Hamiltonian formalism for hard and soft excitations in a plasma with a non-Abelian interaction
- Authors: Markov Y.A.1, Markova M.A.1, Markov N.Y.1
-
Affiliations:
- V. M. Matrosov Institute of System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 234 (2024)
- Pages: 143-158
- Section: Статьи
- URL: https://journal-vniispk.ru/2782-4438/article/view/262017
- DOI: https://doi.org/10.36535/2782-4438-2024-234-143-158
- ID: 262017
Cite item
Full Text
Abstract
Hamiltonian theory for collective longitudinally polarized gluon excitations (plasmons) interacting with classical high-energy color-charged test particle propagating through a high-temperature gluon plasma is developed. A generalization of the Lie–Poisson bracket to the case of a continuous medium involving bosonic normal field variable and a non-Abelian color charge is performed and the corresponding Hamilton equations are derived. The canonical transformations including simultaneously both bosonic degrees of freedom of the soft collective excitations in the hot gluon plasma and the degree of freedom of a hard test particle associated with its color charge are presented. A complete system of the canonicity conditions for these transformations is obtained. An explicit form of the effective fourth-order Hamiltonian describing the elastic scattering of a plasmon off a hard color particle is found and the self-consistent system of Boltzmann-type kinetic equations taking into account the time evolution of the mean value of the color charge of this particle is obtained.
About the authors
Yurii A. Markov
V. M. Matrosov Institute of System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: markov@icc.ru
Russian Federation, Irkutsk
Margarita A. Markova
V. M. Matrosov Institute of System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences
Email: markova@icc.ru
Russian Federation, Irkutsk
Nikita Yu. Markov
V. M. Matrosov Institute of System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of Sciences
Email: NYumarkov@gmail.com
Russian Federation, Irkutsk
References
- Захаров В. Е. Гамильтонов формализм для волн в нелинейных средах с дисперсией// Изв. вузов. Радиофизика. — 1974. — 17. — С. 431–45З.
- Захаров В. Е., Кузнецов Е. А. Гамильтонов формализм для нелинейных волн// Усп. физ. наук. — 1997. — 167. — С. 1137–1167.
- Калашников О. К., Климов В. В. Поляризационный оператор в КХД при конечных температурах и плотностях// Яд. физ. — 1980. — 31. — С. 1357–1371.
- Марков Ю. А., Маркова М. А., Марков Н. Ю., Гитман Д. М. Гамильтонов формализм для Бозевозбуждений в плазме с неабелевым типом взаимодействием//ЖЭТФ. — 2020. — 157. — С. 327–341.
- Balachandran A. P., Salomonson P., Skagerstam B. and Winnberg J. Classical description of a particle interacting with a non-Abelian gauge field// Phys. Rev. D. — 1977. — 15. — P. 2308–2317.
- Blaizot J.-P., Iancu E. Energy-momentum tensors for the quark-gluon plasma// Nucl. Phys. B. — 1994. — 421. — P. 565–592.
- Haber H. E. Useful relations among the generators in the defining and adjoint representations of SU(N)// SciPost. Phys. Lect. Notes. — 2021. — 21. — P. 1–11.
- Hakim R. Introduction to relativistic statistical mechanics: classical and quantum. —World Scientific, 2011.
- Linden N., Macfarlane A. J., Van Holten J. W. Particle motion in a Yang–Mills field: Wong’s equations and spin- 1 2 analogues// Czech. J. Phys. — 1995. — 45. — P. 209–215.
- Markov Yu. A., Markova M. A., Markov N. Yu. Hamiltonian formalism for Fermi excitations in a plasma with a non-Abelian interaction// Int. J. Mod. Phys. A. — 2023. — 38. — P. 2350015(77).
- Markov Yu. A., Markova M. A., Vall A.N. Nonlinear dynamics of soft boson collective excitations in hot QCD plasma II: plasmon–hard-particle scattering and energy losses// Ann. Phys. — 2004. — 309. — P. 93–150.
- Wong S. K. Field and particle equations for the classical Yang–Mills field and particles with isotopic spin// Nuovo Cim. A. — 1970. — 65. — P. 689–694.
- Zakharov V. E., Musher S. L., Rubenchik A. M. Hamiltonian approach to the description of nonlinear plasma phenomena// Phys. Rep. — 1985. — 129. — P. 285–366.
- Zakharov V. E., L’vov V. S., Falkovich G. Kolmogorov Spectra of Turbulence I. Wave Turbulence. — Springer-Verlag, 1992.
Supplementary files
