Два комбинаторных тождества, связанных с перечислением графов

Обложка

Цитировать

Полный текст

Аннотация

Из полученной автором явной формулы для числа помеченных последовательно-параллельных 2-связных графов с заданным числом вершин выведены два комбинаторных тождества. Приведены также не зависящие от перечисления графов доказательства полученных тождеств.

Полный текст

Определение 1 (см.[4 с. 118]) Цикломатическим числом связного графа называется увеличенная на единицу разность между числом ребер графа и числом его вершин.

Определение 2 k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@  —Циклический граф MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A97@ это граф с цикломатическим числом, равным k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@

Определение 3 (см.[7]) Граф называется последовательно—параллельным, если он не содержит подразбиения полного графа K 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaI0aaabeaaaaa@37B1@ .

Последовательно—параллельные графы применяются при поcтроении надежных коммуникационных сетей (см. [9]).

В [3] получена явная формула для числа помеченных последовательно—параллельных 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связных графов с заданным числом вершин. В данной заметке из этой формулы выведены два комбинаторных тождества, a также приведено не зависящее от перечисления графов доказательство полученных тождеств.

Теорема 1. Верны следующие комбинаторные тождества:

i=1nj=n+1n+i1jj+1i1i1nin+ijjn+1=n,n3,  (1)

i=2 n j=n+2 n+i (1) j (j+1) i1 (i1)! n i n+i j j n+2 = n(n1)(n+3)(n+4) 12 ,n4. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaikdaaeaacaWGUbaaniabggHiLdGcdaaeWbqa bSqaaiaadQgacaaI9aGaamOBaiabgUcaRiaaikdaaeaacaWGUbGaey 4kaSIaamyAaaqdcqGHris5aOGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGQbaaaOWaaSaaaeaacaaIOaGaamOAaiabgUcaRi aaigdacaaIPaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGymaaaaaOqa aiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiMcacaaIHaaaamaabmaaba qbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaaGaayjkaiaawMcaamaa bmaabaqbaeqabiqaaaqaaiaad6gacqGHRaWkcaWGPbaabaGaamOAaa aaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWGQbaabaGa amOBaiabgUcaRiaaikdaaaaacaGLOaGaayzkaaGaaGypamaalaaaba GaamOBaiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcacaaIOaGaamOB aiabgUcaRiaaiodacaaIPaGaaGikaiaad6gacqGHRaWkcaaI0aGaaG ykaaqaaiaaigdacaaIYaaaaiaaiYcacaaMf8UaamOBaiabgwMiZkaa isdacaaIUaaaaa@781E@   (2)

Доказательство. В [3] для числа B k (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaakiaaiIcacaWGUbGaaGykaaaa@3A3C@  помеченных последовательно—параллельных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@  —циклических 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связных графов с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  вершинами при nk+2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw MiZkaadUgacqGHRaWkcaaIYaaaaa@3B3E@  получено выражение

B k (n)= n! 2 i=k n2 j=n+k2 n+i2 (1) j (j+1) i2 i! n3 i1 ni2 j+k1 j+1 n+k1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaakiaaiIcacaWGUbGaaGykaiaai2dadaWcaaqa aiaad6gacaaIHaaabaGaaGOmaaaadaaeWbqabSqaaiaadMgacaaI9a Gaam4Aaaqaaiaad6gacqGHsislcaaIYaaaniabggHiLdGcdaaeWbqa bSqaaiaadQgacaaI9aGaamOBaiabgUcaRiaadUgacqGHsislcaaIYa aabaGaamOBaiabgUcaRiaadMgacqGHsislcaaIYaaaniabggHiLdGc caaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadQgaaaGcda WcaaqaaiaaiIcacaWGQbGaey4kaSIaaGymaiaaiMcadaahaaWcbeqa aiaadMgacqGHsislcaaIYaaaaaGcbaGaamyAaiaaigcaaaWaaeWaae aafaqabeGabaaabaGaamOBaiabgkHiTiaaiodaaeaacaWGPbGaeyOe I0IaaGymaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaaca WGUbGaeyOeI0IaamyAaiabgkHiTiaaikdaaeaacaWGQbGaey4kaSIa am4AaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaWaaeWaaeaafaqabe GabaaabaGaamOAaiabgUcaRiaaigdaaeaacaWGUbGaey4kaSIaam4A aiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGaaGOlaaaa@78F9@ (3)

Так как полный граф K 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaI0aaabeaaaaa@37B1@  является трициклическим, то все унициклические и бициклические 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связные графы не содержат в качестве подграфа подразбиения K 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaaI0aaabeaaaaa@37B1@  и потому являются последовательно—параллельными графами.

Унициклический 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaaaa@36B3@  —связный граф MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ это простой цикл с помеченными вершинами. Число таких циклов известно (см. [8, с. 20]); следовательно, B 1 (n)=(n1)!/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWGUbGaaGykaiaai2dacaaIOaGa amOBaiabgkHiTiaaigdacaaIPaGaaGyiaiaai+cacaaIYaaaaa@40EE@ , и при k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaaaaa@3869@  из (3) получим

i=1 n2 j=n1 n+i2 (1) j (j+1) i2 i! n3 i1 n+i2 j j+1 n = 1 n ,n3. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaigdaaeaacaWGUbGaeyOeI0IaaGOmaaqdcqGH ris5aOWaaabCaeqaleaacaWGQbGaaGypaiaad6gacqGHsislcaaIXa aabaGaamOBaiabgUcaRiaadMgacqGHsislcaaIYaaaniabggHiLdGc caaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadQgaaaGcda WcaaqaaiaaiIcacaWGQbGaey4kaSIaaGymaiaaiMcadaahaaWcbeqa aiaadMgacqGHsislcaaIYaaaaaGcbaGaamyAaiaaigcaaaWaaeWaae aafaqabeGabaaabaGaamOBaiabgkHiTiaaiodaaeaacaWGPbGaeyOe I0IaaGymaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaaca WGUbGaey4kaSIaamyAaiabgkHiTiaaikdaaeaacaWGQbaaaaGaayjk aiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadQgacqGHRaWkcaaIXa aabaGaamOBaaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaaIXaaa baGaamOBaaaacaaISaGaaGzbVlaad6gacqGHLjYScaaIZaGaaGOlaa aa@70BB@   (4)

Э. Райт доказал (см. [10]), что число помеченных бициклических блоков с n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  вершинами равно (n3)(n+2)/24 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaad6 gacqGHsislcaaIZaGaaGykaiaaiIcacaWGUbGaey4kaSIaaGOmaiaa iMcacaaIVaGaaGOmaiaaisdaaaa@4022@ ; при k=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIYaaaaa@386A@  из (3) получим

i=2 n2 j=n n+i2 (1) j (j+1) i2 i! n3 i1 n+i2 j j+1 n+1 = (n3)(n+2) 12 ,n4. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaikdaaeaacaWGUbGaeyOeI0IaaGOmaaqdcqGH ris5aOWaaabCaeqaleaacaWGQbGaaGypaiaad6gaaeaacaWGUbGaey 4kaSIaamyAaiabgkHiTiaaikdaa0GaeyyeIuoakiaaiIcacqGHsisl caaIXaGaaGykamaaCaaaleqabaGaamOAaaaakmaalaaabaGaaGikai aadQgacqGHRaWkcaaIXaGaaGykamaaCaaaleqabaGaamyAaiabgkHi TiaaikdaaaaakeaacaWGPbGaaGyiaaaadaqadaqaauaabeqaceaaae aacaWGUbGaeyOeI0IaaG4maaqaaiaadMgacqGHsislcaaIXaaaaaGa ayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaad6gacqGHRaWkca WGPbGaeyOeI0IaaGOmaaqaaiaadQgaaaaacaGLOaGaayzkaaWaaeWa aeaafaqabeGabaaabaGaamOAaiabgUcaRiaaigdaaeaacaWGUbGaey 4kaSIaaGymaaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaaIOaGa amOBaiabgkHiTiaaiodacaaIPaGaaGikaiaad6gacqGHRaWkcaaIYa GaaGykaaqaaiaaigdacaaIYaaaaiaaiYcacaaMf8UaamOBaiabgwMi ZkaaisdacaaIUaaaaa@7873@   (5)

Преобразуем тождества (4) и (5). Заменим n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  на n+2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgU caRiaaikdaaaa@3888@ ; поскольку

n1 i1 = i n n i , j+1 n+2 = j+1 n+2 j n+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaamOBaiabgkHiTiaaigdaaeaacaWGPbGaeyOeI0Ia aGymaaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaWGPbaabaGaam OBaaaadaqadaqaauaabeqaceaaaeaacaWGUbaabaGaamyAaaaaaiaa wIcacaGLPaaacaaISaGaaGzbVpaabmaabaqbaeqabiqaaaqaaiaadQ gacqGHRaWkcaaIXaaabaGaamOBaiabgUcaRiaaikdaaaaacaGLOaGa ayzkaaGaaGypamaalaaabaGaamOAaiabgUcaRiaaigdaaeaacaWGUb Gaey4kaSIaaGOmaaaadaqadaqaauaabeqaceaaaeaacaWGQbaabaGa amOBaiabgUcaRiaaigdaaaaacaGLOaGaayzkaaGaaGilaaaa@57A3@

тождество (4) эквивалентно тождеству (1), а тождество (5) эквивалентно тождеству (2).

Дадим теперь не зависящее от перечисления графов доказательство тождеств (1) и (2).

Обозначим левую часть тождества (1) через L(n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaaaa@3920@ . Поскольку n k =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaamOBaaqaaiaadUgaaaaacaGLOaGaayzkaaGaaGyp aiaaicdaaaa@3AF1@  при 0n<k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaad6gacaaI8aGaam4Aaaaa@3B0F@ , то нижний индекс во внутренней сумме можно заменить на 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@36B1@ . С помощью метода коэффициентов (см. [5, с. 8]) имеем

(j+1) i1 (i1)! =Coe f z e (j+1)z z i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIOaGaamOAaiabgUcaRiaaigdacaaIPaWaaWbaaSqabeaacaWGPbGa eyOeI0IaaGymaaaaaOqaaiaaiIcacaWGPbGaeyOeI0IaaGymaiaaiM cacaaIHaaaaiaai2dacaWGdbGaam4BaiaadwgacaWGMbWaaSbaaSqa aiaadQhaaeqaaOGaamyzamaaCaaaleqabaGaaGikaiaadQgacqGHRa WkcaaIXaGaaGykaiaadQhaaaGccaWG6bWaaWbaaSqabeaacqGHsisl caWGPbaaaOGaaGilaaaa@50D0@

L(n)= i=1 n n i Coe f z e z z i j=0 n+i (1) j e jz n+i j j n+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGym aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaaqahabeWc baGaamOAaiaai2dacaaIWaaabaGaamOBaiabgUcaRiaadMgaa0Gaey yeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaamOA aaaakiaadwgadaahaaWcbeqaaiaadQgacaWG6baaaOWaaeWaaeaafa qabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaacaWGQbaaaaGaayjk aiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadQgaaeaacaWGUbGaey 4kaSIaaGymaaaaaiaawIcacaGLPaaacaaMe8UaaGOlaaaa@6869@

В силу комбинаторного тождества

j=0 m m j j l x j = m l x l (1+x) ml MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGQbGaaGypaiaaicdaaeaacaWGTbaaniabggHiLdGcdaqadaqa auaabeqaceaaaeaacaWGTbaabaGaamOAaaaaaiaawIcacaGLPaaada qadaqaauaabeqaceaaaeaacaWGQbaabaGaamiBaaaaaiaawIcacaGL PaaacaWG4bWaaWbaaSqabeaacaWGQbaaaOGaaGypamaabmaabaqbae qabiqaaaqaaiaad2gaaeaacaWGSbaaaaGaayjkaiaawMcaaiaadIha daahaaWcbeqaaiaadYgaaaGccaaIOaGaaGymaiabgUcaRiaadIhaca aIPaWaaWbaaSqabeaacaWGTbGaeyOeI0IaamiBaaaaaaa@5217@ , (6)

(см. [6, с. 625]) имеем

L(n)= i=1 n n i Coe f z e z z i n+i n+1 (1) n+1 e (n+1)z (1z) i1 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGym aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaabmaabaqb aeqabiqaaaqaaiaad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRi aaigdaaaaacaGLOaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaadwgadaahaaWcbe qaaiaaiIcacaWGUbGaey4kaSIaaGymaiaaiMcacaWG6baaaOGaaGik aiaaigdacqGHsislcaWG6bGaaGykamaaCaaaleqabaGaamyAaiabgk HiTiaaigdaaaGccaaI9aaaaa@6777@

= i=1 n n i n+i n+1 (1) n1 Coe f z 1 z e (n+2)z 1 e z z i1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqdcqGHris5aOWa aeWaaeaafaqabeGabaaabaGaamOBaaqaaiaadMgaaaaacaGLOaGaay zkaaWaaeWaaeaafaqabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaa caWGUbGaey4kaSIaaGymaaaaaiaawIcacaGLPaaacaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaOGa am4qaiaad+gacaWGLbGaamOzamaaBaaaleaacaWG6baabeaakmaala aabaGaaGymaaqaaiaadQhaaaGaamyzamaaCaaaleqabaGaaGikaiaa d6gacqGHRaWkcaaIYaGaaGykaiaadQhaaaGcdaqadaqaamaalaaaba GaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaadQhaaaaakeaacaWG 6baaaaGaayjkaiaawMcaamaaCaaaleqabaGaamyAaiabgkHiTiaaig daaaGccaaIUaaaaa@6338@

Введем обозначение

f(z)= e (n+2)z ( 1 e z z ) i1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacaaIOaGaamOB aiabgUcaRiaaikdacaaIPaGaamOEaaaakiaaiIcadaWcaaqaaiaaig dacqGHsislcaWGLbWaaWbaaSqabeaacaWG6baaaaGcbaGaamOEaaaa caaIPaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGymaaaakiaaysW7ca aIUaaaaa@4B71@

Функция f(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaaaa@3946@  аналитична в нуле, и по формуле для вычета в полюсе первого порядка имеем

Coe f z f(z) z = lim z0 f(z),L(n)= i=1 n n i n+i n+1 (1) n1 (1) i1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaad+ gacaWGLbGaamOzamaaBaaaleaacaWG6baabeaakmaalaaabaGaamOz aiaaiIcacaWG6bGaaGykaaqaaiaadQhaaaGaaGypamaawafabeWcba GaamOEaiabgkziUkaaicdaaeqakeaaciGGSbGaaiyAaiaac2gaaaGa amOzaiaaiIcacaWG6bGaaGykaiaaiYcacaaMf8UaamitaiaaiIcaca WGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqa aiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6gaae aacaWGPbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaaiaa d6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRiaaigdaaaaacaGLOa GaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWG UbGaeyOeI0IaaGymaaaakiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaamyAaiabgkHiTiaaigdaaaGccaaIUaaaaa@6CE0@

Используем теперь комбинаторное тождество

i=0 m (1) i m i a+i l =( 1) m a lm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGPbGaaGypaiaaicdaaeaacaWGTbaaniabggHiLdGccaaIOaGa eyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadMgaaaGcdaqadaqaau aabeqaceaaaeaacaWGTbaabaGaamyAaaaaaiaawIcacaGLPaaadaqa daqaauaabeqaceaaaeaacaWGHbGaey4kaSIaamyAaaqaaiaadYgaaa aacaGLOaGaayzkaaGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaa CaaaleqabaGaamyBaaaakmaabmaabaqbaeqabiqaaaqaaiaadggaae aacaWGSbGaeyOeI0IaamyBaaaaaiaawIcacaGLPaaaaaa@52D3@ , (7)

(см. [8, с. 619]). Так как в L(n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaaaa@3920@  под знаком суммы второй биномиальный коэффициент равен нулю при i=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaai2 dacaaIWaaaaa@3866@ , то окончательно получим

L(n)=( 1) n i=0 n n i n+i n+1 (1) i =( 1) n (1) n n 1 =n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaah aaWcbeqaaiaad6gaaaGcdaaeWbqabSqaaiaadMgacaaI9aGaaGimaa qaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6ga aeaacaWGPbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqaai aad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRiaaigdaaaaacaGL OaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaaca WGPbaaaOGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqa baGaamOBaaaakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba GaamOBaaaakmaabmaabaqbaeqabiqaaaqaaiaad6gaaeaacaaIXaaa aaGaayjkaiaawMcaaiaai2dacaWGUbGaaGOlaaaa@614A@

Для тождества (2) опять с помощью метода коэффициентов имеем

L(n)= i=2 n n i Coe f z e z z i j=0 n+i (1) j e jz n+i j j n+2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGOm aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaaqahabeWc baGaamOAaiaai2dacaaIWaaabaGaamOBaiabgUcaRiaadMgaa0Gaey yeIuoakiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaamOA aaaakiaadwgadaahaaWcbeqaaiaadQgacaWG6baaaOWaaeWaaeaafa qabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaacaWGQbaaaaGaayjk aiaawMcaamaabmaabaqbaeqabiqaaaqaaiaadQgaaeaacaWGUbGaey 4kaSIaaGOmaaaaaiaawIcacaGLPaaacaaIUaaaaa@66DE@

В силу комбинаторного тождества (6) найдем

L(n)= i=2 n n i Coe f z e z z i n+i n+2 (1) n e (n+2)z (1 e z ) i2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGOm aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaaiaadoeacaWGVbGaamyzaiaa dAgadaWgaaWcbaGaamOEaaqabaGccaWGLbWaaWbaaSqabeaacaWG6b aaaOGaamOEamaaCaaaleqabaGaeyOeI0IaamyAaaaakmaabmaabaqb aeqabiqaaaqaaiaad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRi aaikdaaaaacaGLOaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGUbaaaOGaamyzamaaCaaaleqabaGaaGikaiaad6 gacqGHRaWkcaaIYaGaaGykaiaadQhaaaGccaaIOaGaaGymaiabgkHi TiaadwgadaahaaWcbeqaaiaadQhaaaGccaaIPaWaaWbaaSqabeaaca WGPbGaeyOeI0IaaGOmaaaakiaai2daaaa@66FF@

= i=2 n n i n+i n+2 (1) n Coe f z 1 z 2 e (n+3)z 1 e z z i2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaaqa habeWcbaGaamyAaiaai2dacaaIYaaabaGaamOBaaqdcqGHris5aOWa aeWaaeaafaqabeGabaaabaGaamOBaaqaaiaadMgaaaaacaGLOaGaay zkaaWaaeWaaeaafaqabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaa caWGUbGaey4kaSIaaGOmaaaaaiaawIcacaGLPaaacaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaad6gaaaGccaWGdbGaam4Baiaa dwgacaWGMbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacaaIXaaaba GaamOEamaaCaaaleqabaGaaGOmaaaaaaGccaWGLbWaaWbaaSqabeaa caaIOaGaamOBaiabgUcaRiaaiodacaaIPaGaamOEaaaakmaabmaaba WaaSaaaeaacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaamOEaaaa aOqaaiaadQhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGPbGaey OeI0IaaGOmaaaakiaai6caaaa@6287@

Введем обозначение

f(z)= e (n+3)z 1 e z z i2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaiaai2dacaWGLbWaaWbaaSqabeaacaaIOaGaamOB aiabgUcaRiaaiodacaaIPaGaamOEaaaakmaabmaabaWaaSaaaeaaca aIXaGaeyOeI0IaamyzamaaCaaaleqabaGaamOEaaaaaOqaaiaadQha aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWGPbGaeyOeI0IaaGOmaa aakiaai6caaaa@4A0A@

Функция f(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG6bGaaGykaaaa@3946@  аналитична в нуле, и по формуле для вычета в полюсе второго порядка найдем

Coefzfzz2limz0f'zn+en+z1ezzi2+

+(i2) e (n+3)z 1 e z z i3 z e z + e z 1 z 2 =( 1) i n+3+ i2 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadMgacqGHsislcaaIYaGaaGykaiaadwgadaahaaWcbeqaaiaa iIcacaWGUbGaey4kaSIaaG4maiaaiMcacaWG6baaaOWaaeWaaeaada WcaaqaaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaWG6baaaaGc baGaamOEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaadMgacqGHsi slcaaIZaaaaOWaaSaaaeaacqGHsislcaWG6bGaamyzamaaCaaaleqa baGaamOEaaaakiabgUcaRiaadwgadaahaaWcbeqaaiaadQhaaaGccq GHsislcaaIXaaabaGaamOEamaaCaaaleqabaGaaGOmaaaaaaGccaaI 9aGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGPbaaaO WaaeWaaeaacaWGUbGaey4kaSIaaG4maiabgUcaRmaalaaabaGaamyA aiabgkHiTiaaikdaaeaacaaIYaaaaaGaayjkaiaawMcaaiaaiYcaaa a@62E2@

L(n)= i=2 n n i n+i n+2 (1) n+i n+2+ i 2 = L 1 (n)+ L 2 (n). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGOm aaqaaiaad6gaa0GaeyyeIuoakmaabmaabaqbaeqabiqaaaqaaiaad6 gaaeaacaWGPbaaaaGaayjkaiaawMcaamaabmaabaqbaeqabiqaaaqa aiaad6gacqGHRaWkcaWGPbaabaGaamOBaiabgUcaRiaaikdaaaaaca GLOaGaayzkaaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaa caWGUbGaey4kaSIaamyAaaaakmaabmaabaGaamOBaiabgUcaRiaaik dacqGHRaWkdaWcaaqaaiaadMgaaeaacaaIYaaaaaGaayjkaiaawMca aiaai2dacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaad6gaca aIPaGaey4kaSIaamitamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG UbGaaGykaiaai6caaaa@614C@

Еще раз применим комбинаторное тождество (7):

L 1 (n)=(n+2)( 1) n i=2 n n i n+i n+2 (1) i =(n+2) n 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIXaaabeaakiaaiIcacaWGUbGaaGykaiaai2dacaaIOaGa amOBaiabgUcaRiaaikdacaaIPaGaaGikaiabgkHiTiaaigdacaaIPa WaaWbaaSqabeaacaWGUbaaaOWaaabCaeqaleaacaWGPbGaaGypaiaa ikdaaeaacaWGUbaaniabggHiLdGcdaqadaqaauaabeqaceaaaeaaca WGUbaabaGaamyAaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaa aeaacaWGUbGaey4kaSIaamyAaaqaaiaad6gacqGHRaWkcaaIYaaaaa GaayjkaiaawMcaaiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqa baGaamyAaaaakiaai2dacaaIOaGaamOBaiabgUcaRiaaikdacaaIPa WaaeWaaeaafaqabeGabaaabaGaamOBaaqaaiaaikdaaaaacaGLOaGa ayzkaaGaaGOlaaaa@6003@

Так как i n i =n n1 i1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAamaabm aabaqbaeqabiqaaaqaaiaad6gaaeaacaWGPbaaaaGaayjkaiaawMca aiaai2dacaWGUbWaaeWaaeaafaqabeGabaaabaGaamOBaiabgkHiTi aaigdaaeaacaWGPbGaeyOeI0IaaGymaaaaaiaawIcacaGLPaaaaaa@42DD@ , в силу тождества (7) имеем

L 2 (n)= 1 2 (1) n i=1 n i n i n+i n+2 (1) i = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVlaayw W7caWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaad6gacaaIPaGa aGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiabgkHiTiaaig dacaaIPaWaaWbaaSqabeaacaWGUbaaaOWaaabCaeqaleaacaWGPbGa aGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWGPbWaaeWaaeaafa qabeGabaaabaGaamOBaaqaaiaadMgaaaaacaGLOaGaayzkaaWaaeWa aeaafaqabeGabaaabaGaamOBaiabgUcaRiaadMgaaeaacaWGUbGaey 4kaSIaaGOmaaaaaiaawIcacaGLPaaacaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadMgaaaGccaaI9aaaaa@59AB@

= n 2 (1) n1 i=0 n1 n1 i n+i+1 n+2 (1) i+1 = n 2 n+1 3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaala aabaGaamOBaaqaaiaaikdaaaGaaGikaiabgkHiTiaaigdacaaIPaWa aWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakmaaqahabeWcbaGaam yAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoa kmaabmaabaqbaeqabiqaaaqaaiaad6gacqGHsislcaaIXaaabaGaam yAaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWGUbGa ey4kaSIaamyAaiabgUcaRiaaigdaaeaacaWGUbGaey4kaSIaaGOmaa aaaiaawIcacaGLPaaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWc beqaaiaadMgacqGHRaWkcaaIXaaaaOGaaGypamaalaaabaGaamOBaa qaaiaaikdaaaWaaeWaaeaafaqabeGabaaabaGaamOBaiabgUcaRiaa igdaaeaacaaIZaaaaaGaayjkaiaawMcaaiaai6cacaaMf8UaaGzbVd aa@6465@

Окончательно получим

L(n)=(n+2) n 2 + n 2 n+1 3 = 1 12 n(n1)(n+3)(n+4). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaaiI cacaWGUbGaaGykaiaai2dacaaIOaGaamOBaiabgUcaRiaaikdacaaI PaWaaeWaaeaafaqabeGabaaabaGaamOBaaqaaiaaikdaaaaacaGLOa GaayzkaaGaey4kaSYaaSaaaeaacaWGUbaabaGaaGOmaaaadaqadaqa auaabeqaceaaaeaacaWGUbGaey4kaSIaaGymaaqaaiaaiodaaaaaca GLOaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiaaigdacaaIYaaa aiaad6gacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGaaGikaiaad6 gacqGHRaWkcaaIZaGaaGykaiaaiIcacaWGUbGaey4kaSIaaGinaiaa iMcacaaIUaaaaa@5949@

Отметим, что для чисел помеченных последовательно—параллельных трициклических и тетрациклических блоков известны выражения в виде многочленов от числа вершин графа (см. [1] и [2], соответственно). Поэтому из формулы (3) при k=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIZaaaaa@386B@  и k=4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaI0aaaaa@386C@  можно получить еще два тождества типа (1). Однако степень многочленов от n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  в правой части тождеств быстро растет; при k=4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaI0aaaaa@386C@  она равна 9 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGyoaaaa@36BA@ .

Автор благодарит профессора В. К. Леонтьева за обсуждение работы.

×

Об авторах

Виталий Антониевич Воблый

Всероссийский институт научной и технической информации РАН

Автор, ответственный за переписку.
Email: vitvobl@yandex.ru
Россия, Москва

Список литературы

  1. Воблый В. Л.. Мелешко Л. К. О числе помеченных последовательно-параллельных трициклических блоков// Мат. XV Междунар. конф. «Алгебра, теория чисел и дискретная геометрия. Современные проблемы и приложения» (Тула, 28-31 мая 2018 г.)). — Тула: ТПГУ. — С. 168-170.
  2. Воблый В. А. Число помеченных последовательно-параллельных тетрациклических блоков// Прикл. дискр. мат. — 2020. — № 47. — С. 57-61.
  3. Вобл-ый В. А. О перечислении помеченных последовательно-параллельных ^-циклических 2-связных графов// Дискр. анал. исслед. опер. — 2021. — 28, № 1. — С. 7-14.
  4. Зыков А. А. Основы теории графов. — М.: Наука, 1987.
  5. Леонтьев В. К. Избранные задачи комбинаторного анализа. — М.: Изд-во МГТУ им. Н. Э. Баумана, 2001.
  6. Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Т 1. — М.: Наука, 1981.
  7. Bodirsky M., Gimenez O, Kang M, Noy M. Enumeration and limit laws of series-parallel graphs// Eur. J. Combin. — 2007. — 28, № 8. — P. 2091-2105.
  8. Moon J. W. Counting Labelled Trees. — Can. Math. Monogr., 1970.
  9. Raghavan S. Low-connectivity network design on series-parallel graphs// Networks. — 2004. — 43, № 3. P. 163-176.
  10. Wright E. M. The number of connected sparsely edged graphs. II. Smooth graphs and blocks// J. Graph Theory. — 1978. — 2, № 4. — P. 299-305.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Воблый В.А., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).