMcaaaWaaabCaeqaleaacaWGRb GaaGypaiaaicdaaeaacaWGUbaaniabggHiLdGccqqHtoWrcaaIOaGa am4AaiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaeu4KdCKaaG ikaiaad6gacqGHsislcaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGym aiaaiMcacaaIUaaaaa@5540@

Тогда для любых δ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqGHLjYScaaIWaaaaa@35E2@  и любых целых n0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGimaaaa@3530@  верно неравенство

T n 2(δ+2)Γ(δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gaaeqaaO GaeyizImQaaGOmaiaaiIcacqaH0oazcqGHRaWkcaaIYaGaaGykaiab fo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiaai6caaaa@419F@  (3)

Доказательство. Введем обозначение

S n = T n Γ(n+δ+1)= k=0 n Γ(k+δ+1)Γ(nk+δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaadsfadaWgaaWcbaGaamOBaaqabaGccqqHtoWrcaaIOaGa amOBaiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaaGypamaaqa habeWcbaGaam4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGa eu4KdCKaaGikaiaadUgacqGHRaWkcqaH0oazcqGHRaWkcaaIXaGaaG ykaiabfo5ahjaaiIcacaWGUbGaeyOeI0Iaam4AaiabgUcaRiabes7a KjabgUcaRiaaigdacaaIPaGaaGOlaaaa@573D@

С помощью тождества Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@  получим

(n+2δ+1) S n1 = k=0 n1 Γ(k+δ+1)Γ(nk+δ)(k+δ+1+nk+δ)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOBaiabgUcaRiaaikdacq aH0oazcqGHRaWkcaaIXaGaaGykaiaadofadaWgaaWcbaGaamOBaiab gkHiTiaaigdaaeqaaOGaaGypamaaqahabeWcbaGaam4Aaiaai2daca aIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiabfo5ahjaa iIcacaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGymaiaaiMcacqqHto WrcaaIOaGaamOBaiabgkHiTiaadUgacqGHRaWkcqaH0oazcaaIPaGa aGikaiaadUgacqGHRaWkcqaH0oazcqGHRaWkcaaIXaGaey4kaSIaam OBaiabgkHiTiaadUgacqGHRaWkcqaH0oazcaaIPaGaaGypaaaa@623C@

= k=0 n1 Γ(k+δ+2)Γ(nk+δ)+ k=0 n1 Γ(k+δ+1)Γ(nk+δ+1)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGRbGaaG ypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aOGaeu4K dCKaaGikaiaadUgacqGHRaWkcqaH0oazcqGHRaWkcaaIYaGaaGykai abfo5ahjaaiIcacaWGUbGaeyOeI0Iaam4AaiabgUcaRiabes7aKjaa iMcacqGHRaWkdaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6 gacqGHsislcaaIXaaaniabggHiLdGccqqHtoWrcaaIOaGaam4Aaiab gUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaeu4KdCKaaGikaiaad6 gacqGHsislcaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGymaiaaiMca caaI9aaaaa@6487@

= k=1 n Γ(k+δ+1)Γ(nk+δ+1)+ S n Γ(n+δ+1)Γ(δ+1)=2 S n 2Γ(δ+1)Γ(n+δ+1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaabCaeqaleaacaWGRbGaaG ypaiaaigdaaeaacaWGUbaaniabggHiLdGccqqHtoWrcaaIOaGaam4A aiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaeu4KdCKaaGikai aad6gacqGHsislcaWGRbGaey4kaSIaeqiTdqMaey4kaSIaaGymaiaa iMcacqGHRaWkcaWGtbWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaeu 4KdCKaaGikaiaad6gacqGHRaWkcqaH0oazcqGHRaWkcaaIXaGaaGyk aiabfo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiaai2daca aIYaGaam4uamaaBaaaleaacaWGUbaabeaakiabgkHiTiaaikdacqqH toWrcaaIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcacqqHtoWrcaaIOa GaamOBaiabgUcaRiabes7aKjabgUcaRiaaigdacaaIPaGaaGilaaaa @6F71@

откуда

S n = 1 2 (n+2δ+1) S n1 +Γ(δ+1)Γ(n+δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiaad6gacqGH RaWkcaaIYaGaeqiTdqMaey4kaSIaaGymaiaaiMcacaWGtbWaaSbaaS qaaiaad6gacqGHsislcaaIXaaabeaakiabgUcaRiabfo5ahjaaiIca cqaH0oazcqGHRaWkcaaIXaGaaGykaiabfo5ahjaaiIcacaWGUbGaey 4kaSIaeqiTdqMaey4kaSIaaGymaiaaiMcacaaIUaaaaa@507A@

С помощью тождества Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@  найдем

T n = (n+2δ+1)Γ(n+δ) 2Γ(n+δ+1) T n1 +Γ(δ+1), T n = n+2δ+1 2(n+δ) T n1 +Γ(δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGikaiaad6gacqGHRaWkcaaIYaGaeqiTdqMa ey4kaSIaaGymaiaaiMcacqqHtoWrcaaIOaGaamOBaiabgUcaRiabes 7aKjaaiMcaaeaacaaIYaGaeu4KdCKaaGikaiaad6gacqGHRaWkcqaH 0oazcqGHRaWkcaaIXaGaaGykaaaacaWGubWaaSbaaSqaaiaad6gacq GHsislcaaIXaaabeaakiabgUcaRiabfo5ahjaaiIcacqaH0oazcqGH RaWkcaaIXaGaaGykaiaaiYcacaaMf8UaamivamaaBaaaleaacaWGUb aabeaakiaai2dadaWcaaqaaiaad6gacqGHRaWkcaaIYaGaeqiTdqMa ey4kaSIaaGymaaqaaiaaikdacaaIOaGaamOBaiabgUcaRiabes7aKj aaiMcaaaGaamivamaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGc cqGHRaWkcqqHtoWrcaaIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcaca aIUaaaaa@712E@

Применим индукцию по n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@ .

Так как 1<2(δ+2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGipaiaaikdacaaIOaGaeq iTdqMaey4kaSIaaGOmaiaaiMcaaaa@38A2@ , 1<δ+2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGipaiabes7aKjabgUcaRi aaikdaaaa@3681@  при δ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqGHLjYScaaIWaaaaa@35E2@  и Γ(x)>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamiEaiaaiMcaca aI+aGaaGimaaaa@3709@  при x>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaaGOpaiaaicdaaaa@343C@  (см. [15, с. 138]), имеем

T 0 =Γ(δ+1)<2(δ+2)Γ(δ+1), T 1 =2Γ(δ+1)<2(δ+2)Γ(δ+1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiabfo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiaa iYdacaaIYaGaaGikaiabes7aKjabgUcaRiaaikdacaaIPaGaeu4KdC KaaGikaiabes7aKjabgUcaRiaaigdacaaIPaGaaGilaiaaywW7caWG ubWaaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaikdacqqHtoWrcaaIOa GaeqiTdqMaey4kaSIaaGymaiaaiMcacaaI8aGaaGOmaiaaiIcacqaH 0oazcqGHRaWkcaaIYaGaaGykaiabfo5ahjaaiIcacqaH0oazcqGHRa WkcaaIXaGaaGykaiaaiYcaaaa@5F24@

и неравенство (3) верно при n=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaicdaaaa@3431@  и n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ .

Предположим, что неравенство (3) верно для n=m11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaad2gacqGHsislca aIXaGaeyyzImRaaGymaaaa@3892@ , и докажем его для n=m2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaad2gacqGHLjYSca aIYaaaaa@36EB@ :

T m = m+2δ+1 2(m+δ) T m1 +Γ(δ+1) m+δ+δ+1 2(m+δ) 2(δ+2)Γ(δ+1)+Γ(δ+1)= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubWaaSbaaSqaaiaad2gaaeqaaO GaaGypamaalaaabaGaamyBaiabgUcaRiaaikdacqaH0oazcqGHRaWk caaIXaaabaGaaGOmaiaaiIcacaWGTbGaey4kaSIaeqiTdqMaaGykaa aacaWGubWaaSbaaSqaaiaad2gacqGHsislcaaIXaaabeaakiabgUca Riabfo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykaiabgsMiJo aalaaabaGaamyBaiabgUcaRiabes7aKjabgUcaRiabes7aKjabgUca RiaaigdaaeaacaaIYaGaaGikaiaad2gacqGHRaWkcqaH0oazcaaIPa aaaiaaikdacaaIOaGaeqiTdqMaey4kaSIaaGOmaiaaiMcacqqHtoWr caaIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcacqGHRaWkcqqHtoWrca aIOaGaeqiTdqMaey4kaSIaaGymaiaaiMcacaaI9aaaaa@6CC2@

= δ+3+ δ+1 m+δ (δ+2) Γ(δ+1) δ+3+ δ+1 2+δ (δ+2) =2(δ+2)Γ(δ+1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaeWaaeaacqaH0oazcqGHRa WkcaaIZaGaey4kaSYaaSaaaeaacqaH0oazcqGHRaWkcaaIXaaabaGa amyBaiabgUcaRiabes7aKbaacaaIOaGaeqiTdqMaey4kaSIaaGOmai aaiMcaaiaawIcacaGLPaaacqqHtoWrcaaIOaGaeqiTdqMaey4kaSIa aGymaiaaiMcacqGHKjYOdaqadaqaaiabes7aKjabgUcaRiaaiodacq GHRaWkdaWcaaqaaiabes7aKjabgUcaRiaaigdaaeaacaaIYaGaey4k aSIaeqiTdqgaaiaaiIcacqaH0oazcqGHRaWkcaaIYaGaaGykaaGaay jkaiaawMcaaiaai2dacaaIYaGaaGikaiabes7aKjabgUcaRiaaikda caaIPaGaeu4KdCKaaGikaiabes7aKjabgUcaRiaaigdacaaIPaGaaG Olaaaa@6948@

Теорема 2. Пусть { a n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyyamaaBaaaleaacaWGUb aabeaakiaai2haaaa@35D8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  последовательность чисел, определяемая уравнением (1). Тогда при 2aβ+α1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaamyyaiabek7aIjabgUcaRi abeg7aHjabgwMiZkaaigdaaaa@3A02@  и n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотическая формула

a n n 2aβ+α1 n! βΓ(aβ)Γ(aβ+α) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbWaaWba aSqabeaacaaIYaGaamyyaiabek7aIjabgUcaRiabeg7aHjabgkHiTi aaigdaaaGccaWGUbGaaGyiaaqaaiabek7aIjaaykW7cqqHtoWrcaaI OaGaamyyaiabek7aIjaaiMcacqqHtoWrcaaIOaGaamyyaiabek7aIj abgUcaRiabeg7aHjaaiMcaaaGaaGOlaaaa@54D5@  (4)

Доказательство. Отметим, что гамма-функция Γ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiaaiMcaaa a@3589@  определена при z0,1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyiyIKRaaGimaiaaiYcacq GHsislcaaIXaGaaGilaiabgkHiTiaaikdacaaISaGaeSOjGSeaaa@3BD2@ . Поэтому в формуле (4) начальное значение a MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbaaaa@32A3@  и параметры α,β MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaISaGaeqOSdigaaa@35B3@  должны быть такими, чтобы aβ0,1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeqOSdiMaeyiyIKRaaGimai aaiYcacqGHsislcaaIXaGaaGilaiabgkHiTiaaikdacaaISaGaeSOj GSeaaa@3D5A@  и aβ+α0,1,2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaeqOSdiMaey4kaSIaeqySde MaeyiyIKRaaGimaiaaiYcacqGHsislcaaIXaGaaGilaiabgkHiTiaa ikdacaaISaGaeSOjGSeaaa@3FDB@ .

Известно асимптотическое разложение вырожденной гипергеометрической функции Φ(a,b;x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaG4oaiaadIhacaaIPaaaaa@38E1@  при фиксированных значениях a,b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGilaiaadkgaaaa@3440@  и |x| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamiEaiaaiYhacqGHsgIRcq GHEisPaaa@3824@  (см. [6, с. 59]):

Φ(a,b;x) Γ(b) Γ(ba) (x) a n=0 (a) n (ab+1) n n! (x) n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHMoGrcaaIOaGaamyyaiaaiYcaca WGIbGaaG4oaiaadIhacaaIPaqeeuuDJXwAKbsr4rNCHbaceaGae8hp IOZaaSaaaeaacqqHtoWrcaaIOaGaamOyaiaaiMcaaeaacqqHtoWrca aIOaGaamOyaiabgkHiTiaadggacaaIPaaaaiaaiIcacqGHsislcaWG 4bGaaGykamaaCaaaleqabaGaeyOeI0IaamyyaaaakmaaqahabeWcba GaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGcdaWcaaqa aiaaiIcacaWGHbGaaGykamaaBaaaleaacaWGUbaabeaakiaaiIcaca WGHbGaeyOeI0IaamOyaiabgUcaRiaaigdacaaIPaWaaSbaaSqaaiaa d6gaaeqaaaGcbaGaamOBaiaaigcaaaGaaGikaiabgkHiTiaadIhaca aIPaWaaWbaaSqabeaacqGHsislcaWGUbaaaOGaaGilaaaa@6592@

где (a) n =Γ(a+n)/Γ(a) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyyaiaaiMcadaWgaaWcba GaamOBaaqabaGccaaI9aGaeu4KdCKaaGikaiaadggacqGHRaWkcaWG UbGaaGykaiaai+cacqqHtoWrcaaIOaGaamyyaiaaiMcaaaa@3FEC@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  символ Похгаммера. Поэтому в силу формулы (2) имеем

A(x)= x β lnΦ aβ,1α; 1 x = x β ln Γ(1α) Γ(1αaβ) x aβ n=0 (aβ) n (aβ+α) n n! x n = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGbbGaaGikaiaadIhacaaIPaGaaG ypamaalaaabaGaamiEaaqaaiabek7aIbaadaqadaqaaiGacYgacaGG UbGaeuOPdy0aaeWaaeaacaWGHbGaeqOSdiMaaGilaiaaigdacqGHsi slcqaHXoqycaaI7aGaeyOeI0YaaSaaaeaacaaIXaaabaGaamiEaaaa aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaWG4b aabaGaeqOSdigaamaabmaabaGaciiBaiaac6gadaWcaaqaaiabfo5a hjaaiIcacaaIXaGaeyOeI0IaeqySdeMaaGykaaqaaiabfo5ahjaaiI cacaaIXaGaeyOeI0IaeqySdeMaeyOeI0Iaamyyaiabek7aIjaaiMca aaGaamiEamaaCaaaleqabaGaamyyaiabek7aIbaakmaaqahabeWcba GaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabggHiLdGcdaWcaaqa aiaaiIcacaWGHbGaeqOSdiMaaGykamaaBaaaleaacaWGUbaabeaaki aaiIcacaWGHbGaeqOSdiMaey4kaSIaeqySdeMaaGykamaaBaaaleaa caWGUbaabeaaaOqaaiaad6gacaaIHaaaaiaadIhadaahaaWcbeqaai aad6gaaaaakiaawIcacaGLPaaacaaI9aaaaa@7A8A@

= x β ln Γ(1α) Γ(1αaβ) x aβ + x β ln n=0 (aβ) n (aβ+α) n n! x n = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWG4baabaGaeq OSdigaamaabmaabaGaciiBaiaac6gadaWcaaqaaiabfo5ahjaaiIca caaIXaGaeyOeI0IaeqySdeMaaGykaaqaaiabfo5ahjaaiIcacaaIXa GaeyOeI0IaeqySdeMaeyOeI0Iaamyyaiabek7aIjaaiMcaaaGaamiE amaaCaaaleqabaGaamyyaiabek7aIbaaaOGaayjkaiaawMcaaiabgU caRmaalaaabaGaamiEaaqaaiabek7aIbaadaqadaqaaiGacYgacaGG UbWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0Gaey yeIuoakmaalaaabaGaaGikaiaadggacqaHYoGycaaIPaWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadggacqaHYoGycqGHRaWkcqaHXoqyca aIPaWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaiaaigcaaaGaamiE amaaCaaaleqabaGaamOBaaaaaOGaayjkaiaawMcaaiaai2daaaa@6A7C@

=a+ x β ln(1+ n=1 G n x n ) =a+ x β n=1 g n x n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamyyaiabgUcaRmaalaaaba GaamiEaaqaaiabek7aIbaadaqadaqaaiGacYgacaGGUbGaaGikaiaa igdacqGHRaWkdaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6 HiLcqdcqGHris5aOGaam4ramaaBaaaleaacaWGUbaabeaakiaadIha daahaaWcbeqaaiaad6gaaaGccaaIPaaacaGLOaGaayzkaaGaaGypai aadggacqGHRaWkdaWcaaqaaiaadIhaaeaacqaHYoGyaaWaaeWaaeaa daaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGHri s5aOGaam4zamaaBaaaleaacaWGUbaabeaakiaadIhadaahaaWcbeqa aiaad6gaaaaakiaawIcacaGLPaaacaaISaaaaa@59A3@

где введено обозначение

G n = (aβ) n (aβ+α) n n! = Γ(n+aβ)Γ(n+aβ+α) n!Γ(aβ)Γ(aβ+α) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaalaaabaGaaGikaiaadggacqaHYoGycaaIPaWaaSbaaSqa aiaad6gaaeqaaOGaaGikaiaadggacqaHYoGycqGHRaWkcqaHXoqyca aIPaWaaSbaaSqaaiaad6gaaeqaaaGcbaGaamOBaiaaigcaaaGaaGyp amaalaaabaGaeu4KdCKaaGikaiaad6gacqGHRaWkcaWGHbGaeqOSdi MaaGykaiabfo5ahjaaiIcacaWGUbGaey4kaSIaamyyaiabek7aIjab gUcaRiabeg7aHjaaiMcaaeaacaWGUbGaaGyiaiabfo5ahjaaiIcaca WGHbGaeqOSdiMaaGykaiabfo5ahjaaiIcacaWGHbGaeqOSdiMaey4k aSIaeqySdeMaaGykaaaacaaIUaaaaa@63FB@ (5)

Пусть две производящие функции

G(x)= n=0 G n x n ,g(x)= n=0 g n x n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiaadIhacaaIPaGaaG ypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniab ggHiLdGccaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaale qabaGaamOBaaaakiaaiYcacaaMf8Uaam4zaiaaiIcacaWG4bGaaGyk aiaai2dadaaeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLc qdcqGHris5aOGaam4zamaaBaaaleaacaWGUbaabeaakiaadIhadaah aaWcbeqaaiaad6gaaaaaaa@50BD@

связаны функциональным уравнением F(x,G(x))=g(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam 4raiaaiIcacaWG4bGaaGykaiaaiMcacaaI9aGaam4zaiaaiIcacaWG 4bGaaGykaaaa@3CE3@ . Из теоремы Бендера (см. [8]) следует, что при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотика

g n F y (0,0) G n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOJaamOramaaBaaaleaacaWG 5baabeaakiaaiIcacaaIWaGaaGilaiaaicdacaaIPaGaaGjbVlaadE eadaWgaaWcbaGaamOBaaqabaaaaa@4290@

при условиях, когда F(x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam yEaiaaiMcaaaa@369E@  аналитична в точке (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaaIWaGaaG ykaaaa@354C@ , и при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верны соотношения

G n1 =o( G n ), k=1 n1 | G k G nk |=O( G n1 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gacqGHsi slcaaIXaaabeaakiaai2dacaWGVbGaaGikaiaadEeadaWgaaWcbaGa amOBaaqabaGccaaIPaGaaGilaiaaywW7daaeWbqabSqaaiaadUgaca aI9aGaaGymaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGccaaI 8bGaam4ramaaBaaaleaacaWGRbaabeaakiaadEeadaWgaaWcbaGaam OBaiabgkHiTiaadUgaaeqaaOGaaGiFaiaai2dacaWGpbGaaGikaiaa dEeadaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqaaOGaaGykaiaays W7caaIUaaaaa@54BF@  (6)

В нашем случае функция F(x,y)=ln(1+y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam yEaiaaiMcacaaI9aGaamiBaiaad6gacaaIOaGaaGymaiabgUcaRiaa dMhacaaIPaaaaa@3D49@  аналитична в точке (0,0) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaaGimaiaaiYcacaaIWaGaaG ykaaaa@354C@ . Из (5) с помощью тождества Γ(z+1)=zΓ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi aaigdacaaIPaGaaGypaiaadQhacqqHtoWrcaaIOaGaamOEaiaaiMca aaa@3CB8@  найдем при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  

G n1 G n = nΓ(n1+aβ)Γ(n1+aβ+α) Γ(n+aβ)Γ(n+aβ+α) = n (n1+aβ)(n1+aβ+α) 1 n =o(1). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaadEeadaWgaaWcbaGaam OBaiabgkHiTiaaigdaaeqaaaGcbaGaam4ramaaBaaaleaacaWGUbaa beaaaaGccaaI9aWaaSaaaeaacaWGUbGaeu4KdCKaaGikaiaad6gacq GHsislcaaIXaGaey4kaSIaamyyaiabek7aIjaaiMcacqqHtoWrcaaI OaGaamOBaiabgkHiTiaaigdacqGHRaWkcaWGHbGaeqOSdiMaey4kaS IaeqySdeMaaGykaaqaaiabfo5ahjaaiIcacaWGUbGaey4kaSIaamyy aiabek7aIjaaiMcacqqHtoWrcaaIOaGaamOBaiabgUcaRiaadggacq aHYoGycqGHRaWkcqaHXoqycaaIPaaaaiaai2dadaWcaaqaaiaad6ga aeaacaaIOaGaamOBaiabgkHiTiaaigdacqGHRaWkcaWGHbGaeqOSdi MaaGykaiaaiIcacaWGUbGaeyOeI0IaaGymaiabgUcaRiaadggacqaH YoGycqGHRaWkcqaHXoqycaaIPaaaaebbfv3ySLgzGueE0jxyaGabai ab=XJi6maalaaabaGaaGymaaqaaiaad6gaaaGaaGypaiaad+gacaaI OaGaaGymaiaaiMcacaaIUaaaaa@7D45@

Из асимптотики для гамма-функции (см. [2, с. 62]) имеем Γ(z+ε) z ε Γ(z) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrcaaIOaGaamOEaiabgUcaRi abew7aLjaaiMcarqqr1ngBPrgifHhDYfgaiqaacqWF8iIocaWG6bWa aWbaaSqabeaacqaH1oqzaaGccqqHtoWrcaaIOaGaamOEaiaaiMcaaa a@4473@  при фиксированном ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH1oqzaaa@3364@  и z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaeyOKH4QaeyOhIukaaa@361A@ . Поэтому при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  получим

G n n aβ Γ(n) n aβ+α Γ(n) nΓ(n)Γ(aβ)Γ(aβ+α) = n 2aβ+α1 Γ(n) Γ(aβ)Γ(aβ+α) Γ(n+2aβ+α1) Γ(aβ)Γ(aβ+α) =CΓ(n+δ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbWaaWba aSqabeaacaWGHbGaeqOSdigaaOGaeu4KdCKaaGikaiaad6gacaaIPa GaamOBamaaCaaaleqabaGaamyyaiabek7aIjabgUcaRiabeg7aHbaa kiabfo5ahjaaiIcacaWGUbGaaGykaaqaaiaad6gacqqHtoWrcaaIOa GaamOBaiaaiMcacqqHtoWrcaaIOaGaamyyaiabek7aIjaaiMcacqqH toWrcaaIOaGaamyyaiabek7aIjabgUcaRiabeg7aHjaaiMcaaaGaaG ypamaalaaabaGaamOBamaaCaaaleqabaGaaGOmaiaadggacqaHYoGy cqGHRaWkcqaHXoqycqGHsislcaaIXaaaaOGaeu4KdCKaaGikaiaad6 gacaaIPaaabaGaeu4KdCKaaGikaiaadggacqaHYoGycaaIPaGaeu4K dCKaaGikaiaadggacqaHYoGycqGHRaWkcqaHXoqycaaIPaaaaiab=X Ji6maalaaabaGaeu4KdCKaaGikaiaad6gacqGHRaWkcaaIYaGaamyy aiabek7aIjabgUcaRiabeg7aHjabgkHiTiaaigdacaaIPaaabaGaeu 4KdCKaaGikaiaadggacqaHYoGycaaIPaGaeu4KdCKaaGikaiaadgga cqaHYoGycqGHRaWkcqaHXoqycaaIPaaaaiaai2dacaWGdbGaeu4KdC KaaGikaiaad6gacqGHRaWkcqaH0oazcaaIPaGaaGilaaaa@99FF@

где использовано обозначение δ=2aβ+α10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI9aGaaGOmaiaadggacq aHYoGycqGHRaWkcqaHXoqycqGHsislcaaIXaGaeyyzImRaaGimaaaa @3E15@ , C=1/(Γ(aβ)Γ(aβ+α))>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGypaiaaigdacaaIVaGaaG ikaiabfo5ahjaaiIcacaWGHbGaeqOSdiMaaGykaiabfo5ahjaaiIca caWGHbGaeqOSdiMaey4kaSIaeqySdeMaaGykaiaaiMcacaaI+aGaaG imaaaa@44D0@ . Следовательно, существуют такие константы c 1 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaO GaaGOpaiaaicdaaaa@3518@ , c 2 >0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaaikdaaeqaaO GaaGOpaiaaicdaaaa@3519@ , что

0< c 1 Γ(n+δ) G n c 2 Γ(n+δ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiaadogadaWgaaWcba GaaGymaaqabaGccqqHtoWrcaaIOaGaamOBaiabgUcaRiabes7aKjaa iMcacqGHKjYOcaWGhbWaaSbaaSqaaiaad6gaaeqaaOGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakiabfo5ahjaaiIcacaWGUbGaey4k aSIaeqiTdqMaaGykaiaai6caaaa@4995@

Теперь имеем оценки

Q n = k=1 n1 | G k G nk | G n1 c 2 2 c 1 k=1 n1 Γ(k+δ)Γ(nk+δ) Γ(n+δ1) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaad6gaaeqaaO GaaGypamaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaiab gkHiTiaaigdaa0GaeyyeIuoakmaalaaabaGaaGiFaiaadEeadaWgaa WcbaGaam4AaaqabaGccaWGhbWaaSbaaSqaaiaad6gacqGHsislcaWG RbaabeaakiaaiYhaaeaacaWGhbWaaSbaaSqaaiaad6gacqGHsislca aIXaaabeaaaaGccqGHKjYOdaWcaaqaaiaadogadaqhaaWcbaGaaGOm aaqaaiaaikdaaaaakeaacaWGJbWaaSbaaSqaaiaaigdaaeqaaaaakm aaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOBaiabgkHiTiaa igdaa0GaeyyeIuoakmaalaaabaGaeu4KdCKaaGikaiaadUgacqGHRa WkcqaH0oazcaaIPaGaeu4KdCKaaGikaiaad6gacqGHsislcaWGRbGa ey4kaSIaeqiTdqMaaGykaaqaaiabfo5ahjaaiIcacaWGUbGaey4kaS IaeqiTdqMaeyOeI0IaaGymaiaaiMcaaaGaaGypaaaa@6C17@

= c 2 2 c 1 k=0 n2 Γ(k+1+δ)Γ(nk1+δ) Γ(n+δ1) = c 2 2 c 1 T n2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaWGJbWaa0baaS qaaiaaikdaaeaacaaIYaaaaaGcbaGaam4yamaaBaaaleaacaaIXaaa beaaaaGcdaaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gacq GHsislcaaIYaaaniabggHiLdGcdaWcaaqaaiabfo5ahjaaiIcacaWG RbGaey4kaSIaaGymaiabgUcaRiabes7aKjaaiMcacqqHtoWrcaaIOa GaamOBaiabgkHiTiaadUgacqGHsislcaaIXaGaey4kaSIaeqiTdqMa aGykaaqaaiabfo5ahjaaiIcacaWGUbGaey4kaSIaeqiTdqMaeyOeI0 IaaGymaiaaiMcaaaGaaGypamaalaaabaGaam4yamaaDaaaleaacaaI YaaabaGaaGOmaaaaaOqaaiaadogadaWgaaWcbaGaaGymaaqabaaaaO GaamivamaaBaaaleaacaWGUbGaeyOeI0IaaGOmaaqabaGccaaIUaaa aa@61B4@

В силу леммы для для любых δ0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcqGHLjYScaaIWaaaaa@35E2@  и любых целых n0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGimaaaa@3530@  получим

Q n 2(δ+2)Γ(δ+1) c 2 2 c 1 ,т. k=1 n1 | G k G nk |=O( G n1 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaad6gaaeqaaO GaeyizImQaaGOmaiaaiIcacqaH0oazcqGHRaWkcaaIYaGaaGykaiab fo5ahjaaiIcacqaH0oazcqGHRaWkcaaIXaGaaGykamaalaaabaGaam 4yamaaDaaaleaacaaIYaaabaGaaGOmaaaaaOqaaiaadogadaWgaaWc baGaaGymaaqabaaaaOGaaGilaiaaywW7caqGcrGaaeOlaiaabwdbca qGUaGaaGzbVpaaqahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamOB aiabgkHiTiaaigdaa0GaeyyeIuoakiaaiYhacaWGhbWaaSbaaSqaai aadUgaaeqaaOGaam4ramaaBaaaleaacaWGUbGaeyOeI0Iaam4Aaaqa baGccaaI8bGaaGypaiaad+eacaaIOaGaam4ramaaBaaaleaacaWGUb GaeyOeI0IaaGymaaqabaGccaaIPaGaaGOlaaaa@629C@

Поэтому условия (6) теоремы Бендера выполнены и при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотика

g n G n , a n = n g n β n G n β n 2aβ+α Γ(n) βΓ(aβ)Γ(aβ+α) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOJaam4ramaaBaaaleaacaWG UbaabeaakiaaiYcacaaMf8UaamyyamaaBaaaleaacaWGUbaabeaaki aai2dadaWcaaqaaiaad6gacaWGNbWaaSbaaSqaaiaad6gaaeqaaaGc baGaeqOSdigaaiab=XJi6maalaaabaGaamOBaiaadEeadaWgaaWcba GaamOBaaqabaaakeaacqaHYoGyaaGae8hpIOZaaSaaaeaacaWGUbWa aWbaaSqabeaacaaIYaGaamyyaiabek7aIjabgUcaRiabeg7aHbaaki abfo5ahjaaiIcacaWGUbGaaGykaaqaaiabek7aIjaaykW7cqqHtoWr caaIOaGaamyyaiabek7aIjaaiMcacqqHtoWrcaaIOaGaamyyaiabek 7aIjabgUcaRiabeg7aHjaaiMcaaaGaaGilaaaa@67EE@

что равносильно формуле (4).

Следствие 1. Пусть последовательность чисел { e n } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamyzamaaBaaaleaacaWGUb aabeaakiaai2haaaa@35DC@  определяется уравнением

e n+1 = n+ 2 3 e n + k=0 n e k e nk ,n0, e 0 = 1 6 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gacqGHRa WkcaaIXaaabeaakiaai2dadaqadaqaaiaad6gacqGHRaWkdaWcaaqa aiaaikdaaeaacaaIZaaaaaGaayjkaiaawMcaaiaadwgadaWgaaWcba GaamOBaaqabaGccqGHRaWkdaaeWbqabSqaaiaadUgacaaI9aGaaGim aaqaaiaad6gaa0GaeyyeIuoakiaadwgadaWgaaWcbaGaam4Aaaqaba GccaWGLbWaaSbaaSqaaiaad6gacqGHsislcaWGRbaabeaakiaaiYca caaMf8UaamOBaiabgwMiZkaaicdacaaISaGaaGzbVlaadwgadaWgaa WcbaGaaGimaaqabaGccaaI9aWaaSaaaeaacaaIXaaabaGaaGOnaaaa caaIUaaaaa@56A0@

Тогда при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  верна асимптотика

e n n! 2π . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbGaaGyi aaqaaiaaikdacqaHapaCaaGaaGOlaaaa@3E67@  (7)

Доказательство. Из теоремы 2 при α=2/3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaI9aGaaGOmaiaai+caca aIZaaaaa@3655@ , β=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaI9aGaaGymaaaa@34E0@ , a=1/6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGypaiaaigdacaaIVaGaaG Onaaaa@359E@  при n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyOKH4QaeyOhIukaaa@360E@  следует асимптотика

e n n! Γ( 1 6 )Γ( 5 6 ) . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOZaaSaaaeaacaWGUbGaaGyi aaqaaiabfo5ahjaaiIcadaWcaaqaaiaaigdaaeaacaaI2aaaaiaaiM cacqqHtoWrcaaIOaWaaSaaaeaacaaI1aaabaGaaGOnaaaacaaIPaaa aiaai6caaaa@44A2@

Из функционального уравнения для гамма-функции

Γ 1 2 +z Γ 1 2 z = π cos(πz) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqadaqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaey4kaSIaamOEaaGaayjkaiaawMcaaiabfo5a hnaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsislcaWG6b aacaGLOaGaayzkaaGaaGypamaalaaabaGaeqiWdahabaGaci4yaiaa c+gacaGGZbGaaGikaiabec8aWjaadQhacaaIPaaaaaaa@4802@

(см. [2, с. 18]) при z=1/3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGypaiaaigdacaaIVaGaaG 4maaaa@35B4@  имеем

Γ 1 6 Γ 5 6 = π 1/2 =2π, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHtoWrdaqadaqaamaalaaabaGaaG ymaaqaaiaaiAdaaaaacaGLOaGaayzkaaGaeu4KdC0aaeWaaeaadaWc aaqaaiaaiwdaaeaacaaI2aaaaaGaayjkaiaawMcaaiaai2dadaWcaa qaaiabec8aWbqaaiaaigdacaaIVaGaaGOmaaaacaaI9aGaaGOmaiab ec8aWjaaiYcaaaa@4373@

откуда следует формула (7).

Отметим, что e n = d n n! MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGLbWaaSbaaSqaaiaad6gaaeqaaO GaaGypaiaadsgadaWgaaWcbaGaamOBaaqabaGccaWGUbGaaGyiaaaa @3847@ , где d n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGKbWaaSbaaSqaaiaad6gaaeqaaa aa@33C5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  константы Райта (коэффициенты Степанова MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Райта; см. [3, 124]), используемые во многих работах по перечислению помеченных графов (см. [4, 17, 19]) и в теории случайных графов (см. [13]).

×

About the authors

Vitalii A. Voblyi

Russian Institute for Scientific and Technical Information of the Russian Academy of Sciences

Author for correspondence.
Email: vitvobl@yandex.ru
Russian Federation, Moscow

References

  1. Багаев Г. Н., Дмитриев Е. Ф. Перечисление связных отмеченных двудольных графов// Докл. АН БССР. — 1984. — 28, №12. — С. 1061–1063.
  2. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Т. 1. — М.: Наука, 1965.
  3. Воблый В. А. О коэффициентах Райта и Степанова—Райта// Мат. заметки. — 1987. — 42, № 6. — С. 854–862.
  4. Воблый В. А. О перечислении помеченных связных гомеоморфно несводимых графов// Мат. заметки. — 1991. — 49, №3. — С. 12–22.
  5. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. — М.: Наука, 1976.
  6. Слейтер Л. Дж. Вырожденные гипергеометрические функции. — М.: ВЦ АН СССР, 1966.
  7. Степанов В. Е./ Несколько теорем относительно случайных графов в кн.: Вероятностные методы в дискретной математике. — Петрозаводск, 1983. — С. 90–92.
  8. Bender E. A. An asymptotic expansion for the coefficients of some formal power series// J. London Math. Soc. (2). — 1975. — 49. — С. 451–458.
  9. Bender E. A. Asymptotic of some convolutional recurrences// Electron. J. Combin. — 2010. — 17. — R1.
  10. Chern H. H. et al. Psi-series method for equality of random trees and quadratic convolution recurrences//Random Struct. Algorithms. — 2014. — 44, №1. — С. 67–108.
  11. Flajolet P., Poblete P., Viola A. On the analysis of linear probing hashing// Algorithmica. — 1998. — 22. — С. 490–515.
  12. Flajolet P., Louchard G. Analytic variations on the Airy distribution// Algorithmica. — 2001. — 31. — С. 337–358.
  13. Janson S., Knuth D. E., Luczak T., Pittel B. The birth of the giant component// Random Struct. Algorithms. — 1993. — 4, №2. — С. 233–358.
  14. Janson S. Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas// Probab. Surv. — 2007. — 4. — С. 80–145.
  15. Olver F. W., Lozier D., Boisvert R. F., Clark C. W. NIST Handbook of Mathematical Functions. — New York: Cambridge Univ. Press, 2010.
  16. Stein P. R., Everett C. J. On quadratic recurrence rule of Faltung type// J. Comb. Inf. Syst. Sci. — 1978. — 3. — С. 1–10.
  17. Wright E. M. A quadratic recurrence of Faltung type// Math. Proc. Cambridge Phil. Soc. — 1980. — 88. — С. 193–197.
  18. Wright E. M. The number of connected sparsely edged graphs, III// J. Graph Theory. — 1980. — 4. — С. 393–407.
  19. Wright E. M. Enumeration of smooth labelled graphs// Proc. Roy. Soc. Edinburgh. — 1981. — A91. — С. 205–212.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Voblyi V.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».