Обратная задача для оператора Штурма—Лиувилля с замороженным аргументом на временной шкале

Обложка

Цитировать

Полный текст

Аннотация

В статье изучается задача восстановления потенциала в уравнении Штурма"– Лиувилля с замороженным аргументом на временной шкале по спектру краевой задачи Дирихле. Рассматривается случай временной шкалы, состоящей из двух отрезков, и замороженного аргумента в конце первого отрезка. Получена теорема единственности и алгоритм решения обратной задачи вместе с необходимыми и достаточными условиями ее разрешимости. Рассмотренный случай существенно отличается от случая классического оператора Штурма"– Лиувилля с замороженным аргументом.

Полный текст

1. Введение

Целью статьи является исследование обратной спектральной задачи для оператора Штурма - Лиувилля с замороженным аргументом на временной шкале. Под временными шкалами обычно подразумеваются произвольные замкнутые множества T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgA Oindaa@38D1@ . Дифференциальные операторы на временных шкалах обобщают классические дифференциальные и разностные операторы, поскольку содержат Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@  - производную (см. [9, 10, 17]).

В последнее время возник интерес к обратным спектральным задачам для дифференциальных операторов на временных шкалах (см. [1, 6, 19, 20, 23, 24, 26]). Подобные задачи заключаются в восстановлении операторов по их спектральным характеристикам. Наиболее полные результаты в этом направлении получены для классического оператора Штурма - Лиувилля на отрезке (см. [2, 3, 15]). Постановка и изучение обратных задач существенно зависят от структуры рассматриваемой временной шкалы, что приводит к необходимости тех или иных ограничений. Наиболее общий вид временных шкал, на которых к настоящему моменту получено решение обратной задачи, представляет собой объединение конечного числа отрезков и изолированных точек (см. [1, 19]).

Обратные задачи для оператора Штурма - Лиувилля с замороженным аргументом на отрезке изучались в ряде работ [7, 11, 13, 14, 18, 21, 25]. Данный оператор определяется дифференциальным выражением Штурма - Лиувилля с замороженным аргументом

ly(x) y (x)+q(x)y(γ),0<x<r, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaam yEaiaaiIcacaWG4bGaaGykaiabgkHiTiqadMhagaqbgaqbaiaaiIca caWG4bGaaGykaiabgUcaRiaadghacaaIOaGaamiEaiaaiMcacaWG5b GaaGikaiabeo7aNjaaiMcacaaISaGaaGzbVlaaicdacaaI8aGaamiE aiaaiYdacaWGYbGaaGilaaaa@4E64@

где γ[0,r] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey icI4SaaG4waiaaicdacaaISaGaamOCaiaai2faaaa@3D55@  фиксировано. В отличие от классического оператора Штурма - Лиувилля, операторы с замороженным аргументом являются нелокальными. По этой причине методы классической теории обратных задач [2, 3, 15] для них неприменимы. В то же время, нелокальные операторы имеют приложения во многих областях математики и естествознания (см. [4, 5, 16]).

Задача восстановления потенциала q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  по спектру краевой задачи

ly=λy, y (α) (0)= y (β) (r)=0,α,β{0,1}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaam yEaiaai2dacqaH7oaBcaWG5bGaaGilaiaaywW7caWG5bWaaWbaaSqa beaacaaIOaGaeqySdeMaaGykaaaakiaaiIcacaaIWaGaaGykaiaai2 dacaWG5bWaaWbaaSqabeaacaaIOaGaeqOSdiMaaGykaaaakiaaiIca caWGYbGaaGykaiaai2dacaaIWaGaaGilaiaaywW7cqaHXoqycaaISa GaeqOSdiMaeyicI4SaaG4EaiaaicdacaaISaGaaGymaiaai2hacaaI Saaaaa@59C5@

исследовалась в работах [11, 13, 14, 25]. В [13] изучался случай произвольного γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhacqGHiiIZcaaMc8UaeSOgHqkaaa@3DCD@ , и было дано полное описание так называемых невырожденных и вырожденных случаев в зависимости от значений тройки параметров γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhaaaa@394E@ , α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3796@  и β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3798@ . В частности, краевые условия Дирихле ( α=β=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiabek7aIjaai2dacaaIWaaaaa@3B7F@  ) соответствуют вырожденному случаю при любых γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhacqGHiiIZcaaMc8UaeSOgHqkaaa@3DCD@ . В невырожденном случае потенциал однозначно восстанавливается по спектру, а в вырожденном для единственности восстановления требуется дополнительная информация (например, задание q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  на части интервала). Также были получены необходимые и достаточные условия разрешимости обратной задачи. В невырожденном случае последние включают лишь асимптотику спектра

λ n = π 2 r 2 n α+β 2 + κ n n 2 ,n1, { κ n } n1 l 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypamaalaaabaGaeqiWda3aaWbaaSqa beaacaaIYaaaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGcda qadaqaaiaad6gacqGHsisldaWcaaqaaiabeg7aHjabgUcaRiabek7a IbqaaiaaikdaaaGaey4kaSYaaSaaaeaacqaH6oWAdaWgaaWcbaGaam OBaaqabaaakeaacaWGUbaaaaGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiaaiYcacaaMf8UaamOBamrr1ngBPrwtHrhAYaqeguuDJX wAKbstHrhAGq1DVbacfaGae8NFQuOaaGymaiaaiYcacaaMf8UaaG4E aiabeQ7aRnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaam OBaiab=5NkfkaaigdaaeqaaOGaeyicI4SaamiBamaaBaaaleaacaaI Yaaabeaakiaai6caaaa@6A76@

В вырожденном случае добавляется условие совпадения некоторой бесконечной части собственных значений с собственными значениями соответствующего оператора с нулевым потенциалом. Для иррационального случая γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhacqGHiiIZcaaMc8UaeSOgHqkaaa@3DCD@  в работе [25] была доказана единственность восстановления потенциала по спектру при любых α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3796@  и β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3798@ . Что касается обратных спектральных задач для операторов с замороженным аргументом на временных шкалах, ранее они не рассматривались.

В настоящей работе рассматривается краевая задача для уравнения Штурма - Лиувилля с замороженным аргументом на временной шкале T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@  специального вида:

y ΔΔ (t)+y(γ)q(t)=λy(σ(t)),tT, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam yEamaaCaaaleqabaGaeuiLdqKaeuiLdqeaaOGaaGikaiaadshacaaI PaGaey4kaSIaamyEaiaaiIcacqaHZoWzcaaIPaGaamyCaiaaiIcaca WG0bGaaGykaiaai2dacqaH7oaBcaWG5bGaaGikaiabeo8aZjaaiIca caWG0bGaaGykaiaaiMcacaaISaGaaGzbVlaadshacqGHiiIZcaWGub GaaGilaaaa@54D2@  (1)

y(0)=y(b)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaaIWaGaaGykaiaai2dacaWG5bGaaGikaiaadkgacaaIPaGaaGyp aiaaicdacaaISaaaaa@3F5C@  (2)

где

T=[0,γ][a,b],daγ,lba. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai2 dacaaIBbGaaGimaiaaiYcacqaHZoWzcaaIDbGaeyOkIGSaaG4waiaa dggacaaISaGaamOyaiaai2facaaISaGaaGzbVlaadsgacaWGHbGaey OeI0Iaeq4SdCMaaGilaiaaywW7caWGSbGaamOyaiabgkHiTiaadgga caaIUaaaaa@4FB7@  (3)

Структура (3) является одной из простейших, которые позволяют выявить существенные отличия от случая отрезка.

В работе исследуется восстановление потенциала qC(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadoeacaaIOaGaamivaiaaiMcaaaa@3B77@  по спектру краевой задачи (1)(2). Установлены условия на величины d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36E0@ , γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379E@  и l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E8@ , при которых выполняется теорема единственности решения обратной задачи (теорема 1). В частности, единственность восстановления будет иметь место, если l=kγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaWGRbGaeq4SdCgaaa@3A46@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaykW7caaMc8UaeSyfHukaaa@3CED@ . Здесь наблюдается отличие от случая уравнения с замороженным аргументом на отрезке, т.е. при γ=a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ypaiaadggaaaa@394B@  и r=a+l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaWGHbGaey4kaSIaamiBaaaa@3A6E@ , в котором потенциал не восстанавливается однозначно по спектру краевой задачи Дирихле ни при каком рациональном k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ . Также получены алгоритм восстановления потенциала (алгоритм 1), необходимые и достаточные условия разрешимости обратной задачи (теорема 5). Особый вид характеристической функции (18) значительно усложняет исследование в сравнении со случаем отрезка. В частности, характеризация спектра не исчерпывается одной лишь асимптотикой, как в невырожденном случае оператора на отрезке.

2. Постановка обратной задачи. Теорема единственности

Рассмотрим уравнение (1) на временной шкале (3) с непрерывным потенциалом qC(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadoeacaaIOaGaamivaiaaiMcaaaa@3B77@ . Пусть C Δ n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqqHuoaraeaacaWGUbaaaOGaaGikaiaadsfacaaIPaaaaa@3B8D@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaykW7caaMc8UaeSyfHukaaa@3CED@ , обозначает класс функций, имеющих n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  -ю Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@  - производную, непрерывную на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@ . Определим решения как функции y C Δ 2 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaadoeadaqhaaWcbaGaeuiLdqeabaGaaGOmaaaakiaaiIcacaWG ubGaaGykaaaa@3DD8@ , для которых выполняется тождество (1). Те λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@ , при которых существуют ненулевые решения y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@ , удовлетворяющие условиям Дирихле (2), называются собственными значениями.

Так как временная шкала T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@  имеет вид (3), для любой f C Δ 1 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadoeadaqhaaWcbaGaeuiLdqeabaGaaGymaaaakiaaiIcacaWG ubGaaGykaaaa@3DC4@  имеем (см. [20, 26 ])

f Δ (t)= f(a)f(γ) d ,t=γ, f (t),t[0,γ][a,b], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaeuiLdqeaaOGaaGikaiaadshacaaIPaGaaGypamaalaaa baGaamOzaiaaiIcacaWGHbGaaGykaiabgkHiTiaadAgacaaIOaGaeq 4SdCMaaGykaaqaaiaadsgaaaGaaGilaiaadshacaaI9aGaeq4SdCMa aGilaiqadAgagaqbaiaaiIcacaWG0bGaaGykaiaaiYcacaWG0bGaey icI4SaaG4waiaaicdacaaISaGaeq4SdCMaaGyxaiabgQIiilaaiUfa caWGHbGaaGilaiaadkgacaaIDbGaaGilaaaa@5B9A@  (4)

где классическая производная f (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiaadshacaaIPaaaaa@394C@  существует, а равенство f (γ)= f Δ (γ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiabeo7aNjaaiMcacaaI9aGaamOzamaaCaaaleqabaGaeuiL dqeaaOGaaGikaiabeo7aNjaaiMcaaaa@4055@  выполнено в силу непрерывности. Применяя данную формулу к решению y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@  уравнения (1) и его Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@  "=производной, получим, что уравнение (1) эквивалентно системе уравнений

y''x1+qx1yγλyx1x1γy''x2+qx2yγλyx2x2a,b (5)

с условиями скачков

y(a) y (a) = 1 d d(q(γ)λ) 1λ d 2 y(γ) y (γ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaamyEaiaaiIcacaWGHbGaaGykaaqaaiqadMhagaqb aiaaiIcacaWGHbGaaGykaaaaaiaawIcacaGLPaaacaaI9aWaaeWaae aafaqabeGacaaabaGaaGymaaqaaiaadsgaaeaacaWGKbGaaGikaiaa dghacaaIOaGaeq4SdCMaaGykaiabgkHiTiabeU7aSjaaiMcaaeaaca aIXaGaeyOeI0Iaeq4UdWMaamizamaaCaaaleqabaGaaGOmaaaaaaaa kiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWG5bGaaGikai abeo7aNjaaiMcaaeaaceWG5bGbauaacaaIOaGaeq4SdCMaaGykaaaa aiaawIcacaGLPaaacaaIUaaaaa@5AC6@  (6)

Также из (4) получается, что условие y C Δ 2 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaadoeadaqhaaWcbaGaeuiLdqeabaGaaGOmaaaakiaaiIcacaWG ubGaaGykaaaa@3DD8@  эквивалентно условию y C 2 [0,γ] C 2 [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaIBbGaaGimaiaaiYca cqaHZoWzcaaIDbGaeyykICSaam4qamaaCaaaleqabaGaaGOmaaaaki aaiUfacaWGHbGaaGilaiaadkgacaaIDbaaaa@46BF@ , где C 2 (B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGOmaaaakiaaiIcacaWGcbGaaGykaaaa@39DE@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ класс дважды непрерывно дифференцируемых функций на B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@  в обычном смысле.

Введем решения S(x,λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWG4bGaaGilaiabeU7aSjaaiMcaaaa@3B9B@  и C(x,λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG4bGaaGilaiabeU7aSjaaiMcaaaa@3B8B@  первого уравнения в (5) при начальных условиях

S(γ,λ)=0, S (γ,λ)=1;C(γ,λ)=1, C (γ,λ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacqaHZoWzcaaISaGaeq4UdWMaaGykaiaai2dacaaIWaGaaGilaiaa ywW7ceWGtbGbauaacaaIOaGaeq4SdCMaaGilaiabeU7aSjaaiMcaca aI9aGaaGymaiaaiUdacaaMf8Uaam4qaiaaiIcacqaHZoWzcaaISaGa eq4UdWMaaGykaiaai2dacaaIXaGaaGilaiaaywW7ceWGdbGbauaaca aIOaGaeq4SdCMaaGilaiabeU7aSjaaiMcacaaI9aGaaGimaiaai6ca aaa@5CC0@

Для этих функций известны следующие формулы (см. [11]):

S(x,λ)= sinρ(xγ) ρ ,C(x,λ)=cosρ(xγ)+ γ x sinρ(xt) ρ q(t)dt,x[0,γ]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWG4bGaaGilaiabeU7aSjaaiMcacaaI9aWaaSaaaeaaciGGZbGa aiyAaiaac6gacqaHbpGCcaaIOaGaamiEaiabgkHiTiabeo7aNjaaiM caaeaacqaHbpGCaaGaaGilaiaaywW7caWGdbGaaGikaiaadIhacaaI SaGaeq4UdWMaaGykaiaai2daciGGJbGaai4BaiaacohacqaHbpGCca aIOaGaamiEaiabgkHiTiabeo7aNjaaiMcacqGHRaWkdaWdXbqabSqa aiabeo7aNbqaaiaadIhaa0Gaey4kIipakmaalaaabaGaci4CaiaacM gacaGGUbGaeqyWdiNaaGikaiaadIhacqGHsislcaWG0bGaaGykaaqa aiabeg8aYbaacaWGXbGaaGikaiaadshacaaIPaGaamizaiaadshaca aISaGaaGzbVlaadIhacqGHiiIZcaaIBbGaaGimaiaaiYcacqaHZoWz caaIDbGaaG4oaaaa@7A35@  (7)

здесь и далее λ= ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiabeg8aYnaaCaaaleqabaGaaGOmaaaaaaa@3B1B@ . Любое решение системы (5)-(6) на [0,γ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeq4SdCMaaGyxaaaa@3ADA@  может быть представлено в виде

y(x)=AS(x,λ)+BC(x,λ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaWG4bGaaGykaiaai2dacaWGbbGaam4uaiaaiIcacaWG4bGaaGil aiabeU7aSjaaiMcacqGHRaWkcaWGcbGaam4qaiaaiIcacaWG4bGaaG ilaiabeU7aSjaaiMcacaaIUaaaaa@487D@  (8)

С учетом (6) при x[a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaWGHbGaaGilaiaadkgacaaIDbaaaa@3CC7@  имеем

y(x)=(y(γ)+d y (γ))cosρ(xa)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaWG4bGaaGykaiaai2dacaaIOaGaamyEaiaaiIcacqaHZoWzcaaI PaGaey4kaSIaamizaiqadMhagaqbaiaaiIcacqaHZoWzcaaIPaGaaG ykaiGacogacaGGVbGaai4Caiabeg8aYjaaiIcacaWG4bGaeyOeI0Ia amyyaiaaiMcacqGHRaWkaaa@4F18@

+((1 d 2 λ) y (γ)dλy(γ)+dy(γ)q(γ)) sinρ(xa) ρ +B a x sinρ(xt) ρ q(t)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaaiIcacaaIXaGaeyOeI0IaamizamaaCaaaleqabaGaaGOmaaaa kiabeU7aSjaaiMcaceWG5bGbauaacaaIOaGaeq4SdCMaaGykaiabgk HiTiaadsgacqaH7oaBcaWG5bGaaGikaiabeo7aNjaaiMcacqGHRaWk caWGKbGaamyEaiaaiIcacqaHZoWzcaaIPaGaamyCaiaaiIcacqaHZo WzcaaIPaGaaGykamaalaaabaGaci4CaiaacMgacaGGUbGaeqyWdiNa aGikaiaadIhacqGHsislcaWGHbGaaGykaaqaaiabeg8aYbaacqGHRa WkcaWGcbWaa8qCaeqaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaaciGGZbGaaiyAaiaac6gacqaHbpGCcaaIOaGaamiEaiabgk HiTiaadshacaaIPaaabaGaeqyWdihaaiaadghacaaIOaGaamiDaiaa iMcacaWGKbGaamiDaiaai6caaaa@7597@  (9)

Подставив представления (8) и (9) в краевые условия (2), получим следующую систему линейных уравнений относительно A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36BD@  и B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@ :

AS(0,λ)+BC(0,λ)=0,A dcosρl+[1 d 2 λ] sinρl ρ +B cosρl+[dq(γ)dλ] sinρl ρ + a b sinρ(bt) ρ q(t)dt =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaado facaaIOaGaaGimaiaaiYcacqaH7oaBcaaIPaGaey4kaSIaamOqaiaa doeacaaIOaGaaGimaiaaiYcacqaH7oaBcaaIPaGaaGypaiaaicdaca aISaGaamyqamaabmaabaGaamizaiGacogacaGGVbGaai4Caiabeg8a YjaadYgacqGHRaWkcaaIBbGaaGymaiabgkHiTiaadsgadaahaaWcbe qaaiaaikdaaaGccqaH7oaBcaaIDbWaaSaaaeaaciGGZbGaaiyAaiaa c6gacqaHbpGCcaWGSbaabaGaeqyWdihaaaGaayjkaiaawMcaaiabgU caRiaadkeadaqadaqaaiGacogacaGGVbGaai4Caiabeg8aYjaadYga cqGHRaWkcaaIBbGaamizaiaadghacaaIOaGaeq4SdCMaaGykaiabgk HiTiaadsgacqaH7oaBcaaIDbWaaSaaaeaaciGGZbGaaiyAaiaac6ga cqaHbpGCcaWGSbaabaGaeqyWdihaaiabgUcaRmaapehabeWcbaGaam yyaaqaaiaadkgaa0Gaey4kIipakmaalaaabaGaci4CaiaacMgacaGG UbGaeqyWdiNaaGikaiaadkgacqGHsislcaWG0bGaaGykaaqaaiabeg 8aYbaacaWGXbGaaGikaiaadshacaaIPaGaamizaiaadshaaiaawIca caGLPaaacaaI9aGaaGimaiaai6caaaa@8FA8@

Число λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@  является собственным значением краевой задачи (1)(2) тогда и только тогда, когда существует ненулевое решение этой системы. Определитель системы Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  называется характеристической функцией краевой задачи (1)(2). Он является целой функцией порядка 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai+ cacaaIYaaaaa@3827@ . Спектром краевой задачи (1)(2) называется последовательность нулей { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  характеристической функции (с учетом кратности).

Используя формулы (7), получим

Δ(λ)= c 1 (λ) sinργ ρ c 2 (λ)cosργ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaeyOeI0Iaam4yamaaBaaaleaacaaI XaaabeaakiaaiIcacqaH7oaBcaaIPaWaaSaaaeaaciGGZbGaaiyAai aac6gacqaHbpGCcqaHZoWzaeaacqaHbpGCaaGaeyOeI0Iaam4yamaa BaaaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaGaci4yaiaac+ gacaGGZbGaeqyWdiNaeq4SdCMaeyOeI0caaa@5632@

sinργ ρ a b sinρ(bt) ρ q(t)dt c 2 (λ) 0 γ sinρt ρ q(t)dtdq(γ) sin 2 ργ ρ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaaciGGZbGaaiyAaiaac6gacqaHbpGCcqaHZoWzaeaacqaHbpGC aaWaa8qCaeqaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOWaaSaaae aaciGGZbGaaiyAaiaac6gacqaHbpGCcaaIOaGaamOyaiabgkHiTiaa dshacaaIPaaabaGaeqyWdihaaiaadghacaaIOaGaamiDaiaaiMcaca WGKbGaamiDaiabgkHiTiaadogadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaeq4UdWMaaGykamaapehabeWcbaGaaGimaaqaaiabeo7aNbqdcq GHRiI8aOWaaSaaaeaaciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0baa baGaeqyWdihaaiaadghacaaIOaGaamiDaiaaiMcacaWGKbGaamiDai abgkHiTiaadsgacaWGXbGaaGikaiabeo7aNjaaiMcadaWcaaqaamaa vacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPbGaaiOBaaaacqaHbp GCcqaHZoWzaeaacqaHbpGCdaahaaWcbeqaaiaaikdaaaaaaOGaaGil aaaa@7AEF@  (10)

где

c 1 (λ)cosρldρsinρl, c 2 (λ)dcosρl+ 1 d 2 λ ρ sinρl. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaaiIcacqaH7oaBcaaIPaGaci4yaiaac+ga caGGZbGaeqyWdiNaamiBaiabgkHiTiaadsgacqaHbpGCciGGZbGaai yAaiaac6gacqaHbpGCcaWGSbGaaGilaiaaywW7caWGJbWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiabeU7aSjaaiMcacaWGKbGaci4yaiaac+ gacaGGZbGaeqyWdiNaamiBaiabgUcaRmaalaaabaGaaGymaiabgkHi TiaadsgadaahaaWcbeqaaiaaikdaaaGccqaH7oaBaeaacqaHbpGCaa Gaci4CaiaacMgacaGGUbGaeqyWdiNaamiBaiaai6caaaa@655B@

В дальнейшем нам понадобится следующая лемма.

Лемма 1 Из положительных нулей функции c 2 ( z 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG6bWaaWbaaSqabeaacaaIYaaa aOGaaGykaaaa@3B28@  можно составить такую последовательность { z n } n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadQ hadaWgaaWcbaGaamOBaaqabaGccaaI9bWaaSbaaSqaaiaad6gatuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaig daaeqaaaaa@475A@ , что системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  и {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@  являются базисами Рисса в L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadYgacaaIPaaa aa@3B80@ .

Доказательство. Рассмотрим уравнение

g(z) dz d 2 z 2 1 tanzl=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG6bGaaGykamaalaaabaGaamizaiaadQhaaeaacaWGKbWaaWba aSqabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGOmaaaakiabgk HiTiaaigdaaaGaeyOeI0IaciiDaiaacggacaGGUbGaamOEaiaadYga caaI9aGaaGimaiaai6caaaa@489C@

Если z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36F6@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ ненулевой корень данного уравнения, то число z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36F6@  является нулем c 2 ( z 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG6bWaaWbaaSqabeaacaaIYaaa aOGaaGykaaaa@3B28@ . Заметим, что функция g(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG6bGaaGykaaaa@3947@  непрерывна и монотонна на любом интервале, не содержащем точек ±1/d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyySaeRaaG ymaiaai+cacaWGKbaaaa@3A42@ , ±π(n+1/2)/l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyySaeRaeq iWdaNaaGikaiaad6gacqGHRaWkcaaIXaGaaG4laiaaikdacaaIPaGa aG4laiaadYgaaaa@40B6@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . С помощью теоремы о промежуточном значении можно показать, что каждому интервалу

I n = πn l π 2l , πn l + π 2l ,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGUbaabeaakiaai2dadaqadaqaamaalaaabaGaeqiWdaNa amOBaaqaaiaadYgaaaGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYa GaamiBaaaacaaISaWaaSaaaeaacqaHapaCcaWGUbaabaGaamiBaaaa cqGHRaWkdaWcaaqaaiabec8aWbqaaiaaikdacaWGSbaaaaGaayjkai aawMcaaiaaiYcacaaMf8UaamOBaiabgIGiolaaykW7caaMc8UaeSyf Hukaaa@5456@ ,

принадлежит не менее одного нуля g(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG6bGaaGykaaaa@3947@ . Выберем в качестве z n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGUbaabeaaaaa@3815@  любой нуль из I n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGUbaabeaaaaa@37E4@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ , тогда все z n >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGUbaabeaakiaai6dacaaIWaaaaa@39A1@  и различны.

Используя стандартную технику с применением теоремы Руше (см. [15]), можно доказать, что последовательность нулей c 2 ( z 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG6bWaaWbaaSqabeaacaaIYaaa aOGaaGykaaaa@3B28@  имеет вид { z n } n0 { z n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabgk HiTiaadQhadaWgaaWcbaGaamOBaaqabaGccaaI9bWaaSbaaSqaaiaa d6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5 NkfkaaicdaaeqaaOGaeyOkIGSaaG4EaiaadQhadaWgaaWcbaGaamOB aaqabaGccaaI9bWaaSbaaSqaaiaad6gacqWF+PsHcaaIWaaabeaaaa a@51AF@  и выполнены асимптотические формулы

z n = πn l + 1 dπn +O 1 n 3 ,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGUbaabeaakiaai2dadaWcaaqaaiabec8aWjaad6gaaeaa caWGSbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadsgacqaHapaCca WGUbaaaiabgUcaRiaad+eadaqadaqaamaalaaabaGaaGymaaqaaiaa d6gadaahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaGaaGilai aaywW7caWGUbGaeyicI4SaeSyfHukaaa@4DF5@ . (11)

Докажем, что {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  является базисом Рисса; для {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@  доказательство аналогично. Согласно [15, утверждение 1.8.5], достаточно доказать полноту системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@ .

Пусть f L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGSbGaaGykaaaa@3DEF@  и 0 l f(t)sin z n tdt=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqaba GccaWG0bGaamizaiaadshacaaI9aGaaGimaiaai6caaaa@4773@

Тогда функция

F(λ)= λ z 0 2 ρ c 2 (λ) 0 l f(t)sinρtdt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaaGypamaalaaabaGaeq4UdWMaeyOeI0IaamOE amaaDaaaleaacaaIWaaabaGaaGOmaaaaaOqaaiabeg8aYjaadogada WgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdWMaaGykaaaadaWdXbqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaads hacaaIPaGaci4CaiaacMgacaGGUbGaeqyWdiNaamiDaiaadsgacaWG 0baaaa@558D@

является целой по λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@ . Используя стандартную оценку (см. [15])

|sinρl| M 1 e |Imρ|l ,|ρ|= π(n+1/2) l ,n,n N * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiGaco hacaGGPbGaaiOBaiabeg8aYjaadYgacaaI8bWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaWGnbWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaGaaGiFaiaadMea caWGTbGaeqyWdiNaaGiFaiaadYgaaaGccaaISaGaaGzbVlaaiYhacq aHbpGCcaaI8bGaaGypamaalaaabaGaeqiWdaNaaGikaiaad6gacqGH RaWkcaaIXaGaaG4laiaaikdacaaIPaaabaGaamiBaaaacaaISaGaaG zbVlaad6gacqGHiiIZcaaISaGaaGzbVlaad6gacqWF+PsHcaWGobWa aWbaaSqabeaacaaIQaaaaOGaaGilaaaa@6E47@

получим, что |F(λ)|M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA eacaaIOaGaeq4UdWMaaGykaiaaiYhatuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab=1Nkekaad2eaaaa@480C@  на окружностях |λ|=(π(n+1/2)/l ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeU 7aSjaaiYhacaaI9aGaaGikaiabec8aWjaaiIcacaWGUbGaey4kaSIa aGymaiaai+cacaaIYaGaaGykaiaai+cacaWGSbGaaGykamaaCaaale qabaGaaGOmaaaaaaa@459D@  при достаточно больших n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . Тогда из принципа максимума модуля и теоремы Лиувилля следует, что F(λ)C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaeyyyIORaam4qaaaa@3C6C@ . В то же время имеем

0 l f(t)sinρtdt=o(1), ρ c 2 (λ) λ z 0 2 =( 1) n+1 d 2 (1+o(1)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBaiabeg8aYjaadshacaWGKbGaamiDai aai2dacaWGVbGaaGikaiaaigdacaaIPaGaaGilaiaaywW7daWcaaqa aiabeg8aYjaadogadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdW MaaGykaaqaaiabeU7aSjabgkHiTiaadQhadaqhaaWcbaGaaGimaaqa aiaaikdaaaaaaOGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaGccaWGKbWaaWbaaSqabeaa caaIYaaaaOGaaGikaiaaigdacqGHRaWkcaWGVbGaaGikaiaaigdaca aIPaGaaGykaaaa@658E@

при ρ=π(n+1/2)/l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabec8aWjaaiIcacaWGUbGaey4kaSIaaGymaiaai+cacaaIYaGa aGykaiaai+cacaWGSbaaaa@414F@  в силу леммы Римана - Лебега. Отсюда следует, что возможно только C=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacaaIWaaaaa@3840@ . Тогда f0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgg Mi6kaaicdaaaa@3965@ , и полнота системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  доказана.

Рассмотрим следующую обратную задачу.

Обратная задача 1 По спектру { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  восстановить потенциал q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@ .

Докажем утверждение, которое позволяет свести обратную задачу к нахождению q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  из характеристической функции.

Утверждение 1 Характеристическая функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  строится однозначно по спектру { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@ .

Доказательство. Обозначим s(λ)= ρ 1 sinργ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaGaaGypaiabeg8aYnaaCaaaleqabaGaeyOeI0Ia aGymaaaakiGacohacaGGPbGaaiOBaiabeg8aYjabeo7aNbaa@44AD@ . Из представления (10) легко получается асимптотика

Δ(λ)= d 2 ρsinρlcosργ+O( e |Imρ|(γ+l) ), γlèëèq(γ)=0, dq(γ) s 2 (λ)+O(ρ e |Imρ|(γ+l) ), γ>lèq(γ)0, λ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aWaaeqaaeaafaqabeGacaaabaGaamiz amaaCaaaleqabaGaaGOmaaaakiabeg8aYjGacohacaGGPbGaaiOBai abeg8aYjaadYgaciGGJbGaai4BaiaacohacqaHbpGCcqaHZoWzcqGH RaWkcaWGpbGaaGikaiaadwgadaahaaWcbeqaaiaaiYhacaWGjbGaam yBaiabeg8aYjaaiYhacaaIOaGaeq4SdCMaey4kaSIaamiBaiaaiMca aaGccaaIPaGaaGilaaqaaiabeo7aNnrr1ngBPrwtHrhAYaqeguuDJX wAKbstHrhAGq1DVbacfaGae8xFQqOaamiBaiaaysW7caqGOdGaae46 aiaabIoacaaMe8UaamyCaiaaiIcacqaHZoWzcaaIPaGaaGypaiaaic dacaaISaaabaGaeyOeI0IaamizaiaadghacaaIOaGaeq4SdCMaaGyk aiaadohadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaaGykai abgUcaRiaad+eacaaIOaGaeqyWdiNaamyzamaaCaaaleqabaGaaGiF aiaadMeacaWGTbGaeqyWdiNaaGiFaiaaiIcacqaHZoWzcqGHRaWkca WGSbGaaGykaaaakiaaiMcacaaISaaabaGaeq4SdCMaaGOpaiaadYga caaMe8Uaaei6aiaaysW7caWGXbGaaGikaiabeo7aNjaaiMcacqGHGj sUcaaIWaGaaGilaaaaaiaawUhaaiaaywW7cqaH7oaBcqGHsgIRcqGH EisPcaaIUaaaaa@A913@  (12)

Пусть k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIWaaabeaaaaa@37CD@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ кратность нуля в спектре. Без потери общности можно предположить, что нуль встречается только среди первых k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIWaaabeaaaaa@37CD@  членов спектра, т.е. λ 0 == λ k 0 2 = λ k 0 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaicdaaeqaaOGaaGypaiablAciljaai2dacqaH7oaBdaWg aaWcbaGaam4AamaaBaaabaGaaGimaaqabaGaeyOeI0IaaGOmaaqaba GccaaI9aGaeq4UdW2aaSbaaSqaaiaadUgadaWgaaqaaiaaicdaaeqa aiabgkHiTiaaigdaaeqaaOGaaGypaiaaicdaaaa@484E@ . По теореме Адамара, характеристическая функция определяется с точностью до некоторой постоянной C0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabgc Mi5kaaicdaaaa@3940@ :

Δ(λ)=CG(λ),G(λ) λ k 0 n= k 0 1 λ λ n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaam4qaiaadEeacaaIOaGaeq4UdWMa aGykaiaaiYcacaaMf8Uaam4raiaaiIcacqaH7oaBcaaIPaGaeq4UdW 2aaWbaaSqabeaacaWGRbWaaSbaaeaacaaIWaaabeaaaaGcdaqeWbqa bSqaaiaad6gacaaI9aGaam4AamaaBaaabaGaaGimaaqabaaabaGaey OhIukaniabg+GivdGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiab eU7aSbqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaaaaakiaawIcaca GLPaaacaaIUaaaaa@5985@  (13)

Согласно (12), тип построенного бесконечного произведения G(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacqaH7oaBcaaIPaaaaa@39DC@  может быть равен либо γ+l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey 4kaSIaamiBaaaa@3971@ , либо 2γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeo 7aNbaa@385A@ . Если тип равен γ+l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey 4kaSIaamiBaaaa@3971@ , то постоянная C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  в (13) определяется первой асимптотической формулой в (12). Пусть теперь тип равен 2γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeo 7aNbaa@385A@ , что возможно только при γ>l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG OpaiaadYgaaaa@3957@  и q(γ)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacqaHZoWzcaaIPaGaeyiyIKRaaGimaaaa@3C7A@ . Определим

C 1 = lim λ G(λ) s 2 (λ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dadaGfqbqabSqaaiabeU7aSjabgkzi UkabgkHiTiabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaWcaa qaaiaadEeacaaIOaGaeq4UdWMaaGykaaqaaiaadohadaahaaWcbeqa aiaaikdaaaGccaaIOaGaeq4UdWMaaGykaaaacaaIUaaaaa@4B7B@

Из (10) видно, что C 1 =dq(γ)/C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dacqGHsislcaWGKbGaamyCaiaaiIca cqaHZoWzcaaIPaGaaG4laiaadoeaaaa@3FD0@ . Также из (10) и (13) следует, что

G(λ) C 1 s 2 (λ)= d 2 ρsinρ d 2 cosργ(1+o(1)) C ,λ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacqaH7oaBcaaIPaGaeyOeI0Iaam4qamaaBaaaleaacaaIXaaabeaa kiaadohadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaaGykai aai2dadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqaHbpGC ciGGZbGaaiyAaiaac6gacqaHbpGCcaWGKbWaaSbaaSqaaiaaikdaae qaaOGaci4yaiaac+gacaGGZbGaeqyWdiNaeq4SdCMaaGikaiaaigda cqGHRaWkcaWGVbGaaGikaiaaigdacaaIPaGaaGykaaqaaiaadoeaaa GaaGilaiaaywW7cqaH7oaBcqGHsgIRcqGHsislcqGHEisPcaaISaaa aa@627D@

C= lim λ d 2 ρsinρlcosργ G(λ) C 1 s 2 (λ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dadaGfqbqabSqaaiabeU7aSjabgkziUkabgkHiTiabg6HiLcqabOqa aiGacYgacaGGPbGaaiyBaaaadaWcaaqaaiaadsgadaahaaWcbeqaai aaikdaaaGccqaHbpGCciGGZbGaaiyAaiaac6gacqaHbpGCcaWGSbGa ci4yaiaac+gacaGGZbGaeqyWdiNaeq4SdCgabaGaam4raiaaiIcacq aH7oaBcaaIPaGaeyOeI0Iaam4qamaaBaaaleaacaaIXaaabeaakiaa dohadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaaGykaaaaca aIUaaaaa@5C8F@

Таким образом, C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  определяется однозначно, и лемма доказана.

Докажем теорему единственности решения обратной задачи 1. Доказательство основано на вычислении коэффициентов разложений функции q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  по базисам {sinπnt/γ} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaad6gacaWG0bGaaG4laiabeo7aNjaa i2hadaWgaaWcbaGaamOBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8NFQuOaaGymaaqabaaaaa@4E13@  и {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  на отрезках [0,γ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeq4SdCMaaGyxaaaa@3ADA@  и [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadg gacaaISaGaamOyaiaai2faaaa@3A46@ . Эти коэффициенты вычисляются путем подстановки значений λ=(πn/γ ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaiIcacqaHapaCcaWGUbGaaG4laiabeo7aNjaaiMcadaahaaWc beqaaiaaikdaaaaaaa@3FD0@  и λ= z n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaa@3B4D@  в представление (10), если c 2 ((πn/γ ) 2 )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIOaGaeqiWdaNaamOBaiaai+ca cqaHZoWzcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykaiabgcMi5k aaicdaaaa@431F@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . Данный подход аналогичен тому, который был использован в [25] для доказательства теоремы единственности.

Теорема 1 Обозначим через { λ ˜ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiqbeU 7aSzaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFamaaBaaaleaacaWG UbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+P sHcaaIWaaabeaaaaa@481D@  спектр краевой задачи (1)(2) с некоторым потенциалом q ˜ C(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCayaaia GaeyicI4Saam4qaiaaiIcacaWGubGaaGykaaaa@3B86@ . Если функции c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@  и s(λ) ρ 1 sinργ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaGaeqyWdi3aaWbaaSqabeaacqGHsislcaaIXaaa aOGaci4CaiaacMgacaGGUbGaeqyWdiNaeq4SdCgaaa@43E6@  не имеют общих нулей, то из равенства { λ n } n0 ={ λ ˜ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaGccaaI9aGaaG4EaiqbeU7aSzaaiaWaaSbaaSqaaiaad6ga aeqaaOGaaGyFamaaBaaaleaacaWGUbGae8NFQuOaaGimaaqabaaaaa@5162@  следует q= q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 daceWGXbGbaGaaaaa@38B9@ .

Доказательство. Согласно утверждению 1, функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  однозначно определяется заданием своих нулей { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@ . Обозначим через Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaaaa@3A85@  характеристическую функцию краевой задачи (1)(2) с потенциалом q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCayaaia aaaa@36FC@ . Таким образом, если { λ n } n0 ={ λ ˜ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaGccaaI9aGaaG4EaiqbeU7aSzaaiaWaaSbaaSqaaiaad6ga aeqaaOGaaGyFamaaBaaaleaacaWGUbGae8NFQuOaaGimaaqabaaaaa@5162@ , то Δ(λ)= Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGafuiLdqKbaGaacaaIOaGaeq4UdWMa aGykaaaa@3FCB@ . Подставив в представление (10) значения λ=(πn/γ ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaiIcacqaHapaCcaWGUbGaaG4laiabeo7aNjaaiMcadaahaaWc beqaaiaaikdaaaaaaa@3FD0@ , получим соотношения

Δ πn γ 2 = k n (1) n+1 γ πn ϰ n , k n c 2 πn γ 2 , ϰ n 0 γ sin πn γ tq(t)dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiabeo7aNbaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacaaI9aGaam4AamaaBaaaleaacaWGUbaabeaakmaabmaabaGaaGik aiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaG ymaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaeqiWdaNaamOBaaaa tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=b=a5p aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaaiYcacaaMf8Ua am4AamaaBaaaleaacaWGUbaabeaakiaadogadaWgaaWcbaGaaGOmaa qabaGcdaqadaqaamaabmaabaWaaSaaaeaacqaHapaCcaWGUbaabaGa eq4SdCgaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay jkaiaawMcaaiaaiYcacaaMf8Uae8h8dK=aaSbaaSqaaiaad6gaaeqa aOWaa8qCaeqaleaacaaIWaaabaGaeq4SdCganiabgUIiYdGcciGGZb GaaiyAaiaac6gadaWcaaqaaiabec8aWjaad6gaaeaacqaHZoWzaaGa amiDaiaadghacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcaaa a@83F8@

откуда приходим к формуле

ϰ n = πn k n γ Δ πn γ 2 + (1) n k n ,n1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWpq+daWgaaWcbaGa amOBaaqabaGccaaI9aGaeyOeI0YaaSaaaeaacqaHapaCcaWGUbaaba Gaam4AamaaBaaaleaacaWGUbaabeaakiabeo7aNbaadaqadaqaaiab fs5aenaabmaabaWaaeWaaeaadaWcaaqaaiabec8aWjaad6gaaeaacq aHZoWzaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaGaey4kaSIaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaS qabeaacaWGUbaaaOGaam4AamaaBaaaleaacaWGUbaabeaaaOGaayjk aiaawMcaaiaaiYcacaaMf8UaamOBamrr1ngBPrwtHrhAYaqehuuDJX wAKbstHrhAGq1DVbacgaGae4NFQuOaaGymaiaai6caaaa@6DDC@  (14)

Аналогично получается равенство

0 γ sin πn γ t q ˜ (t)dt= ϰ n ,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaeq4SdCganiabgUIiYdGcciGGZbGaaiyAaiaac6ga daWcaaqaaiabec8aWjaad6gaaeaacqaHZoWzaaGaamiDaiqadghaga acaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGypamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h8dK=aaSbaaSqaai aad6gaaeqaaOGaaGilaiaaywW7caWGUbWefv3ySLgznfgDOjdarCqr 1ngBPrginfgDObcv39gaiyaacqGF+PsHcaaIXaGaaGilaaaa@6632@

с теми же ϰ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWpq+daWgaaWcbaGa amOBaaqabaaaaa@4311@ . Тогда

0 γ sin πn γ t(q(t) q ˜ (t))dt=0,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaeq4SdCganiabgUIiYdGcciGGZbGaaiyAaiaac6ga daWcaaqaaiabec8aWjaad6gaaeaacqaHZoWzaaGaamiDaiaaiIcaca WGXbGaaGikaiaadshacaaIPaGaeyOeI0IabmyCayaaiaGaaGikaiaa dshacaaIPaGaaGykaiaadsgacaWG0bGaaGypaiaaicdacaaISaGaaG zbVlaad6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab=5NkfkaaigdacaaISaaaaa@5F6D@

и из полноты системы {sinπnt/γ} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaad6gacaWG0bGaaG4laiabeo7aNjaa i2hadaWgaaWcbaGaamOBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8NFQuOaaGymaaqabaaaaa@4E13@  в L 2 (0,γ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabeo7aNjaaiMca aaa@3C36@  следует, что q= q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 daceWGXbGbaGaaaaa@38B9@  на [0,γ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeq4SdCMaaGyxaaaa@3ADA@ .

Подставим в характеристическую функцию λ= z n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaa@3B4D@ . Полнота системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  в L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadYgacaaIPaaa aa@3B80@  была доказана в лемме 1. Действуя так же, как в первой части доказательства, получаем для коэффициентов

ξ n 0 l sin z n tq(bt)dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaad6gaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqd cqGHRiI8aOGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUb aabeaakiaadshacaWGXbGaaGikaiaadkgacqGHsislcaWG0bGaaGyk aiaadsgacaWG0baaaa@4A05@ ,

формулы

ξ n = z n 2 sin z n γ Δ( z n 2 )+ c 1 ( z n 2 ) sin z n γ z n +dq(γ) sin 2 z n γ z n 2 ,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaad6gaaeqaaOGaaGypaiabgkHiTmaalaaabaGaamOEamaa DaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiGacohacaGGPbGaaiOBai aadQhadaWgaaWcbaGaamOBaaqabaGccqaHZoWzaaWaaeWaaeaacqqH uoarcaaIOaGaamOEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiaaiM cacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadQha daqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaWaaSaaaeaaciGGZb GaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6gaaeqaaOGaeq4SdCga baGaamOEamaaBaaaleaacaWGUbaabeaaaaGccqGHRaWkcaWGKbGaam yCaiaaiIcacqaHZoWzcaaIPaWaaSaaaeaadaqfGaqabSqabeaacaaI YaaakeaaciGGZbGaaiyAaiaac6gaaaGaamOEamaaBaaaleaacaWGUb aabeaakiabeo7aNbqaaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikda aaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caWGUbWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaIXaGaaGil aaaa@7BC5@  (15)

и равенство q= q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 daceWGXbGbaGaaaaa@38B9@  на [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadg gacaaISaGaamOyaiaai2faaaa@3A46@ .

Основываясь на формулах (14) и (15), получим следующий алгоритм восстановления.

Алгоритм 1 Пусть функции c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@  и s(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaaaaa@3A08@  не имеют общих нулей. Восстановление потенциала по { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  производится в следующей последовательности: [1.]

1. Построить Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  (см. утверждение 1);.

2. Вычислить коэффициенты ϰ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWpq+daWgaaWcbaGa amOBaaqabaaaaa@4311@  по формуле (14) и найти

q(t)= 2 γ n=1 ϰ n sin πn γ t,t(0,γ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaikdaaeaacqaHZoWzaaWa aabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIu oatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h8 dK=aaSbaaSqaaiaad6gaaeqaaOGaci4CaiaacMgacaGGUbWaaSaaae aacqaHapaCcaWGUbaabaGaeq4SdCgaaiaadshacaaISaGaaGzbVlaa dshacqGHiiIZcaaIOaGaaGimaiaaiYcacqaHZoWzcaaIPaGaaGOlaa aa@6209@

3. Вычислить коэффициенты ξ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaad6gaaeqaaaaa@38D9@  по формуле (15) и построить

q(bt)= n=1 ξ n χ n (t),t(0,l), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWGIbGaeyOeI0IaamiDaiaaiMcacaaI9aWaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiabe67a4naaBa aaleaacaWGUbaabeaakiabeE8aJnaaBaaaleaacaWGUbaabeaakiaa iIcacaWG0bGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaaiIcaca aIWaGaaGilaiaadYgacaaIPaGaaGilaaaa@5380@

где система { χ n (t)} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeE 8aJnaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2ha daWgaaWcbaGaamOBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq 1DVbacfaGae8NFQuOaaGymaaqabaaaaa@4A70@  является биортогональной к базису {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  в L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadYgacaaIPaaa aa@3B80@ .

Утверждение 2 Можно гарантировать, что c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@  и s(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaaaaa@3A08@  не имеют общих нулей, наложив одно из трех ограничений на d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36E0@ , γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379E@  и l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E8@ : [ (i)]

1.  имеет место равенство l=kγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaWGRbGaeq4SdCgaaa@3A46@  при некотором k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI Giodaa@386B@ ;

2.  числа πl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iBaiaai+cacqaHZoWzaaa@3B05@  и πd/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam izaiaai+cacqaHZoWzaaa@3AFD@  рациональны;

3.  числа l/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai+ cacqaHZoWzaaa@3948@ , πd/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam izaiaai+cacqaHZoWzaaa@3AFD@  рациональны и cosl/d0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamiBaiaai+cacaWGKbGaeyiyIKRaaGimaaaa@3DDE@ .

Доказательство. Если выполнено (2), то c 2 ((πn/γ ) 2 )=( 1) nk d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIOaGaeqiWdaNaamOBaiaai+ca cqaHZoWzcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykaiaai2daca aIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaad6gacaWGRbaa aOGaamizaaaa@4775@ . Пусть выполнено (2) или (3) и c 2 ((πn/γ ) 2 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIOaGaeqiWdaNaamOBaiaai+ca cqaHZoWzcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykaiaai2daca aIWaaaaa@421F@  при некотором n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . Тогда cosπnl/γ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCMaeyiyIKRa aGimaaaa@414C@  и

1 πn γ d 2 tan πnl γ = πn γ d. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0YaaeWaaeaadaWcaaqaaiabec8aWjaad6gaaeaacqaH ZoWzaaGaamizaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaaiGacshacaGGHbGaaiOBamaalaaabaGaeqiWdaNa amOBaiaadYgaaeaacqaHZoWzaaGaaGypamaalaaabaGaeqiWdaNaam OBaaqaaiabeo7aNbaacaWGKbGaaGOlaaaa@4FEC@  (16)

Если выполнено (2), то πnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam OBaiaadYgacaaIVaGaeq4SdCMaeyicI4SaaGPaVlablQriKcaa@4077@ , и tanπnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCgaaa@3EC9@  является иррациональным числом (см. [22]). Тогда в (16) слева имеем либо нуль, либо иррациональное число, а справа " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ ненулевое рациональное число; противоречие.

Если выполнено (2), то πnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam OBaiaadYgacaaIVaGaeq4SdCgaaa@3BF8@  обозначает рациональное число градусов, и согласно [22]

tan πnl γ (\){0}{±1}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbWaaSaaaeaacqaHapaCcaWGUbGaamiBaaqaaiabeo7aNbaa cqGHiiIZcaaIOaGaaiixaiaaiMcacqGHQicYcaaI7bGaaGimaiaai2 hacqGHQicYcaaI7bGaeyySaeRaaGymaiaai2hacaaIUaaaaa@4D5C@

Случаи иррационального и нулевого tanπnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCgaaa@3EC9@  аналогичны (2). Если же tanπnl/γ=±1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCMaaGypaiab gglaXkaaigdaaaa@4239@ , то (16) приводит к противоречию потому, что рациональное число πnd/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam OBaiaadsgacaaIVaGaeq4SdCgaaa@3BF0@  не может быть корнем ни одного из квадратных уравнений 1 x 2 =±x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIhadaahaaWcbeqaaiaaikdaaaGccaaI9aGaeyySaeRaamiE aaaa@3D41@ .

3. Необходимые и достаточные условия

Далее получим необходимые и достаточные условия на спектр в случае

l=γ,q W 2 1 [0,γ] W 2 1 [a,b]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacqaHZoWzcaaISaGaaGzbVlaadghacqGHiiIZcaWGxbWaa0baaSqa aiaaikdaaeaacaaIXaaaaOGaaG4waiaaicdacaaISaGaeq4SdCMaaG yxaiabgMIihlaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaI BbGaamyyaiaaiYcacaWGIbGaaGyxaiaai6caaaa@4EB0@  (17)

При выполнении данных условий формулу (10) можно переписать в виде

Δ(λ)= d 2 ρ 2 sin2ρldcos2ρl sin2ρl ρ dq(γ) sin 2 ρl ρ 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aWaaSaaaeaacaWGKbWaaWbaaSqabeaa caaIYaaaaOGaeqyWdihabaGaaGOmaaaaciGGZbGaaiyAaiaac6gaca aIYaGaeqyWdiNaamiBaiabgkHiTiaadsgaciGGJbGaai4Baiaacoha caaIYaGaeqyWdiNaamiBaiabgkHiTmaalaaabaGaci4CaiaacMgaca GGUbGaaGOmaiabeg8aYjaadYgaaeaacqaHbpGCaaGaeyOeI0Iaamiz aiaadghacaaIOaGaeq4SdCMaaGykamaalaaabaWaaubiaeqaleqaba GaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaaiabeg8aYjaadYgaaeaa cqaHbpGCdaahaaWcbeqaaiaaikdaaaaaaOGaey4kaScaaa@6717@

+ ρ 2 d 2 1 ρ 2 sinρl d ρ cosρl 0 l q(t)sinρtdt sinρl ρ 2 0 l sinρtq(bt)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaam WaaeaadaWcaaqaaiabeg8aYnaaCaaaleqabaGaaGOmaaaakiaadsga daahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaabaGaeqyWdi3aaW baaSqabeaacaaIYaaaaaaakiGacohacaGGPbGaaiOBaiabeg8aYjaa dYgacqGHsisldaWcaaqaaiaadsgaaeaacqaHbpGCaaGaci4yaiaac+ gacaGGZbGaeqyWdiNaamiBaaGaay5waiaaw2faamaapehabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadghacaaIOaGaamiDaiaaiM caciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0bGaamizaiaadshacqGH sisldaWcaaqaaiGacohacaGGPbGaaiOBaiabeg8aYjaadYgaaeaacq aHbpGCdaahaaWcbeqaaiaaikdaaaaaaOWaa8qCaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaci4CaiaacMgacaGGUbGaeqyWdiNaam iDaiaadghacaaIOaGaamOyaiabgkHiTiaadshacaaIPaGaamizaiaa dshacaaIUaaaaa@7A09@  (18)

Выполнив подстановки λ=(πn/l ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaiIcacqaHapaCcaWGUbGaaG4laiaadYgacaaIPaWaaWbaaSqa beaacaaIYaaaaaaa@3F1A@  и λ= z n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaa@3B4D@  в (18), с помощью интегрирования по частям получим следующее утверждение.

Утверждение 3 При n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@  имеют место формулы

Δ πn l 2 =d+d l πn 2 [q(l) (1) n q(0)+ κ n ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa GaaGypaiabgkHiTiaadsgacqGHRaWkcaWGKbWaaeWaaeaadaWcaaqa aiaadYgaaeaacqaHapaCcaWGUbaaaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiaaiUfacaWGXbGaaGikaiaadYgacaaIPaGaeyOe I0IaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaaaO GaamyCaiaaiIcacaaIWaGaaGykaiabgUcaRiabeQ7aRnaaBaaaleaa caWGUbaabeaakiaai2facaaISaaaaa@5B6C@

Δ( z n 2 )=( 1) n sin z n l z n 3 1 d 2 +q(a)q(l) (1) n q(b)+ η n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp aiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaamOBaaaakm aalaaabaGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUbaa beaakiaadYgaaeaacaWG6bWaa0baaSqaaiaad6gaaeaacaaIZaaaaa aakmaadmaabaWaaSaaaeaacaaIXaaabaGaamizamaaCaaaleqabaGa aGOmaaaaaaGccqGHRaWkcaWGXbGaaGikaiaadggacaaIPaGaeyOeI0 IaamyCaiaaiIcacaWGSbGaaGykaiabgkHiTiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaamOBaaaakiaadghacaaIOaGaamOyai aaiMcacqGHRaWkcqaH3oaAdaWgaaWcbaGaamOBaaqabaaakiaawUfa caGLDbaaaaa@629E@

с некоторыми последовательностями { κ n } n1 ,{ η n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeQ 7aRnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccaaISaGaaG4EaiabeE7aOnaaBaaaleaacaWGUbaabeaa kiaai2hadaWgaaWcbaGaamOBaiab=5NkfkaaigdaaeqaaOGaeyicI4 SaamiBamaaBaaaleaacaaIYaaabeaaaaa@54A1@ .

Введем обозначения

Q 1 (z)= z b q(t)dt, Q 2 (z)= 0 lz q(a+t)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG6bGaaGykaiaai2dadaWdXbqa bSqaaiaadQhaaeaacaWGIbaaniabgUIiYdGccaWGXbGaaGikaiaads hacaaIPaGaamizaiaadshacaaISaGaaGzbVlaadgfadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamOEaiaaiMcacaaI9aWaa8qCaeqaleaaca aIWaaabaGaamiBaiabgkHiTiaadQhaa0Gaey4kIipakiaadghacaaI OaGaamyyaiabgUcaRiaadshacaaIPaGaamizaiaadshacaaIUaaaaa@5971@

Интегрируя по частям, получаем представление

Δ(λ)= d 2 ρ 2 sin2ρldcos2ρl sin2ρl ρ + d 2 q(0) sinρl ρ d 2 sin2ρl 2ρ q(l)+ 1 2ρ 0 2l sinρtW(t)dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aWaaSaaaeaacaWGKbWaaWbaaSqabeaa caaIYaaaaOGaeqyWdihabaGaaGOmaaaaciGGZbGaaiyAaiaac6gaca aIYaGaeqyWdiNaamiBaiabgkHiTiaadsgaciGGJbGaai4Baiaacoha caaIYaGaeqyWdiNaamiBaiabgkHiTmaalaaabaGaci4CaiaacMgaca GGUbGaaGOmaiabeg8aYjaadYgaaeaacqaHbpGCaaGaey4kaSIaamiz amaaCaaaleqabaGaaGOmaaaakiaadghacaaIOaGaaGimaiaaiMcada WcaaqaaiGacohacaGGPbGaaiOBaiabeg8aYjaadYgaaeaacqaHbpGC aaGaeyOeI0IaamizamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaci 4CaiaacMgacaGGUbGaaGOmaiabeg8aYjaadYgaaeaacaaIYaGaeqyW dihaaiaadghacaaIOaGaamiBaiaaiMcacqGHRaWkdaWcaaqaaiaaig daaeaacaaIYaGaeqyWdihaamaapehabeWcbaGaaGimaaqaaiaaikda caWGSbaaniabgUIiYdGcciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0b Gaam4vaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGilaaaa@877B@  (19)

где функция W L 2 [0,2l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIBbGaaGimaiaaiYca caaIYaGaamiBaiaai2faaaa@3F03@  имеет вид

W(t)= dq(lt)dq(l) Q 1 (lt)+ d 2 q (lt) Q 2 (t), t[0,l), dq(tl)dq(l) Q 1 (tl)+ d 2 q (tl) Q 2 (2lt), t[l,2l]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaiaai2dadaqabaqaauaabeqaciaaaeaacqGHsisl caWGKbGaamyCaiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsi slcaWGKbGaamyCaiaaiIcacaWGSbGaaGykaiabgkHiTiaadgfadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiBaiabgkHiTiaadshacaaIPa Gaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiqadghagaqbaiaa iIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsislcaWGrbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaaqaaiaadsha cqGHiiIZcaaIBbGaaGimaiaaiYcacaWGSbGaaGykaiaaiYcaaeaacq GHsislcaWGKbGaamyCaiaaiIcacaWG0bGaeyOeI0IaamiBaiaaiMca cqGHsislcaWGKbGaamyCaiaaiIcacaWGSbGaaGykaiabgkHiTiaadg fadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiabgkHiTiaadYga caaIPaGaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiqadghaga qbaiaaiIcacaWG0bGaeyOeI0IaamiBaiaaiMcacqGHsislcaWGrbWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaaikdacaWGSbGaeyOeI0Iaam iDaiaaiMcacaaISaaabaGaamiDaiabgIGiolaaiUfacaWGSbGaaGil aiaaikdacaWGSbGaaGyxaiaai6caaaaacaGL7baaaaa@8EFA@

Используя формулу (19), с помощью стандартной техники [15] можно получить асимптотику спектра.

Теорема 2 Справедливы следующие асимптотические формулы:

λ n = ρ n 2 , ρ n = πn 2l + 2 dπn + 4l δ n q(0) π 2 n 2 + μ n n 2 ,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypaiabeg8aYnaaDaaaleaacaWGUbaa baGaaGOmaaaakiaaiYcacaaMf8UaeqyWdi3aaSbaaSqaaiaad6gaae qaaOGaaGypamaalaaabaGaeqiWdaNaamOBaaqaaiaaikdacaWGSbaa aiabgUcaRmaalaaabaGaaGOmaaqaaiaadsgacqaHapaCcaWGUbaaai abgUcaRmaalaaabaGaaGinaiaadYgacqaH0oazdaWgaaWcbaGaamOB aaqabaGccaWGXbGaaGikaiaaicdacaaIPaaabaGaeqiWda3aaWbaaS qabeaacaaIYaaaaOGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqGH RaWkdaWcaaqaaiabeY7aTnaaBaaaleaacaWGUbaabeaaaOqaaiaad6 gadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaiaaywW7caWGUbGaeyic I4SaaGzaVlaaygW7caaMc8UaaGPaVlablwriLcaa@6C0B@ . (20)

где δ n =sinπn/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad6gaaeqaaOGaaGypaiGacohacaGGPbGaaiOBaiabec8a Wjaad6gacaaIVaGaaGOmaaaa@4089@ , { μ n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeY 7aTnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B78@ .

С помощью этих асимптотик формула (13) может быть уточнена следующим образом:

Δ(λ)=l d 2 (λ λ 0 ) n=1 λ n λ ( πn 2l ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaamiBaiaadsgadaahaaWcbeqaaiaa ikdaaaGccaaIOaGaeq4UdWMaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaic daaeqaaOGaaGykamaarahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabg+GivdGcdaWcaaqaaiabeU7aSnaaBaaaleaacaWGUb aabeaakiabgkHiTiabeU7aSbqaaiaaiIcadaWcaaqaaiabec8aWjaa d6gaaeaacaaIYaGaamiBaaaacaaIPaWaaWbaaSqabeaacaaIYaaaaa aaaaa@571F@  (21)

(доказательство аналогично доказательству теоремы 1.1.4 в [15] для классического оператора Штурма - Лиувилля).

Пусть теперь задана произвольная последовательность { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@ , члены которой удовлетворяют асимптотическим формулам

λ n = ρ n 2 , ρ n = πn 2l + 2 dπn + 4l δ n u π 2 n 2 + μ n n 2 ,n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypaiabeg8aYnaaDaaaleaacaWGUbaa baGaaGOmaaaakiaaiYcacaaMf8UaeqyWdi3aaSbaaSqaaiaad6gaae qaaOGaaGypamaalaaabaGaeqiWdaNaamOBaaqaaiaaikdacaWGSbaa aiabgUcaRmaalaaabaGaaGOmaaqaaiaadsgacqaHapaCcaWGUbaaai abgUcaRmaalaaabaGaaGinaiaadYgacqaH0oazdaWgaaWcbaGaamOB aaqabaGccaWG1baabaGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaam OBamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabeY7a TnaaBaaaleaacaWGUbaabeaaaOqaaiaad6gadaahaaWcbeqaaiaaik daaaaaaOGaaGilaiaaywW7caWGUbGaeyicI4SaaGilaaaa@6310@  (22)

где u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giodaa@3875@  C, { μ n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeY 7aTnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B78@ . Наша следующая цель " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ получить условия, которые нужно наложить на данную последовательность, чтобы она являлась спектром некоторой краевой задачи (1)(2) в частном случае (17).

Теорема 3 Пусть функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  построена по формуле (21) с произвольными числами λ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38CA@  вида (22). Имеет место представление

Δ(λ)= Δ ˜ (λ)+ C 0 sin2ρl ρ + 0 2l W(t) sinρt 2ρ dt,W L 2 (0,2l), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGafuiLdqKbaGaacaaIOaGaeq4UdWMa aGykaiabgUcaRiaadoeadaWgaaWcbaGaaGimaaqabaGcdaWcaaqaai GacohacaGGPbGaaiOBaiaaikdacqaHbpGCcaWGSbaabaGaeqyWdiha aiabgUcaRmaapehabeWcbaGaaGimaaqaaiaaikdacaWGSbaaniabgU IiYdGccaWGxbGaaGikaiaadshacaaIPaWaaSaaaeaaciGGZbGaaiyA aiaac6gacqaHbpGCcaWG0baabaGaaGOmaiabeg8aYbaacaWGKbGaam iDaiaaiYcacaaMf8Uaam4vaiabgIGiolaadYeadaWgaaWcbaGaaGOm aaqabaGccaaIOaGaaGimaiaaiYcacaaIYaGaamiBaiaaiMcacaaISa aaaa@690F@  (23)

где

Δ ˜ (λ)= d 2 ρ 2 sin2ρldcos2ρl+ d 2 u sinρl ρ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaiaai2dadaWcaaqaaiaadsgadaahaaWc beqaaiaaikdaaaGccqaHbpGCaeaacaaIYaaaaiGacohacaGGPbGaai OBaiaaikdacqaHbpGCcaWGSbGaeyOeI0IaamizaiGacogacaGGVbGa ai4CaiaaikdacqaHbpGCcaWGSbGaey4kaSIaamizamaaCaaaleqaba GaaGOmaaaakiaadwhadaWcaaqaaiGacohacaGGPbGaaiOBaiabeg8a YjaadYgaaeaacqaHbpGCaaGaaGOlaaaa@59D8@

Доказательство. Доказательство теоремы основано на технике, примененной в [12], где представление для другой характеристической функции было получено с меньшим числом слагаемых.

1. Обозначим через λ ˜ n = ρ ˜ n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaG aadaWgaaWcbaGaamOBaaqabaGccaaI9aGafqyWdiNbaGaadaqhaaWc baGaamOBaaqaaiaaikdaaaaaaa@3D55@ , n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@42F9@ , нули функции Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaaaa@3A85@ ; при этом ρ ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbaG aadaWgaaWcbaGaamOBaaqabaaaaa@38E5@  имеют ту же асимптотику, что и ρ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaad6gaaeqaaaaa@38D6@  в формулах (20). Заметим, что Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaaaa@3A85@  восстанавливается по формуле (21), если в ней заменить λ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38CA@  на λ ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaG aadaWgaaWcbaGaamOBaaqabaaaaa@38D9@ . Рассмотрим числа

θ k = πk 2l [Δ(λ) Δ ˜ (λ )]| λ=( πk 2l ) 2 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadUgaaeqaaOGaaGypamaalaaabaGaeqiWdaNaam4Aaaqa aiaaikdacaWGSbaaaiaaiUfacqqHuoarcaaIOaGaeq4UdWMaaGykai abgkHiTiqbfs5aezaaiaGaaGikaiabeU7aSjaaiMcacaaIDbGaaGiF amaaBaaaleaacqaH7oaBcaaI9aGaaGikamaalaaabaGaeqiWdaNaam 4AaaqaaiaaikdacaWGSbaaaiaaiMcadaahaaqabeaacaaIYaaaaaqa baGccaaISaGaaGzbVlaadUgacqGHiiIZcaaIUaaaaa@599E@

Введем функцию Δ * (λ)= d 2 ρ/2sin2ρl MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaW baaSqabeaacaaIQaaaaOGaaGikaiabeU7aSjaaiMcacaaI9aGaamiz amaaCaaaleqabaGaaGOmaaaakiabeg8aYjaai+cacaaIYaGaci4Cai aacMgacaGGUbGaaGOmaiabeg8aYjaadYgaaaa@477E@ . Используя (21), запишем представление

Δ(λ)= Δ * (λ)F(λ),F(λ) n=0 λ n λ ( πn 2l ) 2 λ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaeuiLdq0aaWbaaSqabeaacaaIQaaa aOGaaGikaiabeU7aSjaaiMcacaWGgbGaaGikaiabeU7aSjaaiMcaca aISaGaaGzbVlaadAeacaaIOaGaeq4UdWMaaGykamaarahabeWcbaGa amOBaiaai2dacaaIWaaabaGaeyOhIukaniabg+GivdGcdaWcaaqaai abeU7aSnaaBaaaleaacaWGUbaabeaakiabgkHiTiabeU7aSbqaaiaa iIcadaWcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaacaaIPa WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaeq4UdWgaaiaaiYcaaaa@607E@

и, аналогично,

Δ ˜ (λ)= Δ * (λ) F ˜ (λ), F ˜ (λ) n=0 λ ˜ n λ ( πn 2l ) 2 λ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaiaai2dacqqHuoardaahaaWcbeqaaiaa iQcaaaGccaaIOaGaeq4UdWMaaGykaiqadAeagaacaiaaiIcacqaH7o aBcaaIPaGaaGilaiaaywW7ceWGgbGbaGaacaaIOaGaeq4UdWMaaGyk amaarahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabg+ GivdGcdaWcaaqaaiqbeU7aSzaaiaWaaSbaaSqaaiaad6gaaeqaaOGa eyOeI0Iaeq4UdWgabaGaaGikamaalaaabaGaeqiWdaNaamOBaaqaai aaikdacaWGSbaaaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHsisl cqaH7oaBaaGaaGOlaaaa@60BC@

С учетом этих представлений имеем

θ k = πk 2l [ Δ * (λ) ] | λ=( πk 2l ) 2 λ ˜ k πk 2l 2 d ˜ k λ k πk 2l 2 d k ,k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadUgaaeqaaOGaaGypamaalaaabaGaeqiWdaNaam4Aaaqa aiaaikdacaWGSbaaaiaaiUfacqqHuoardaahaaWcbeqaaiaaiQcaaa GccaaIOaGaeq4UdWMaaGykaiqai2fagaqbaiaaiYhadaWgaaWcbaGa eq4UdWMaaGypaiaaiIcadaWcaaqaaiabec8aWjaadUgaaeaacaaIYa GaamiBaaaacaaIPaWaaWbaaeqabaGaaGOmaaaaaeqaaOWaamWaaeaa daqadaqaaiqbeU7aSzaaiaWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0 YaaeWaaeaadaWcaaqaaiabec8aWjaadUgaaeaacaaIYaGaamiBaaaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aaceWGKbGbaGaadaWgaaWcbaGaam4AaaqabaGccqGHsisldaqadaqa aiabeU7aSnaaBaaaleaacaWGRbaabeaakiabgkHiTmaabmaabaWaaS aaaeaacqaHapaCcaWGRbaabaGaaGOmaiaadYgaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaamizamaaBa aaleaacaWGRbaabeaaaOGaay5waiaaw2faaiaaiYcacaaMf8Uaam4A aiabgIGiolaaiYcaaaa@749F@  (24)

где

d k = nk λ n ( πk 2l ) 2 ( πn 2l ) 2 ( πk 2l ) 2 , d ˜ k = nk λ ˜ n ( πk 2l ) 2 ( πn 2l ) 2 ( πk 2l ) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiaai2dadaqeqbqabSqaaiaad6gacqGHGjsU caWGRbaabeqdcqGHpis1aOWaaSaaaeaacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccqGHsislcaaIOaWaaSaaaeaacqaHapaCcaWGRbaabaGa aGOmaiaadYgaaaGaaGykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaiI cadaWcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaacaaIPaWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGikamaalaaabaGaeqiWda Naam4AaaqaaiaaikdacaWGSbaaaiaaiMcadaahaaWcbeqaaiaaikda aaaaaOGaaGilaiaaywW7ceWGKbGbaGaadaWgaaWcbaGaam4Aaaqaba GccaaI9aWaaebuaeqaleaacaWGUbGaeyiyIKRaam4Aaaqab0Gaey4d IunakmaalaaabaGafq4UdWMbaGaadaWgaaWcbaGaamOBaaqabaGccq GHsislcaaIOaWaaSaaaeaacqaHapaCcaWGRbaabaGaaGOmaiaadYga aaGaaGykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaiIcadaWcaaqaai abec8aWjaad6gaaeaacaaIYaGaamiBaaaacaaIPaWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaaGikamaalaaabaGaeqiWdaNaam4Aaaqaai aaikdacaWGSbaaaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGaaGOl aaaa@7C6B@

Далее оценим d k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaaaaa@37FC@  (для d ˜ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaia WaaSbaaSqaaiaadUgaaeqaaaaa@380B@  вычисления аналогичны) и d ˜ k d k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaia WaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamizamaaBaaaleaacaWG Rbaabeaaaaa@3B07@ . Перепишем первый коэффициент в виде

d k = nN, nk (1+ x n,k )exp H k , H k n>N, nk ln(1+ x n,k ), x n,k λ n ( πn 2l ) 2 ( πn 2l ) 2 ( πk 2l ) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiaai2dadaqeqbqabSqaaqaaceqaaiaad6ga tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1Nkek aad6eacaaISaaabaGaamOBaiabgcMi5kaadUgaaaaabeqdcqGHpis1 aOGaaGikaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaad6gacaaISa Gaam4AaaqabaGccaaIPaGaciyzaiaacIhacaGGWbGaamisamaaBaaa leaacaWGRbaabeaakiaaiYcacaaMf8UaamisamaaBaaaleaacaWGRb aabeaakmaaqafabeWcbaabaiqabaGaamOBaiaai6dacaWGobGaaGil aaqaaiaad6gacqGHGjsUcaWGRbaaaaqab0GaeyyeIuoakiGacYgaca GGUbGaaGikaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaad6gacaaI SaGaam4AaaqabaGccaaIPaGaaGilaiaaywW7caWG4bWaaSbaaSqaai aad6gacaaISaGaam4AaaqabaGcdaWcaaqaaiabeU7aSnaaBaaaleaa caWGUbaabeaakiabgkHiTiaaiIcadaWcaaqaaiabec8aWjaad6gaae aacaaIYaGaamiBaaaacaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGikamaalaaabaGaeqiWdaNaamOBaaqaaiaaikdacaWGSbaaaiaaiM cadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIOaWaaSaaaeaacqaH apaCcaWGRbaabaGaaGOmaiaadYgaaaGaaGykamaaCaaaleqabaGaaG OmaaaaaaGccaaISaaaaa@8DEF@  (25)

с некоторым фиксированным N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@ . В силу (22) имеем λ n [πn/(2l)] 2 =O(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeyOeI0IaaG4waiabec8aWjaad6gacaaI VaGaaGikaiaaikdacaWGSbGaaGykaiaai2fadaahaaWcbeqaaiaaik daaaGccaaI9aGaam4taiaaiIcacaaIXaGaaGykaaaa@46B6@ , и можно выбрать такое N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@ , не зависящее от k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ , что | x n,k |<1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hadaWgaaWcbaGaamOBaiaaiYcacaWGRbaabeaakiaaiYhacaaI8aGa aGymaiaai+cacaaIYaaaaa@3EC5@  при n>N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai6 dacaWGobaaaa@3885@ . Используя разложение Тейлора для ln(1+ x n,k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gacaaIOaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamOBaiaaiYca caWGRbaabeaakiaaiMcaaaa@3EA9@ , можно оценить

| H k |2 n>N, nk | x n,k |2C n>k 1 (nk) 2 =O(1). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI eadaWgaaWcbaGaam4AaaqabaGccaaI8bWefv3ySLgznfgDOjdaryqr 1ngBPrginfgDObcv39gaiuaacqWF9PcHcaaIYaWaaabuaeqaleaaea GabeaacaWGUbGaaGOpaiaad6eacaaISaaabaGaamOBaiabgcMi5kaa dUgaaaaabeqdcqGHris5aOGaaGiFaiaadIhadaWgaaWcbaGaamOBai aaiYcacaWGRbaabeaakiaaiYhacqWF9PcHcaaIYaGaam4qamaaqafa beWcbaGaamOBaiaai6dacaWGRbaabeqdcqGHris5aOWaaSaaaeaaca aIXaaabaGaaGikaiaad6gacqGHsislcaWGRbGaaGykamaaCaaaleqa baGaaGOmaaaaaaGccaaI9aGaam4taiaaiIcacaaIXaGaaGykaiaai6 caaaa@6775@  (26)

Тогда из (25) мы получим, что d k =O(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiaai2dacaWGpbGaaGikaiaaigdacaaIPaaa aa@3BC1@ . Покажем, что d k d ˜ k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWG Rbaabeaakiaai2dacaWGpbGaaGikaiaaigdacaaIVaGaam4AamaaCa aaleqabaGaaGOmaaaakiaaiMcaaaa@4168@ . Для этого запишем

d k d ˜ k = nN, nk (1+ x n,k ) nN, nk (1+ x ˜ n,k ) exp H k + nN, nk (1+ x ˜ n,k )(exp H k exp H ˜ k ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWG Rbaabeaakiaai2dadaqadaqaamaarafabeWcbaabaiqabaGaamOBam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xFQqOa amOtaiaaiYcaaeaacaWGUbGaeyiyIKRaam4Aaaaaaeqaniabg+Givd GccaaIOaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamOBaiaaiYca caWGRbaabeaakiaaiMcacqGHsisldaqeqbqabSqaaqaaceqaaiaad6 gacqWF9PcHcaWGobGaaGilaaqaaiaad6gacqGHGjsUcaWGRbaaaaqa b0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIabmiEayaaiaWaaSbaaS qaaiaad6gacaaISaGaam4AaaqabaGccaaIPaaacaGLOaGaayzkaaGa ciyzaiaacIhacaGGWbGaamisamaaBaaaleaacaWGRbaabeaakiabgU caRmaarafabeWcbaabaiqabaGaamOBaiab=1Nkekaad6eacaaISaaa baGaamOBaiabgcMi5kaadUgaaaaabeqdcqGHpis1aOGaaGikaiaaig dacqGHRaWkceWG4bGbaGaadaWgaaWcbaGaamOBaiaaiYcacaWGRbaa beaakiaaiMcacaaIOaGaciyzaiaacIhacaGGWbGaamisamaaBaaale aacaWGRbaabeaakiabgkHiTiGacwgacaGG4bGaaiiCaiqadIeagaac amaaBaaaleaacaWGRbaabeaakiaaiMcacaaISaaaaa@8CD0@

где H ˜ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaaia WaaSbaaSqaaiaadUgaaeqaaaaa@37EF@  и x ˜ n,k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia WaaSbaaSqaaiaad6gacaaISaGaam4Aaaqabaaaaa@39C8@  вводятся аналогично H k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGRbaabeaaaaa@37E0@  и x n,k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbGaaGilaiaadUgaaeqaaaaa@39B9@ . Первое слагаемое в данном равенстве оценивается как O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaaiI cacaaIXaGaaG4laiaadUgadaahaaWcbeqaaiaaikdaaaGccaaIPaaa aa@3B87@ , поскольку x n,k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbGaaGilaiaadUgaaeqaaOGaaGypaiaad+eacaaIOaGa aGymaiaai+cacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaGykaaaa@401A@  и x ˜ n,k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia WaaSbaaSqaaiaad6gacaaISaGaam4AaaqabaGccaaI9aGaam4taiaa iIcacaaIXaGaaG4laiaadUgadaahaaWcbeqaaiaaikdaaaGccaaIPa aaaa@4029@  при n<N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaiY dacaWGobaaaa@3883@ , а также выполнено (26). Для оценки второго слагаемого заметим, что из разложения Тейлора для ln(1+ x n,k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gacaaIOaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamOBaiaaiYca caWGRbaabeaakiaaiMcaaaa@3EA9@ , k>N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai6 dacaWGobaaaa@3882@ , можно получить формулу

H k = n>N, nk ( x n,k +O( x n,k 2 )); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGRbaabeaakiaai2dadaaeqbqabSqaaqaaceqaaiaad6ga caaI+aGaamOtaiaaiYcaaeaacaWGUbGaeyiyIKRaam4Aaaaaaeqani abggHiLdGccaaIOaGaamiEamaaBaaaleaacaWGUbGaaGilaiaadUga aeqaaOGaey4kaSIaam4taiaaiIcacaWG4bWaa0baaSqaaiaad6gaca aISaGaam4AaaqaaiaaikdaaaGccaaIPaGaaGykaiaaiUdaaaa@4F70@

формула такого же вида имеет место для H ˜ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaaia WaaSbaaSqaaiaadUgaaeqaaaaa@37EF@ . Используя их и формулу оценки разности значений функции через ее производную, получим

|exp H k exp H ˜ k | max z[ H k , H ˜ k ] |expz|| H k H ˜ k | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiGacw gacaGG4bGaaiiCaiaadIeadaWgaaWcbaGaam4AaaqabaGccqGHsisl ciGGLbGaaiiEaiaacchaceWGibGbaGaadaWgaaWcbaGaam4Aaaqaba GccaaI8bWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF9PcHdaGfqbqabSqaaiaadQhacqGHiiIZcaaIBbGaamisamaaBa aabaGaam4AaaqabaGaaGilaiqadIeagaacamaaBaaabaGaam4Aaaqa baGaaGyxaaqabOqaaiGac2gacaGGHbGaaiiEaaaacaaI8bGaciyzai aacIhacaGGWbGaamOEaiaaiYhacaaI8bGaamisamaaBaaaleaacaWG RbaabeaakiabgkHiTiqadIeagaacamaaBaaaleaacaWGRbaabeaaki aaiYhacqWF9PcHaaa@689A@

C n>N, nk | x n,k x ˜ n,k |+C n>N, nk 1 k 2 (nk) 2 C n>N, nk μ ^ n n( n 2 k 2 ) + C k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF9PcHcaWGdbWaaabu aeqaleaaeaGabeaacaWGUbGaaGOpaiaad6eacaaISaaabaGaamOBai abgcMi5kaadUgaaaaabeqdcqGHris5aOGaaGiFaiaadIhadaWgaaWc baGaamOBaiaaiYcacaWGRbaabeaakiabgkHiTiqadIhagaacamaaBa aaleaacaWGUbGaaGilaiaadUgaaeqaaOGaaGiFaiabgUcaRiaadoea daaeqbqabSqaaqaaceqaaiaad6gacaaI+aGaamOtaiaaiYcaaeaaca WGUbGaeyiyIKRaam4AaaaaaeqaniabggHiLdGcdaWcaaqaaiaaigda aeaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaad6gacqGHsi slcaWGRbGaaGykamaaCaaaleqabaGaaGOmaaaaaaGccqWF9PcHcaWG dbWaaabuaeqaleaaeaGabeaacaWGUbGaaGOpaiaad6eacaaISaaaba GaamOBaiabgcMi5kaadUgaaaaabeqdcqGHris5aOWaaSaaaeaacuaH 8oqBgaqcamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gacaaIOaGaam OBamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadUgadaahaaWcbeqa aiaaikdaaaGccaaIPaaaaiabgUcaRmaalaaabaGaam4qaaqaaiaadU gadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa@8279@

где { μ ^ n } n0 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiqbeY 7aTzaajaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFamaaBaaaleaacaWG UbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+P sHcaaIWaaabeaakiabgIGiolaadYgadaWgaaWcbaGaaGOmaaqabaaa aa@4B87@  в силу асимптотических формул (22). При этом

n1, nk μ ^ n n( n 2 k 2 ) 1 k n1, nk μ ^ n n(nk) 1 k n=1 μ ^ n 2 n1, nk 1 n 2 (nk) 2 C k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aaeaGabeaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWF+PsHcaaIXaGaaGilaaqaaiaad6gacqGHGjsUcaWGRb aaaaqab0GaeyyeIuoakmaalaaabaGafqiVd0MbaKaadaWgaaWcbaGa amOBaaqabaaakeaacaWGUbGaaGikaiaad6gadaahaaWcbeqaaiaaik daaaGccqGHsislcaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaGykaaaa cqWF9PcHdaWcaaqaaiaaigdaaeaacaWGRbaaamaaqafabeWcbaabai qabaGaamOBaiab=5NkfkaaigdacaaISaaabaGaamOBaiabgcMi5kaa dUgaaaaabeqdcqGHris5aOWaaSaaaeaacuaH8oqBgaqcamaaBaaale aacaWGUbaabeaaaOqaaiaad6gacaaIOaGaamOBaiabgkHiTiaadUga caaIPaaaaiab=1NkeoaalaaabaGaaGymaaqaaiaadUgaaaWaaOaaae aadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGH ris5aOGafqiVd0MbaKaadaqhaaWcbaGaamOBaaqaaiaaikdaaaaabe aakmaakaaabaWaaabuaeqaleaaeaGabeaacaWGUbGae8NFQuOaaGym aiaaiYcaaeaacaWGUbGaeyiyIKRaam4AaaaaaeqaniabggHiLdGcda WcaaqaaiaaigdaaeaacaWGUbWaaWbaaSqabeaacaaIYaaaaOGaaGik aiaad6gacqGHsislcaWGRbGaaGykamaaCaaaleqabaGaaGOmaaaaaa aabeaakiab=1NkeoaalaaabaGaam4qaaqaaiaadUgadaahaaWcbeqa aiaaikdaaaaaaOGaaGilaaaa@8D82@

следовательно, |exp H k exp H ˜ k |=O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiGacw gacaGG4bGaaiiCaiaadIeadaWgaaWcbaGaam4AaaqabaGccqGHsisl ciGGLbGaaiiEaiaacchaceWGibGbaGaadaWgaaWcbaGaam4Aaaqaba GccaaI8bGaaGypaiaad+eacaaIOaGaaGymaiaai+cacaWGRbWaaWba aSqabeaacaaIYaaaaOGaaGykaaaa@48F2@  и d k d ˜ k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWG Rbaabeaakiaai2dacaWGpbGaaGikaiaaigdacaaIVaGaam4AamaaCa aaleqabaGaaGOmaaaakiaaiMcaaaa@4168@ .

Из асимптотик (22) следует, что

λ k λ ˜ k = ν k k , λ k πk 2l 2 =O(1), λ ˜ k πk 2l 2 =O(1), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaeyOeI0Iafq4UdWMbaGaadaWgaaWcbaGa am4AaaqabaGccaaI9aWaaSaaaeaacqaH9oGBdaWgaaWcbaGaam4Aaa qabaaakeaacaWGRbaaaiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaeyOeI0YaaeWaaeaadaWcaaqaaiabec8aWjaadUgaae aacaaIYaGaamiBaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaGccaaI9aGaam4taiaaiIcacaaIXaGaaGykaiaaiYcacaaMf8Uafq 4UdWMbaGaadaWgaaWcbaGaam4AaaqabaGccqGHsisldaqadaqaamaa laaabaGaeqiWdaNaam4AaaqaaiaaikdacaWGSbaaaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiaai2dacaWGpbGaaGikaiaaigda caaIPaGaaGilaaaa@6369@

где последовательность { ν k } k1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabe2 7aUnaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4Aamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B74@ . Тогда

k λ k πk 2l 2 d k λ ˜ k πk 2l 2 d ˜ k =k d k ( λ k λ ˜ k )+ λ ˜ k πk 2l 2 ( d k d ˜ k ) l 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aamaadm aabaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccqGHsisl daqadaqaamaalaaabaGaeqiWdaNaam4AaaqaaiaaikdacaWGSbaaaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aiaadsgadaWgaaWcbaGaam4AaaqabaGccqGHsisldaqadaqaaiqbeU 7aSzaaiaWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0YaaeWaaeaadaWc aaqaaiabec8aWjaadUgaaeaacaaIYaGaamiBaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaceWGKbGbaGaa daWgaaWcbaGaam4AaaqabaaakiaawUfacaGLDbaacaaI9aGaam4Aam aadmaabaGaamizamaaBaaaleaacaWGRbaabeaakiaaiIcacqaH7oaB daWgaaWcbaGaam4AaaqabaGccqGHsislcuaH7oaBgaacamaaBaaale aacaWGRbaabeaakiaaiMcacqGHRaWkdaqadaqaaiqbeU7aSzaaiaWa aSbaaSqaaiaadUgaaeqaaOGaeyOeI0YaaeWaaeaadaWcaaqaaiabec 8aWjaadUgaaeaacaaIYaGaamiBaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaakiaawIcacaGLPaaacaaIOaGaamizamaaBaaale aacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWGRbaa beaakiaaiMcaaiaawUfacaGLDbaacqGHiiIZcaWGSbWaaSbaaSqaai aaikdaaeqaaOGaaGilaaaa@7BFE@

и из (24) мы получаем, что { θ k } k1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeI 7aXnaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4Aamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B72@ .

2. Так как система {sinπkt/(2l)} k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaadUgacaWG0bGaaG4laiaaiIcacaaI YaGaamiBaiaaiMcacaaI9bWaaSbaaSqaaiaadUgatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaigdaaeqaaaaa @4F78@  является ортогональным базисом в пространстве L 2 (0,2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaikdacaWGSbGa aGykaaaa@3C3C@ , существует функция W L 2 (0,2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caaIYaGaamiBaiaaiMcaaaa@3E9C@ , для которой

0 2l W(t)sin πk 2l tdt=2 θ k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaaGOmaiaadYgaa0Gaey4kIipakiaadEfacaaIOaGa amiDaiaaiMcaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWjaadU gaaeaacaaIYaGaamiBaaaacaWG0bGaamizaiaadshacaaI9aGaaGOm aiabeI7aXnaaBaaaleaacaWGRbaabeaakiaai6caaaa@4D40@

Введем в рассмотрение функции

θ(ρ)= 0 2l W(t)sinρtdt,P(λ)=λ θ(ρ)/(2ρ)Δ(λ)+ Δ ˜ (λ) Δ * (λ) = θ(ρ) d 2 sin2ρl +λ( F ˜ (λ)F(λ)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaaG ikaiabeg8aYjaaiMcacaaI9aWaa8qCaeqaleaacaaIWaaabaGaaGOm aiaadYgaa0Gaey4kIipakiaadEfacaaIOaGaamiDaiaaiMcaciGGZb GaaiyAaiaac6gacqaHbpGCcaWG0bGaamizaiaadshacaaISaGaaGzb VlaadcfacaaIOaGaeq4UdWMaaGykaiaai2dacqaH7oaBdaWcaaqaai abeI7aXjaaiIcacqaHbpGCcaaIPaGaaG4laiaaiIcacaaIYaGaeqyW diNaaGykaiabgkHiTiabfs5aejaaiIcacqaH7oaBcaaIPaGaey4kaS IafuiLdqKbaGaacaaIOaGaeq4UdWMaaGykaaqaaiabfs5aenaaCaaa leqabaGaaGOkaaaakiaaiIcacqaH7oaBcaaIPaaaaiaai2dadaWcaa qaaiabeI7aXjaaiIcacqaHbpGCcaaIPaaabaGaamizamaaCaaaleqa baGaaGOmaaaakiGacohacaGGPbGaaiOBaiaaikdacqaHbpGCcaWGSb aaaiabgUcaRiabeU7aSjaaiIcaceWGgbGbaGaacaaIOaGaeq4UdWMa aGykaiabgkHiTiaadAeacaaIOaGaeq4UdWMaaGykaiaaiMcacaaIUa aaaa@88E3@

Функция P(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacqaH7oaBcaaIPaaaaa@39E5@  является целой. Действуя аналогично доказательству в части 1, можно показать, что | F ˜ (λ)F(λ)|M/ k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadA eagaacaiaaiIcacqaH7oaBcaaIPaGaeyOeI0IaamOraiaaiIcacqaH 7oaBcaaIPaGaaGiFamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq 1DVbacfaGae8xFQqOaamytaiaai+cacaWGRbWaaWbaaSqabeaacaaI Yaaaaaaa@4F7E@  на каждой окружности |λ|=[πk/(2l)+π/(4l )] 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeU 7aSjaaiYhacaaI9aGaaG4waiabec8aWjaadUgacaaIVaGaaGikaiaa ikdacaWGSbGaaGykaiabgUcaRiabec8aWjaai+cacaaIOaGaaGinai aadYgacaaIPaGaaGyxamaaCaaaleqabaGaaGOmaaaaaaa@4A17@ , k>N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai6 dacaWGobaaaa@3882@ . Отсюда следует, что функция P(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacqaH7oaBcaaIPaaaaa@39E5@  ограничена по модулю во всей плоскости, и по теореме Лиувилля P(λ) C 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacqaH7oaBcaaIPaGaeyyyIORaam4qamaaBaaaleaacaaIWaaabeaa aaa@3D5C@ . Таким образом, представление (23) доказано.

Построим Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  по формуле (21) с заданными λ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38CA@  с асимптотикой (22). Мы доказали, что данная функция имеет вид (23) с некоторыми W L 2 (0,2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caaIYaGaamiBaiaaiMcaaaa@3E9C@  и C 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaakiabgIGiodaa@3933@  C. Легко заметить, что функция W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@  определяется единственным образом:

W(t)= 1 l n=1 β n sin πn 2l t, β n πn l Δ πn 2l 2 + πn l (1) n d2 d 2 u δ n ,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaWGSbaaamaa qahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLd GccqaHYoGydaWgaaWcbaGaamOBaaqabaGcciGGZbGaaiyAaiaac6ga daWcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaacaWG0bGaaG ilaiaaywW7cqaHYoGydaWgaaWcbaGaamOBaaqabaGcdaWcaaqaaiab ec8aWjaad6gaaeaacaWGSbaaaiabfs5aenaabmaabaWaaeWaaeaada Wcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaaaiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkda Wcaaqaaiabec8aWjaad6gaaeaacaWGSbaaaiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaamOBaaaakiaadsgacqGHsislcaaIYa GaamizamaaCaaaleqabaGaaGOmaaaakiaadwhacqaH0oazdaWgaaWc baGaamOBaaqabaGccaaISaGaaGzbVlaad6gacqGHiiIZcaaIUaaaaa@75F9@  (27)

Согласно формуле (19), построенная Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  является характеристической функцией некоторой краевой задачи только в случае, когда для W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@  выполнено представление

WtdgltdglG1lt+d2g'ltG2ttldgtldglG1tl+d2g'tlG2lttl,2l (28)

с функциями g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ , G 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaaaaa@37AA@  и G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaaaaa@37AB@ , удовлетворяющими следующим условиям: [ (a)]

1. g W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@ , G 2 W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaaa@3FF1@  и G 1 (z)= z l g(t)dt,z[0,l]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaakiaaiIcacaWG6bGaaGykaiaai2dadaWdXbqa bSqaaiaadQhaaeaacaWGSbaaniabgUIiYdGccaWGNbGaaGikaiaads hacaaIPaGaamizaiaadshacaaISaGaaGzbVlaadQhacqGHiiIZcaaI BbGaaGimaiaaiYcacaWGSbGaaGyxaiaaiUdaaaa@4E28@

2. g(l)=2( C 0 +1)/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWGSbGaaGykaiaai2dacqGHsislcaaIYaGaaGikaiaadoeadaWg aaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaGaaGykaiaai+cacaWGKb WaaWbaaSqabeaacaaIYaaaaaaa@42EE@  и g(0)=u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaaIWaGaaGykaiaai2dacaWG1baaaa@3AC3@ ;

3. G 2 (l)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiaaiIcacaWGSbGaaGykaiaai2dacaaIWaaa aa@3B8C@ .

Легко заметить, что в случае представления (28) можно восстановить последовательно g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ , G 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaaaaa@37AA@  и G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaaaaa@37AB@  по формулам

g(t)= 1 2d {W(lt)W(l+t)}, G 1 (t)= t l g(w)dw, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiz aaaacaaI7bGaam4vaiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacq GHsislcaWGxbGaaGikaiaadYgacqGHRaWkcaWG0bGaaGykaiaai2ha caaISaGaaGzbVlaadEeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam iDaiaaiMcacaaI9aWaa8qCaeqaleaacaWG0baabaGaamiBaaqdcqGH RiI8aOGaam4zaiaaiIcacaWG3bGaaGykaiaadsgacaWG3bGaaGilaa aa@5B02@

G 2 (t)=dg(lt)dg(l) G 1 (lt)+ d 2 g (lt)W(2lt), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqGHsisl caWGKbGaam4zaiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsi slcaWGKbGaam4zaiaaiIcacaWGSbGaaGykaiabgkHiTiaadEeadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiBaiabgkHiTiaadshacaaIPa Gaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiqadEgagaqbaiaa iIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsislcaWGxbGaaGikai aaikdacaWGSbGaeyOeI0IaamiDaiaaiMcacaaISaaaaa@5D3F@  (29)

где t[0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadYgacaaIDbaaaa@3CA1@ . Обратно, пусть функция W(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaaaa@3931@  из представления (23) имеет вид (28). Рассмотрим функцию

q(t)= g(t), t[0,γ], G 2 (lt+a), t[a,b]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaiaai2dadaqabaqaauaabeqaciaaaeaacaWGNbGa aGikaiaadshacaaIPaGaaGilaaqaaiaadshacqGHiiIZcaaIBbGaaG imaiaaiYcacqaHZoWzcaaIDbGaaGilaaqaaiqadEeagaqbamaaBaaa leaacaaIYaaabeaakiaaiIcacaWGSbGaeyOeI0IaamiDaiabgUcaRi aadggacaaIPaGaaGilaaqaaiaadshacqGHiiIZcaaIBbGaamyyaiaa iYcacaWGIbGaaGyxaiaai6caaaaacaGL7baaaaa@5759@

Из условия (1) следует, что q W 2 1 [0,γ] W 2 1 [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacqaHZoWzcaaIDbGaeyykICSaam4vamaaDaaaleaacaaIYa aabaGaaGymaaaakiaaiUfacaWGHbGaaGilaiaadkgacaaIDbaaaa@4855@ . Сравнивая формулу (19) с (23) при условиях (2)(3), получим, что характеристическая функция краевой задачи (1)(2) с построенным q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  равна Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@ , и { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  является спектром данной краевой задачи.

Далее получим условия, из которых следует вид (28) функции W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@ . Для этого понадобятся две следующие леммы.

Лемма 2 (см. [12]) Пусть { γ k } k1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabeo 7aNnaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4Aamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B63@  и f L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGSbGaaGykaaaa@3DEF@ . Функция f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@  принадлежит классу W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaaaakiaaiUfacaaIWaGaaGilaiaadYga caaIDbaaaa@3CAE@  тогда и только тогда, когда имеет место асимптотика

0 l f(x)sin πk l + γ k xdx= l πk ( w 1 (1) k w 2 )+ γ ˜ k k ,k, { γ ˜ k } k1 l 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGa aGykaiGacohacaGGPbGaaiOBamaabmaabaWaaSaaaeaacqaHapaCca WGRbaabaGaamiBaaaacqGHRaWkcqaHZoWzdaWgaaWcbaGaam4Aaaqa baaakiaawIcacaGLPaaacaWG4bGaamizaiaadIhacaaI9aWaaSaaae aacaWGSbaabaGaeqiWdaNaam4AaaaacaaIOaGaam4DamaaBaaaleaa caaIXaaabeaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaam4AaaaakiaadEhadaWgaaWcbaGaaGOmaaqabaGccaaI PaGaey4kaSYaaSaaaeaacuaHZoWzgaacamaaBaaaleaacaWGRbaabe aaaOqaaiaadUgaaaGaaGilaiaaywW7caWGRbGaeyicI4SaaGilaiaa ywW7caaI7bGafq4SdCMbaGaadaWgaaWcbaGaam4AaaqabaGccaaI9b WaaSbaaSqaaiaadUgatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab=5NkfkaaigdaaeqaaOGaeyicI4SaamiBamaaBaaale aacaaIYaaabeaakiaaiUdaaaa@7CDE@

при этом w 1 =f(0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaakiaai2dacaWGMbGaaGikaiaaicdacaaIPaaa aa@3BB5@ , w 2 =f(l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIYaaabeaakiaai2dacaWGMbGaaGikaiaadYgacaaIPaaa aa@3BED@ .

Лемма 3 Пусть f L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGSbGaaGykaaaa@3DEF@ . Функция f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@  принадлежит классу W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGOmaaaakiaaiUfacaaIWaGaaGilaiaadYga caaIDbaaaa@3CAF@  тогда и только тогда, когда

0 l f(x)cos z k xdx= 1 z k 2 (( 1) k v 2 v 1 + γ ˜ k ),k, { γ ˜ k } k1 l 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGa aGykaiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaam4Aaaqaba GccaWG4bGaamizaiaadIhacaaI9aWaaSaaaeaacaaIXaaabaGaamOE amaaDaaaleaacaWGRbaabaGaaGOmaaaaaaGccaaIOaGaaGikaiabgk HiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamODamaaBaaa leaacaaIYaaabeaakiabgkHiTiaadAhadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcuaHZoWzgaacamaaBaaaleaacaWGRbaabeaakiaaiMca caaISaGaaGzbVlaadUgacqGHiiIZcaaISaGaaGzbVlaaiUhacuaHZo WzgaacamaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4A amrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQu OaaGymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaOGa aG4oaaaa@7515@  (30)

при этом v 1 = f (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIXaaabeaakiaai2daceWGMbGbauaacaaIOaGaaGimaiaa iMcaaaa@3BC0@  и v 2 = f (l)+f(l)/d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaai2daceWGMbGbauaacaaIOaGaamiBaiaa iMcacqGHRaWkcaWGMbGaaGikaiaadYgacaaIPaGaaG4laiaadsgaaa a@41BD@ .

Доказательство. Необходимость. Если f W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@ , то формула (30), в которой

v 1 = f (0), v 2 = f (l)+ f(l) d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIXaaabeaakiaai2daceWGMbGbauaacaaIOaGaaGimaiaa iMcacaaISaGaaGzbVlaadAhadaWgaaWcbaGaaGOmaaqabaGccaaI9a GabmOzayaafaGaaGikaiaadYgacaaIPaGaey4kaSYaaSaaaeaacaWG MbGaaGikaiaadYgacaaIPaaabaGaamizaaaaaaa@4921@

получается двукратным интегрированием по частям.

Достаточность. Пусть выполнена формула (30). Построим такую функцию g W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1F@ , что её коэффициенты по системе {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@  совпадают с коэффициентами f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@ . Найдем g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@  в виде

g(x)= x l g ˜ (t)dt+C. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiaai2dadaWdXbqabSqaaiaadIhaaeaacaWGSbaa niabgUIiYdGcceWGNbGbaGaacaaIOaGaamiDaiaaiMcacaWGKbGaam iDaiabgUcaRiaadoeacaaIUaaaaa@460B@

Вычисляя коэффициент при cos z k t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOEamaaBaaaleaacaWGRbaabeaakiaadshaaaa@3BE8@ , с помощью интегрирования по частям получим

Csin z k l z k + 1 z k 0 l g ˜ (t)sin z k tdt= 1 z k 2 (( 1) k v 2 v 1 + γ ˜ k ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGdbGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGRbaabeaa kiaadYgaaeaacaWG6bWaaSbaaSqaaiaadUgaaeqaaaaakiabgUcaRm aalaaabaGaaGymaaqaaiaadQhadaWgaaWcbaGaam4AaaqabaaaaOWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGabm4zayaaia GaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaamOEamaaBaaa leaacaWGRbaabeaakiaadshacaWGKbGaamiDaiaai2dadaWcaaqaai aaigdaaeaacaWG6bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaaakiaa iIcacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaa GccaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamODamaaBaaa leaacaaIXaaabeaakiabgUcaRiqbeo7aNzaaiaWaaSbaaSqaaiaadU gaaeqaaOGaaGykaiaai6caaaa@654D@

Тогда g ˜ (x)=h(x)C F s (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaaia GaaGikaiaadIhacaaIPaGaaGypaiaadIgacaaIOaGaamiEaiaaiMca cqGHsislcaWGdbGaamOramaaBaaaleaacaWGZbaabeaakiaaiIcaca WG4bGaaGykaaaa@437A@ , где функции h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E4@  и F s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGZbaabeaaaaa@37E6@  определяются единственным образом равенствами

0 l h(t)sin z k tdt= 1 z k (( 1) k v 2 v 1 + γ ˜ k ), 0 l F s (t)sin z k tdt=sin z k l,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiAaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaam4Aaaqaba GccaWG0bGaamizaiaadshacaaI9aWaaSaaaeaacaaIXaaabaGaamOE amaaBaaaleaacaWGRbaabeaaaaGccaaIOaGaaGikaiabgkHiTiaaig dacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamODamaaBaaaleaacaaI YaaabeaakiabgkHiTiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcuaHZoWzgaacamaaBaaaleaacaWGRbaabeaakiaaiMcacaaISaGa aGzbVpaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadA eadaWgaaWcbaGaam4CaaqabaGccaaIOaGaamiDaiaaiMcaciGGZbGa aiyAaiaac6gacaWG6bWaaSbaaSqaaiaadUgaaeqaaOGaamiDaiaads gacaWG0bGaaGypaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGa am4AaaqabaGccaWGSbGaaGilaiaaywW7caWGRbWefv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaIXaGaaGOlaaaa @8050@  (31)

Из формулы (11) следует, что k(sin z k l (1) k l/(dπk)) l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI caciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaadUgaaeqaaOGa amiBaiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba Gaam4AaaaakiaadYgacaaIVaGaaGikaiaadsgacqaHapaCcaWGRbGa aGykaiaaiMcacqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4D5D@ . Согласно лемме 2 выполнены включения h, F s W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiY cacaWGgbWaaSbaaSqaaiaadohaaeqaaOGaeyicI4Saam4vamaaDaaa leaacaaIYaaabaGaaGymaaaakiaaiUfacaaIWaGaaGilaiaadYgaca aIDbaaaa@41CE@ . Для построения искомой g W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1F@  остается выбрать C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  таким образом, чтобы

0 l f(t)dt= 0 l g(t)dt= 0 l x b h(t)dtC 0 l t F s (t)dt+Cl. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiaadsgacaWG0bGaaGypamaapehabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadEgacaaIOaGaamiDaiaaiMcacaWGKbGaamiD aiaai2dadaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcda WdXbqabSqaaiaadIhaaeaacaWGIbaaniabgUIiYdGccaWGObGaaGik aiaadshacaaIPaGaamizaiaadshacqGHsislcaWGdbWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiDaiaadAeadaWgaaWc baGaam4CaaqabaGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgU caRiaadoeacaWGSbGaaGOlaaaa@6817@

Эта постоянная C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  существует, если

0 l t F s (t)dtl. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiDaiaadAeadaWgaaWc baGaam4CaaqabaGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgc Mi5kaadYgacaaIUaaaaa@44B8@  (32)

Докажем от противного, что неравенство (32) выполняется. Построим целую функцию

F(λ)= λ z 0 2 ρ c 2 (λ) sinρl 0 l F s (t)sinρtdt , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaaGypamaalaaabaGaeq4UdWMaeyOeI0IaamOE amaaDaaaleaacaaIWaaabaGaaGOmaaaaaOqaaiabeg8aYjaadogada WgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdWMaaGykaaaadaqadaqa aiGacohacaGGPbGaaiOBaiabeg8aYjaadYgacqGHsisldaWdXbqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGgbWaaSbaaSqaaiaa dohaaeqaaOGaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaeq yWdiNaamiDaiaadsgacaWG0baacaGLOaGaayzkaaGaaGilaaaa@5F50@

где { z n 2 } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadQ hadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaI9bWaaSbaaSqaaiaa d6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5 Nkfkaaicdaaeqaaaaa@4816@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ последовательность нулей c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@ . Действуя так же, как в доказательстве леммы 1, получим F(λ)C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaeyyyIORaam4qaaaa@3C6C@ , откуда следует

sinρl 0 l F s (t)sinρtdt Cρ c 2 (λ) λ z 0 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaeqyWdiNaamiBaiabgkHiTmaapehabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadAeadaWgaaWcbaGaam4CaaqabaGcca aIOaGaamiDaiaaiMcaciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0bGa amizaiaadshacqGHHjIUdaWcaaqaaiaadoeacqaHbpGCcaWGJbWaaS baaSqaaiaaikdaaeqaaOGaaGikaiabeU7aSjaaiMcaaeaacqaH7oaB cqGHsislcaWG6bWaa0baaSqaaiaaicdaaeaacaaIYaaaaaaakiaai6 caaaa@5BAF@

Подставляя в последнее равенство ρ=πn/l+π/(2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabec8aWjaad6gacaaIVaGaamiBaiabgUcaRiabec8aWjaai+ca caaIOaGaaGOmaiaadYgacaaIPaaaaa@4342@ , применяя лемму Римана - Лебега, находим C=1/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacqGHsislcaaIXaGaaG4laiaadsgadaahaaWcbeqaaiaaikdaaaaa aa@3BB9@ . Тогда

0 l F s (t)sinρtdt 1 d 2 (λ z 0 2 ) [(1 z 0 2 )sinρl+dρcosρl]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOramaaBaaaleaacaWG ZbaabeaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBaiabeg 8aYjaadshacaWGKbGaamiDaiabggMi6oaalaaabaGaaGymaaqaaiaa dsgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaeyOeI0Iaam OEamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaaiMcaaaGaaG4waiaa iIcacaaIXaGaeyOeI0IaamOEamaaDaaaleaacaaIWaaabaGaaGOmaa aakiaaiMcaciGGZbGaaiyAaiaac6gacqaHbpGCcaWGSbGaey4kaSIa amizaiabeg8aYjGacogacaGGVbGaai4Caiabeg8aYjaadYgacaaIDb GaaGOlaaaa@67D7@  (33)

Ясно, что F s (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGZbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A4E@  однозначно определяется по коэффициентам

0 l F s (t)sin πn l tdt= πn dl (1) n ( πn l ) 2 z 0 2 , z 0 πn l ,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOramaaBaaaleaacaWG ZbaabeaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBamaala aabaGaeqiWdaNaamOBaaqaaiaadYgaaaGaamiDaiaadsgacaWG0bGa aGypamaalaaabaGaeqiWdaNaamOBaaqaaiaadsgacaWGSbaaamaala aabaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaa aaGcbaGaaGikamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaGaaG ykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadQhadaqhaaWcbaGa aGimaaqaaiaaikdaaaaaaOGaaGilaiaaywW7caWG6bWaaSbaaSqaai aaicdaaeqaaOGaeyiyIK7aaSaaaeaacqaHapaCcaWGUbaabaGaamiB aaaacaaISaGaaGzbVlaad6gacqGHiiIZcaaIUaaaaa@6A39@

В силу полноты системы {sinπnt/l} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaad6gacaWG0bGaaG4laiaadYgacaaI 9bWaaSbaaSqaaiaad6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab=5Nkfkaaigdaaeqaaaaa@4D5D@  имеем F s (t)=sin z 0 t/(dsin z 0 l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGZbaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqGHsisl ciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaaicdaaeqaaOGaam iDaiaai+cacaaIOaGaamizaiGacohacaGGPbGaaiOBaiaadQhadaWg aaWcbaGaaGimaaqabaGccaWGSbGaaGykaaaa@4A81@ . Подставив данную функцию в (33), приходим к противоречию. Следовательно, неравенство (32) выполняется.

Мы доказали, что существует функция g W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1F@  с такими же коэффициентами по системе {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@ , что и у f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@ . В силу полноты этой системы получим f=g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaai2 dacaWGNbaaaa@3895@ . Сравнивая (30) с формулой, записанной по необходимости, приходим к v 1 = f (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIXaaabeaakiaai2daceWGMbGbauaacaaIOaGaaGimaiaa iMcaaaa@3BC0@  и v 2 = f (l)+f(l)/d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaai2daceWGMbGbauaacaaIOaGaamiBaiaa iMcacqGHRaWkcaWGMbGaaGikaiaadYgacaaIPaGaaG4laiaadsgaaa a@41BD@ .

Теорема 4 Для того чтобы функция W(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaaaa@3931@  из представления (23) имела вид (28) с условиями (1)(2), достаточно выполнения следующих асимптотик:

Δ πn l 2 =d+d l πn 2 [c (1) n u+ κ n ],c 2( C 0 +1) d 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa GaaGypaiabgkHiTiaadsgacqGHRaWkcaWGKbWaaeWaaeaadaWcaaqa aiaadYgaaeaacqaHapaCcaWGUbaaaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiaaiUfacaWGJbGaeyOeI0IaaGikaiabgkHiTiaa igdacaaIPaWaaWbaaSqabeaacaWGUbaaaOGaamyDaiabgUcaRiabeQ 7aRnaaBaaaleaacaWGUbaabeaakiaai2facaaISaGaaGzbVlaadoga cqGHsisldaWcaaqaaiaaikdacaaIOaGaam4qamaaBaaaleaacaaIWa aabeaakiabgUcaRiaaigdacaaIPaaabaGaamizamaaCaaaleqabaGa aGOmaaaaaaGccaaISaaaaa@6268@  (34)

Δ( z n 2 )= sin z n l z n 3 [ h 2 (1) n h 1 + η n ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp amaalaaabaGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUb aabeaakiaadYgaaeaacaWG6bWaa0baaSqaaiaad6gaaeaacaaIZaaa aaaakiaaiUfacaWGObWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG ikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaaaOGaamiA amaaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaaca WGUbaabeaakiaai2faaaa@53B9@  (35)

с некоторыми h 1 , h 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGObWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4maaa@3BEE@  и последовательностями { κ n } n1 ,{ η n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeQ 7aRnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccaaISaGaaG4EaiabeE7aOnaaBaaaleaacaWGUbaabeaa kiaai2hadaWgaaWcbaGaamOBaiab=5NkfkaaigdaaeqaaOGaeyicI4 SaamiBamaaBaaaleaacaaIYaaabeaaaaa@54A1@ .

Доказательство. Достаточно доказать, что для построенных по формуле (29) функций выполняются включения g W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@  и G 2 W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaaa@3FF1@ , при этом g(0)=u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaaIWaGaaGykaiaai2dacaWG1baaaa@3AC3@ , g(l)=c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWGSbGaaGykaiaai2dacaWGJbaaaa@3AE8@ . Подставив в (23) ρ=πn/l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabec8aWjaad6gacaaIVaGaamiBaaaa@3CD8@ , получаем

Δ πn l 2 =d+ l 2πn 0 2l W(t)sin πn l tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa GaaGypaiabgkHiTiaadsgacqGHRaWkdaWcaaqaaiaadYgaaeaacaaI YaGaeqiWdaNaamOBaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaam iBaaqdcqGHRiI8aOGaam4vaiaaiIcacaWG0bGaaGykaiGacohacaGG PbGaaiOBamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaGaamiDai aadsgacaWG0bGaaGOlaaaa@5930@

Разбивая последний интеграл на два, имеем

0 l W(lt)sin πn l (lt)dt+ 0 l W(l+t)sin πn l (l+t)dt=( 1) n+1 0 l 2dg(t)sin πn l tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vaiaaiIcacaWGSbGa eyOeI0IaamiDaiaaiMcaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec 8aWjaad6gaaeaacaWGSbaaaiaaiIcacaWGSbGaeyOeI0IaamiDaiaa iMcacaWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadEfacaaIOaGaamiBaiabgUcaRiaadshacaaI PaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCcaWGUbaabaGaam iBaaaacaaIOaGaamiBaiabgUcaRiaadshacaaIPaGaamizaiaadsha caaI9aGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUb Gaey4kaSIaaGymaaaakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Ga ey4kIipakiaaikdacaWGKbGaam4zaiaaiIcacaWG0bGaaGykaiGaco hacaGGPbGaaiOBamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaGa amiDaiaadsgacaWG0bGaaGOlaaaa@7C44@

Таким образом, из (35) следует асимптотика

0 l g(t)sin πn l tdt= l πn [u (1) n c (1) n κ n ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4zaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdaNaamOBaaqaai aadYgaaaGaamiDaiaadsgacaWG0bGaaGypamaalaaabaGaamiBaaqa aiabec8aWjaad6gaaaGaaG4waiaadwhacqGHsislcaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaad6gaaaGccaWGJbGaeyOeI0Ia aGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaaaOGaeq OUdS2aaSbaaSqaaiaad6gaaeqaaOGaaGyxaiaai6caaaa@5CC5@

Согласно лемме 2 имеем g W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@ , а также g(0)=u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaaIWaGaaGykaiaai2dacaWG1baaaa@3AC3@ , g(l)=c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWGSbGaaGykaiaai2dacaWGJbaaaa@3AE8@ . Подставив в (23) ρ= z n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiaadQhadaWgaaWcbaGaamOBaaqabaaaaa@3A9C@ , находим

Δ( z n 2 )= ( C 0 +1)sin2 z n l z n + d 2 u sin z n l z n + sin 2 z n l d z n 2 + 1 2 z n 0 2l W(t)sin z n tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp amaalaaabaGaaGikaiaadoeadaWgaaWcbaGaaGimaaqabaGccqGHRa WkcaaIXaGaaGykaiGacohacaGGPbGaaiOBaiaaikdacaWG6bWaaSba aSqaaiaad6gaaeqaaOGaamiBaaqaaiaadQhadaWgaaWcbaGaamOBaa qabaaaaOGaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiaadwha daWcaaqaaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaa qabaGccaWGSbaabaGaamOEamaaBaaaleaacaWGUbaabeaaaaGccqGH RaWkdaWcaaqaamaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPb GaaiOBaaaacaWG6bWaaSbaaSqaaiaad6gaaeqaaOGaamiBaaqaaiaa dsgacaWG6bWaa0baaSqaaiaad6gaaeaacaaIYaaaaaaakiabgUcaRm aalaaabaGaaGymaaqaaiaaikdacaWG6bWaaSbaaSqaaiaad6gaaeqa aaaakmaapehabeWcbaGaaGimaaqaaiaaikdacaWGSbaaniabgUIiYd GccaWGxbGaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaamOE amaaBaaaleaacaWGUbaabeaakiaadshacaWGKbGaamiDaiaai6caaa a@76E7@

Преобразуем интеграл следующим образом:

1 2 0 2l W(t)sin z n tdt= 1 2 0 l W(t)sin z n tdt+ 1 2 0 l W(2lt)sin z n (2lt)dt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaamiB aaqdcqGHRiI8aOGaam4vaiaaiIcacaWG0bGaaGykaiGacohacaGGPb GaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGaamizaiaa dshacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWGxbGaaGikaiaadshacaaI PaGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUbaabeaaki aadshacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGymaaqaaiaaikda aaWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vai aaiIcacaaIYaGaamiBaiabgkHiTiaadshacaaIPaGaci4CaiaacMga caGGUbGaamOEamaaBaaaleaacaWGUbaabeaakiaaiIcacaaIYaGaam iBaiabgkHiTiaadshacaaIPaGaamizaiaadshacaaI9aaaaa@71ED@

= 0 l dg(lt)sin z n tdt+sin z n l 0 l W(2lt)cos z n (lt)dt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadsgacaWGNbGa aGikaiaadYgacqGHsislcaWG0bGaaGykaiGacohacaGGPbGaaiOBai aadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGaamizaiaadshacqGH RaWkciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6gaaeqaaO GaamiBamaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaa dEfacaaIOaGaaGOmaiaadYgacqGHsislcaWG0bGaaGykaiGacogaca GGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiB aiabgkHiTiaadshacaaIPaGaamizaiaadshacaaI9aaaaa@656F@

=sin z n l 0 l W(l+t)cos z n tdt+d 0 l g(t)sin z n (lt)dt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vaiaaiI cacaWGSbGaey4kaSIaamiDaiaaiMcaciGGJbGaai4BaiaacohacaWG 6bWaaSbaaSqaaiaad6gaaeqaaOGaamiDaiaadsgacaWG0bGaey4kaS IaamizamaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaa dEgacaaIOaGaamiDaiaaiMcaciGGZbGaaiyAaiaac6gacaWG6bWaaS baaSqaaiaad6gaaeqaaOGaaGikaiaadYgacqGHsislcaWG0bGaaGyk aiaadsgacaWG0bGaaGypaaaa@62CA@

=sin z n l 0 l W(l+t)cos z n tdt+dsin z n l 0 l g(t)cos z n tdtdcos z n l 0 l g(t)sin z n tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vaiaaiI cacaWGSbGaey4kaSIaamiDaiaaiMcaciGGJbGaai4BaiaacohacaWG 6bWaaSbaaSqaaiaad6gaaeqaaOGaamiDaiaadsgacaWG0bGaey4kaS IaamizaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqa baGccaWGSbWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aO Gaam4zaiaaiIcacaWG0bGaaGykaiGacogacaGGVbGaai4CaiaadQha daWgaaWcbaGaamOBaaqabaGccaWG0bGaamizaiaadshacqGHsislca WGKbGaci4yaiaac+gacaGGZbGaamOEamaaBaaaleaacaWGUbaabeaa kiaadYgadaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca WGNbGaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaamOEamaa BaaaleaacaWGUbaabeaakiaadshacaWGKbGaamiDaiaai6caaaa@7C6A@

Выполняя подстановку cos z n l=[d z n 1/(d z n )]sin z n l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOEamaaBaaaleaacaWGUbaabeaakiaadYgacaaI9aGa aG4waiaadsgacaWG6bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaG ymaiaai+cacaaIOaGaamizaiaadQhadaWgaaWcbaGaamOBaaqabaGc caaIPaGaaGyxaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaam OBaaqabaGccaWGSbaaaa@4E4F@  в последнем слагаемом и интегрируя по частям, получаем

d 2 z n 1 z n 0 l g(t)sin z n tdt= d 2 uccos z n l+ 0 l g (t)cos z n tdt + 0 l G 1 (t)cos z n tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGKbWaaWbaaSqabeaacaaIYaaaaOGaamOEamaaBaaaleaacaWGUbaa beaakiabgkHiTmaalaaabaGaaGymaaqaaiaadQhadaWgaaWcbaGaam OBaaqabaaaaaGccaGLOaGaayzkaaWaa8qCaeqaleaacaaIWaaabaGa amiBaaqdcqGHRiI8aOGaam4zaiaaiIcacaWG0bGaaGykaiGacohaca GGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGaamiz aiaadshacaaI9aGaamizamaaCaaaleqabaGaaGOmaaaakmaadmaaba GaamyDaiabgkHiTiaadogaciGGJbGaai4BaiaacohacaWG6bWaaSba aSqaaiaad6gaaeqaaOGaamiBaiabgUcaRmaapehabeWcbaGaaGimaa qaaiaadYgaa0Gaey4kIipakiqadEgagaqbaiaaiIcacaWG0bGaaGyk aiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaaqabaGcca WG0bGaamizaiaadshaaiaawUfacaGLDbaacqGHRaWkdaWdXbqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGhbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiaadshacaaIPaGaci4yaiaac+gacaGGZbGaamOE amaaBaaaleaacaWGUbaabeaakiaadshacaWGKbGaamiDaiaai6caaa a@7DCF@

В итоге с учетом (29) и c=2( C 0 +1)/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacqGHsislcaaIYaGaaGikaiaadoeadaWgaaWcbaGaaGimaaqabaGc cqGHRaWkcaaIXaGaaGykaiaai+cacaWGKbWaaWbaaSqabeaacaaIYa aaaaaa@4094@  имеем

Δ( z n 2 )= sin 2 z n l d z n 2 + sin z n l z n 0 l f(t)cos z n tdt,f(t)= G 2 (lt)2 G 1 (t)dg(l). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp amaalaaabaWaaubiaeqaleqabaGaaGOmaaGcbaGaci4CaiaacMgaca GGUbaaaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbaabaGaamiz aiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaOGaey4kaSYaaS aaaeaaciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6gaaeqa aOGaamiBaaqaaiaadQhadaWgaaWcbaGaamOBaaqabaaaaOWaa8qCae qaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG 0bGaaGykaiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaa qabaGccaWG0bGaamizaiaadshacaaISaGaaGzbVlaadAgacaaIOaGa amiDaiaaiMcacaaI9aGaeyOeI0Iaam4ramaaBaaaleaacaaIYaaabe aakiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsislcaaIYaGa am4ramaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiabgk HiTiaadsgacaWGNbGaaGikaiaadYgacaaIPaGaaGOlaaaa@7864@

Приравнивая полученное выражение к правой части (35) и деля на z n 1 sin z n l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa aaleaacaWGUbaabaGaeyOeI0IaaGymaaaakiGacohacaGGPbGaaiOB aiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbaaaa@3FB9@ , приходим к формуле

0 l f(t)cos z n tdt= 1 z n 2 [ h 2 (1) n h 1 + η n ] sin z n l z n d = 1 z n 2 h 2 (1) n h 1 + 1 d 2 + η ˜ n ,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaaqaba GccaWG0bGaamizaiaadshacaaI9aWaaSaaaeaacaaIXaaabaGaamOE amaaDaaaleaacaWGUbaabaGaaGOmaaaaaaGccaaIBbGaamiAamaaBa aaleaacaaIYaaabeaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGyk amaaCaaaleqabaGaamOBaaaakiaadIgadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaIDbGaeyOe I0YaaSaaaeaaciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6 gaaeqaaOGaamiBaaqaaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG Kbaaaiaai2dadaWcaaqaaiaaigdaaeaacaWG6bWaa0baaSqaaiaad6 gaaeaacaaIYaaaaaaakmaadmaabaGaamiAamaaBaaaleaacaaIYaaa beaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba GaamOBaaaakmaabmaabaGaamiAamaaBaaaleaacaaIXaaabeaakiab gUcaRmaalaaabaGaaGymaaqaaiaadsgadaahaaWcbeqaaiaaikdaaa aaaaGccaGLOaGaayzkaaGaey4kaSIafq4TdGMbaGaadaWgaaWcbaGa amOBaaqabaaakiaawUfacaGLDbaacaaISaGaaGzbVlaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaigda caaISaaaaa@8A2E@

где { η ˜ n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiqbeE 7aOzaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFamaaBaaaleaacaWG UbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+P sHcaaIXaaabeaakiabgIGiolaadYgadaWgaaWcbaGaaGOmaaqabaaa aa@4B7D@ . Применив лемму 3, получим f W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@  и G 2 W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaaa@3FF1@ .

Из утверждения 3 следует, что асимптотики (34) и (35) являются необходимыми для того, чтобы Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  была характеристической функцией. Основываясь на вышесказанном, сформулируем следующий результат.

Теорема 5 Для того чтобы последовательность { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  являлась спектром некоторой краевой задачи (1)(2) в случае (17), необходимыми и достаточными являются следующие условия: [(i)]

1. выполнены асимптотические формулы (22);

2. построенная по формуле (21) функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  удовлетворяет условиям (34), (35);

3. функция G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaaaaa@37AB@ , построенная с помощью последовательного применения формул (21), (27) и (29), обращается в нуль в точке b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DE@ .

×

Об авторах

Мария Андреевна Кузнецова

Саратовский государственный университет им. Н. Г. Чернышевского

Автор, ответственный за переписку.
Email: kuznetsovama@info.sgu.ru
Россия, Саратов

Список литературы

  1. Кузнецова М. А. О восстановлении дифференциальных операторов Штурма—Лиувилля на временных шкалах// Мат. заметки. — 2021. — 109, № 1. — С. 82–100
  2. Левитан Б. М. Обратные задачи Штурма—Лиувилля. — М.: Наука, 1984
  3. Марченко В. А. Операторы Штурма—Лиувилля и их приложения. — Киев: Наукова думка, 1977
  4. Мышкис А. Д. Линейные дифференциальные уравнения с запаздывающим аргументом. — М.: Наука, 1972.
  5. Нахушев А. М. Нагруженные уравнения и их применение. — М.: Наука, 2012.
  6. Adalar I˙., Ozkan A. S. An interior inverse Sturm–Liouville problem on a time scale// Anal. Math. Phys. — 2020. — 10. — 58.
  7. Albeverio S., Hryniv R. O., Nizhnik L. P. Inverse spectral problems for nonlocal Sturm–Liouville operators// Inverse Probl. — 2007. — 23, № 2. — P. 523–535
  8. Ambarzumyan V. A. U¨ber eine Frage der Eigenwerttheorie// 53 — 1929. — P. 690–695
  9. Bohner M., Peterson A. Advances in Dynamic Equations on Time Scales. — Boston: Birkha¨user, 2003
  10. Bohner M., Peterson A. Dynamic Equations on Time Scales. — Boston: Birkha¨user, 2001
  11. Bondarenko N. P., Buterin S. A., Vasiliev S. V. An inverse spectral problem for Sturm–Liouville operators with frozen argument// J. Math. Anal. Appl. — 2019. — 472, № 1. — P. 1028–1041
  12. Buterin S. A. On an inverse spectral problem for a convolution integro-differential operator// Res. Math. — 2007. — 50, № 3. — P. 173–181.
  13. Buterin S., Kuznetsova M. On the inverse problem for Sturm–Liouville-type operators with frozen argument: rational case// Comp. Appl. Math. — 2020. — 39, № 1. — P. 1–15.
  14. Buterin S. A., Vasiliev S. V. On recovering a Sturm–Liouville-type operator with the frozen argument rationally proportioned to the interval length// J. Inverse and Ill-Posed Probl. — 2019. — 27, № 3. — P. 429–438.
  15. Freiling G., Yurko V. A. Inverse Sturm–Liouville Problems and Their Applications. — New York: NOVA Science, 2001
  16. Hale J. Theory of Functional-Differential Equations. — New York: Springer-Verlag, 1977
  17. Hilger S. Analysis on measure chains—a unified approach to continuous and discrete calculus// Res. Math. — 1990. — 18, № 1. — P. 18–56.
  18. Hu Y.-T., Bondarenko N. P., Yang C.-F. Traces and inverse nodal problem for Sturm–Liouville operators with frozen argument// Appl. Math. Lett. — 2020. — 102. — 106096
  19. Kuznetsova M. A. A uniqueness theorem on inverse spectral problems for the Sturm–Liouville differential operators on time scales// Res. Math — 2020. — 75. — 44
  20. Kuznetsova M. A., Buterin S. A., Yurko V. A. On inverse spectral problems for Sturm–Liouville differential operators on closed sets// Lobachevskii J. Math. — 2021. — 42, № 6. — P. 1201–1209
  21. Nizhnik L. P. Inverse nonlocal Sturm–Liouville problem// Inverse Probl. — 2010. — 26, № 12. — 125006
  22. Niven I. Irrational Numbers. — New Jersey: Mathematical Association of America, 1956
  23. Ozkan S. Ambarzumyan-type theorems on a time scale// J. Inverse Ill-Posed Probl. — 2018. — 26, № 5. — P. 633–637.
  24. Ozkan A. S., Adalar I˙. Half-inverse Sturm–Liouville problem on a time scale// Inverse Probl. — 2020. — 36, № 2. — 025015.
  25. Wang Yu P., Zhang M., Zhao W., Wei X. Reconstruction for Sturm–Liouville operators with frozen argument for irrational cases// Appl. Math. Lett. — 2021. — 111. — 106590. 26. Yurko V. Inverse problems for Sturm–Liouville differential operators on closed sets// Tamkang J. Math. — 2019. — 50, № 3. — P. 199–206.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кузнецова М.А., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).