Обратная задача для оператора Штурма—Лиувилля с замороженным аргументом на временной шкале

Обложка

Цитировать

Полный текст

Аннотация

В статье изучается задача восстановления потенциала в уравнении Штурма"– Лиувилля с замороженным аргументом на временной шкале по спектру краевой задачи Дирихле. Рассматривается случай временной шкалы, состоящей из двух отрезков, и замороженного аргумента в конце первого отрезка. Получена теорема единственности и алгоритм решения обратной задачи вместе с необходимыми и достаточными условиями ее разрешимости. Рассмотренный случай существенно отличается от случая классического оператора Штурма"– Лиувилля с замороженным аргументом.

Полный текст

1. Введение

Целью статьи является исследование обратной спектральной задачи для оператора Штурма - Лиувилля с замороженным аргументом на временной шкале. Под временными шкалами обычно подразумеваются произвольные замкнутые множества T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabgA Oindaa@38D1@ . Дифференциальные операторы на временных шкалах обобщают классические дифференциальные и разностные операторы, поскольку содержат Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@  - производную (см. [9, 10, 17]).

В последнее время возник интерес к обратным спектральным задачам для дифференциальных операторов на временных шкалах (см. [1, 6, 19, 20, 23, 24, 26]). Подобные задачи заключаются в восстановлении операторов по их спектральным характеристикам. Наиболее полные результаты в этом направлении получены для классического оператора Штурма - Лиувилля на отрезке (см. [2, 3, 15]). Постановка и изучение обратных задач существенно зависят от структуры рассматриваемой временной шкалы, что приводит к необходимости тех или иных ограничений. Наиболее общий вид временных шкал, на которых к настоящему моменту получено решение обратной задачи, представляет собой объединение конечного числа отрезков и изолированных точек (см. [1, 19]).

Обратные задачи для оператора Штурма - Лиувилля с замороженным аргументом на отрезке изучались в ряде работ [7, 11, 13, 14, 18, 21, 25]. Данный оператор определяется дифференциальным выражением Штурма - Лиувилля с замороженным аргументом

ly(x) y (x)+q(x)y(γ),0<x<r, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaam yEaiaaiIcacaWG4bGaaGykaiabgkHiTiqadMhagaqbgaqbaiaaiIca caWG4bGaaGykaiabgUcaRiaadghacaaIOaGaamiEaiaaiMcacaWG5b GaaGikaiabeo7aNjaaiMcacaaISaGaaGzbVlaaicdacaaI8aGaamiE aiaaiYdacaWGYbGaaGilaaaa@4E64@

где γ[0,r] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey icI4SaaG4waiaaicdacaaISaGaamOCaiaai2faaaa@3D55@  фиксировано. В отличие от классического оператора Штурма - Лиувилля, операторы с замороженным аргументом являются нелокальными. По этой причине методы классической теории обратных задач [2, 3, 15] для них неприменимы. В то же время, нелокальные операторы имеют приложения во многих областях математики и естествознания (см. [4, 5, 16]).

Задача восстановления потенциала q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  по спектру краевой задачи

ly=λy, y (α) (0)= y (β) (r)=0,α,β{0,1}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4eHWMaam yEaiaai2dacqaH7oaBcaWG5bGaaGilaiaaywW7caWG5bWaaWbaaSqa beaacaaIOaGaeqySdeMaaGykaaaakiaaiIcacaaIWaGaaGykaiaai2 dacaWG5bWaaWbaaSqabeaacaaIOaGaeqOSdiMaaGykaaaakiaaiIca caWGYbGaaGykaiaai2dacaaIWaGaaGilaiaaywW7cqaHXoqycaaISa GaeqOSdiMaeyicI4SaaG4EaiaaicdacaaISaGaaGymaiaai2hacaaI Saaaaa@59C5@

исследовалась в работах [11, 13, 14, 25]. В [13] изучался случай произвольного γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhacqGHiiIZcaaMc8UaeSOgHqkaaa@3DCD@ , и было дано полное описание так называемых невырожденных и вырожденных случаев в зависимости от значений тройки параметров γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhaaaa@394E@ , α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3796@  и β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3798@ . В частности, краевые условия Дирихле ( α=β=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ypaiabek7aIjaai2dacaaIWaaaaa@3B7F@  ) соответствуют вырожденному случаю при любых γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhacqGHiiIZcaaMc8UaeSOgHqkaaa@3DCD@ . В невырожденном случае потенциал однозначно восстанавливается по спектру, а в вырожденном для единственности восстановления требуется дополнительная информация (например, задание q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  на части интервала). Также были получены необходимые и достаточные условия разрешимости обратной задачи. В невырожденном случае последние включают лишь асимптотику спектра

λ n = π 2 r 2 n α+β 2 + κ n n 2 ,n1, { κ n } n1 l 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypamaalaaabaGaeqiWda3aaWbaaSqa beaacaaIYaaaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaaaaaaGcda qadaqaaiaad6gacqGHsisldaWcaaqaaiabeg7aHjabgUcaRiabek7a IbqaaiaaikdaaaGaey4kaSYaaSaaaeaacqaH6oWAdaWgaaWcbaGaam OBaaqabaaakeaacaWGUbaaaaGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiaaiYcacaaMf8UaamOBamrr1ngBPrwtHrhAYaqeguuDJX wAKbstHrhAGq1DVbacfaGae8NFQuOaaGymaiaaiYcacaaMf8UaaG4E aiabeQ7aRnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaam OBaiab=5NkfkaaigdaaeqaaOGaeyicI4SaamiBamaaBaaaleaacaaI Yaaabeaakiaai6caaaa@6A76@

В вырожденном случае добавляется условие совпадения некоторой бесконечной части собственных значений с собственными значениями соответствующего оператора с нулевым потенциалом. Для иррационального случая γ/r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG 4laiaadkhacqGHiiIZcaaMc8UaeSOgHqkaaa@3DCD@  в работе [25] была доказана единственность восстановления потенциала по спектру при любых α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3796@  и β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3798@ . Что касается обратных спектральных задач для операторов с замороженным аргументом на временных шкалах, ранее они не рассматривались.

В настоящей работе рассматривается краевая задача для уравнения Штурма - Лиувилля с замороженным аргументом на временной шкале T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@  специального вида:

y ΔΔ (t)+y(γ)q(t)=λy(σ(t)),tT, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam yEamaaCaaaleqabaGaeuiLdqKaeuiLdqeaaOGaaGikaiaadshacaaI PaGaey4kaSIaamyEaiaaiIcacqaHZoWzcaaIPaGaamyCaiaaiIcaca WG0bGaaGykaiaai2dacqaH7oaBcaWG5bGaaGikaiabeo8aZjaaiIca caWG0bGaaGykaiaaiMcacaaISaGaaGzbVlaadshacqGHiiIZcaWGub GaaGilaaaa@54D2@  (1)

y(0)=y(b)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaaIWaGaaGykaiaai2dacaWG5bGaaGikaiaadkgacaaIPaGaaGyp aiaaicdacaaISaaaaa@3F5C@  (2)

где

T=[0,γ][a,b],daγ,lba. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai2 dacaaIBbGaaGimaiaaiYcacqaHZoWzcaaIDbGaeyOkIGSaaG4waiaa dggacaaISaGaamOyaiaai2facaaISaGaaGzbVlaadsgacaWGHbGaey OeI0Iaeq4SdCMaaGilaiaaywW7caWGSbGaamOyaiabgkHiTiaadgga caaIUaaaaa@4FB7@  (3)

Структура (3) является одной из простейших, которые позволяют выявить существенные отличия от случая отрезка.

В работе исследуется восстановление потенциала qC(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadoeacaaIOaGaamivaiaaiMcaaaa@3B77@  по спектру краевой задачи (1)(2). Установлены условия на величины d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36E0@ , γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379E@  и l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E8@ , при которых выполняется теорема единственности решения обратной задачи (теорема 1). В частности, единственность восстановления будет иметь место, если l=kγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaWGRbGaeq4SdCgaaa@3A46@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaykW7caaMc8UaeSyfHukaaa@3CED@ . Здесь наблюдается отличие от случая уравнения с замороженным аргументом на отрезке, т.е. при γ=a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG ypaiaadggaaaa@394B@  и r=a+l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaWGHbGaey4kaSIaamiBaaaa@3A6E@ , в котором потенциал не восстанавливается однозначно по спектру краевой задачи Дирихле ни при каком рациональном k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ . Также получены алгоритм восстановления потенциала (алгоритм 1), необходимые и достаточные условия разрешимости обратной задачи (теорема 5). Особый вид характеристической функции (18) значительно усложняет исследование в сравнении со случаем отрезка. В частности, характеризация спектра не исчерпывается одной лишь асимптотикой, как в невырожденном случае оператора на отрезке.

2. Постановка обратной задачи. Теорема единственности

Рассмотрим уравнение (1) на временной шкале (3) с непрерывным потенциалом qC(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadoeacaaIOaGaamivaiaaiMcaaaa@3B77@ . Пусть C Δ n (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacqqHuoaraeaacaWGUbaaaOGaaGikaiaadsfacaaIPaaaaa@3B8D@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI GiolaaykW7caaMc8UaeSyfHukaaa@3CED@ , обозначает класс функций, имеющих n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@  -ю Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@  - производную, непрерывную на T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@ . Определим решения как функции y C Δ 2 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaadoeadaqhaaWcbaGaeuiLdqeabaGaaGOmaaaakiaaiIcacaWG ubGaaGykaaaa@3DD8@ , для которых выполняется тождество (1). Те λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@ , при которых существуют ненулевые решения y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@ , удовлетворяющие условиям Дирихле (2), называются собственными значениями.

Так как временная шкала T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaaaa@36D0@  имеет вид (3), для любой f C Δ 1 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadoeadaqhaaWcbaGaeuiLdqeabaGaaGymaaaakiaaiIcacaWG ubGaaGykaaaa@3DC4@  имеем (см. [20, 26 ])

f Δ (t)= f(a)f(γ) d ,t=γ, f (t),t[0,γ][a,b], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaeuiLdqeaaOGaaGikaiaadshacaaIPaGaaGypamaalaaa baGaamOzaiaaiIcacaWGHbGaaGykaiabgkHiTiaadAgacaaIOaGaeq 4SdCMaaGykaaqaaiaadsgaaaGaaGilaiaadshacaaI9aGaeq4SdCMa aGilaiqadAgagaqbaiaaiIcacaWG0bGaaGykaiaaiYcacaWG0bGaey icI4SaaG4waiaaicdacaaISaGaeq4SdCMaaGyxaiabgQIiilaaiUfa caWGHbGaaGilaiaadkgacaaIDbGaaGilaaaa@5B9A@  (4)

где классическая производная f (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiaadshacaaIPaaaaa@394C@  существует, а равенство f (γ)= f Δ (γ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa GaaGikaiabeo7aNjaaiMcacaaI9aGaamOzamaaCaaaleqabaGaeuiL dqeaaOGaaGikaiabeo7aNjaaiMcaaaa@4055@  выполнено в силу непрерывности. Применяя данную формулу к решению y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36F5@  уравнения (1) и его Δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375D@  "=производной, получим, что уравнение (1) эквивалентно системе уравнений

y''x1+qx1yγλyx1x1γy''x2+qx2yγλyx2x2a,b (5)

с условиями скачков

y(a) y (a) = 1 d d(q(γ)λ) 1λ d 2 y(γ) y (γ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaamyEaiaaiIcacaWGHbGaaGykaaqaaiqadMhagaqb aiaaiIcacaWGHbGaaGykaaaaaiaawIcacaGLPaaacaaI9aWaaeWaae aafaqabeGacaaabaGaaGymaaqaaiaadsgaaeaacaWGKbGaaGikaiaa dghacaaIOaGaeq4SdCMaaGykaiabgkHiTiabeU7aSjaaiMcaaeaaca aIXaGaeyOeI0Iaeq4UdWMaamizamaaCaaaleqabaGaaGOmaaaaaaaa kiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWG5bGaaGikai abeo7aNjaaiMcaaeaaceWG5bGbauaacaaIOaGaeq4SdCMaaGykaaaa aiaawIcacaGLPaaacaaIUaaaaa@5AC6@  (6)

Также из (4) получается, что условие y C Δ 2 (T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaadoeadaqhaaWcbaGaeuiLdqeabaGaaGOmaaaakiaaiIcacaWG ubGaaGykaaaa@3DD8@  эквивалентно условию y C 2 [0,γ] C 2 [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabgI GiolaadoeadaahaaWcbeqaaiaaikdaaaGccaaIBbGaaGimaiaaiYca cqaHZoWzcaaIDbGaeyykICSaam4qamaaCaaaleqabaGaaGOmaaaaki aaiUfacaWGHbGaaGilaiaadkgacaaIDbaaaa@46BF@ , где C 2 (B) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGOmaaaakiaaiIcacaWGcbGaaGykaaaa@39DE@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ класс дважды непрерывно дифференцируемых функций на B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@  в обычном смысле.

Введем решения S(x,λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWG4bGaaGilaiabeU7aSjaaiMcaaaa@3B9B@  и C(x,λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaaiI cacaWG4bGaaGilaiabeU7aSjaaiMcaaaa@3B8B@  первого уравнения в (5) при начальных условиях

S(γ,λ)=0, S (γ,λ)=1;C(γ,λ)=1, C (γ,λ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacqaHZoWzcaaISaGaeq4UdWMaaGykaiaai2dacaaIWaGaaGilaiaa ywW7ceWGtbGbauaacaaIOaGaeq4SdCMaaGilaiabeU7aSjaaiMcaca aI9aGaaGymaiaaiUdacaaMf8Uaam4qaiaaiIcacqaHZoWzcaaISaGa eq4UdWMaaGykaiaai2dacaaIXaGaaGilaiaaywW7ceWGdbGbauaaca aIOaGaeq4SdCMaaGilaiabeU7aSjaaiMcacaaI9aGaaGimaiaai6ca aaa@5CC0@

Для этих функций известны следующие формулы (см. [11]):

S(x,λ)= sinρ(xγ) ρ ,C(x,λ)=cosρ(xγ)+ γ x sinρ(xt) ρ q(t)dt,x[0,γ]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaaiI cacaWG4bGaaGilaiabeU7aSjaaiMcacaaI9aWaaSaaaeaaciGGZbGa aiyAaiaac6gacqaHbpGCcaaIOaGaamiEaiabgkHiTiabeo7aNjaaiM caaeaacqaHbpGCaaGaaGilaiaaywW7caWGdbGaaGikaiaadIhacaaI SaGaeq4UdWMaaGykaiaai2daciGGJbGaai4BaiaacohacqaHbpGCca aIOaGaamiEaiabgkHiTiabeo7aNjaaiMcacqGHRaWkdaWdXbqabSqa aiabeo7aNbqaaiaadIhaa0Gaey4kIipakmaalaaabaGaci4CaiaacM gacaGGUbGaeqyWdiNaaGikaiaadIhacqGHsislcaWG0bGaaGykaaqa aiabeg8aYbaacaWGXbGaaGikaiaadshacaaIPaGaamizaiaadshaca aISaGaaGzbVlaadIhacqGHiiIZcaaIBbGaaGimaiaaiYcacqaHZoWz caaIDbGaaG4oaaaa@7A35@  (7)

здесь и далее λ= ρ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiabeg8aYnaaCaaaleqabaGaaGOmaaaaaaa@3B1B@ . Любое решение системы (5)-(6) на [0,γ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeq4SdCMaaGyxaaaa@3ADA@  может быть представлено в виде

y(x)=AS(x,λ)+BC(x,λ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaWG4bGaaGykaiaai2dacaWGbbGaam4uaiaaiIcacaWG4bGaaGil aiabeU7aSjaaiMcacqGHRaWkcaWGcbGaam4qaiaaiIcacaWG4bGaaG ilaiabeU7aSjaaiMcacaaIUaaaaa@487D@  (8)

С учетом (6) при x[a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaaiUfacaWGHbGaaGilaiaadkgacaaIDbaaaa@3CC7@  имеем

y(x)=(y(γ)+d y (γ))cosρ(xa)+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaaiI cacaWG4bGaaGykaiaai2dacaaIOaGaamyEaiaaiIcacqaHZoWzcaaI PaGaey4kaSIaamizaiqadMhagaqbaiaaiIcacqaHZoWzcaaIPaGaaG ykaiGacogacaGGVbGaai4Caiabeg8aYjaaiIcacaWG4bGaeyOeI0Ia amyyaiaaiMcacqGHRaWkaaa@4F18@

+((1 d 2 λ) y (γ)dλy(γ)+dy(γ)q(γ)) sinρ(xa) ρ +B a x sinρ(xt) ρ q(t)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaaiIcacaaIXaGaeyOeI0IaamizamaaCaaaleqabaGaaGOmaaaa kiabeU7aSjaaiMcaceWG5bGbauaacaaIOaGaeq4SdCMaaGykaiabgk HiTiaadsgacqaH7oaBcaWG5bGaaGikaiabeo7aNjaaiMcacqGHRaWk caWGKbGaamyEaiaaiIcacqaHZoWzcaaIPaGaamyCaiaaiIcacqaHZo WzcaaIPaGaaGykamaalaaabaGaci4CaiaacMgacaGGUbGaeqyWdiNa aGikaiaadIhacqGHsislcaWGHbGaaGykaaqaaiabeg8aYbaacqGHRa WkcaWGcbWaa8qCaeqaleaacaWGHbaabaGaamiEaaqdcqGHRiI8aOWa aSaaaeaaciGGZbGaaiyAaiaac6gacqaHbpGCcaaIOaGaamiEaiabgk HiTiaadshacaaIPaaabaGaeqyWdihaaiaadghacaaIOaGaamiDaiaa iMcacaWGKbGaamiDaiaai6caaaa@7597@  (9)

Подставив представления (8) и (9) в краевые условия (2), получим следующую систему линейных уравнений относительно A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@36BD@  и B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BE@ :

AS(0,λ)+BC(0,λ)=0,A dcosρl+[1 d 2 λ] sinρl ρ +B cosρl+[dq(γ)dλ] sinρl ρ + a b sinρ(bt) ρ q(t)dt =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaado facaaIOaGaaGimaiaaiYcacqaH7oaBcaaIPaGaey4kaSIaamOqaiaa doeacaaIOaGaaGimaiaaiYcacqaH7oaBcaaIPaGaaGypaiaaicdaca aISaGaamyqamaabmaabaGaamizaiGacogacaGGVbGaai4Caiabeg8a YjaadYgacqGHRaWkcaaIBbGaaGymaiabgkHiTiaadsgadaahaaWcbe qaaiaaikdaaaGccqaH7oaBcaaIDbWaaSaaaeaaciGGZbGaaiyAaiaa c6gacqaHbpGCcaWGSbaabaGaeqyWdihaaaGaayjkaiaawMcaaiabgU caRiaadkeadaqadaqaaiGacogacaGGVbGaai4Caiabeg8aYjaadYga cqGHRaWkcaaIBbGaamizaiaadghacaaIOaGaeq4SdCMaaGykaiabgk HiTiaadsgacqaH7oaBcaaIDbWaaSaaaeaaciGGZbGaaiyAaiaac6ga cqaHbpGCcaWGSbaabaGaeqyWdihaaiabgUcaRmaapehabeWcbaGaam yyaaqaaiaadkgaa0Gaey4kIipakmaalaaabaGaci4CaiaacMgacaGG UbGaeqyWdiNaaGikaiaadkgacqGHsislcaWG0bGaaGykaaqaaiabeg 8aYbaacaWGXbGaaGikaiaadshacaaIPaGaamizaiaadshaaiaawIca caGLPaaacaaI9aGaaGimaiaai6caaaa@8FA8@

Число λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@  является собственным значением краевой задачи (1)(2) тогда и только тогда, когда существует ненулевое решение этой системы. Определитель системы Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  называется характеристической функцией краевой задачи (1)(2). Он является целой функцией порядка 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai+ cacaaIYaaaaa@3827@ . Спектром краевой задачи (1)(2) называется последовательность нулей { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  характеристической функции (с учетом кратности).

Используя формулы (7), получим

Δ(λ)= c 1 (λ) sinργ ρ c 2 (λ)cosργ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaeyOeI0Iaam4yamaaBaaaleaacaaI XaaabeaakiaaiIcacqaH7oaBcaaIPaWaaSaaaeaaciGGZbGaaiyAai aac6gacqaHbpGCcqaHZoWzaeaacqaHbpGCaaGaeyOeI0Iaam4yamaa BaaaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaGaci4yaiaac+ gacaGGZbGaeqyWdiNaeq4SdCMaeyOeI0caaa@5632@

sinργ ρ a b sinρ(bt) ρ q(t)dt c 2 (λ) 0 γ sinρt ρ q(t)dtdq(γ) sin 2 ργ ρ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaaciGGZbGaaiyAaiaac6gacqaHbpGCcqaHZoWzaeaacqaHbpGC aaWaa8qCaeqaleaacaWGHbaabaGaamOyaaqdcqGHRiI8aOWaaSaaae aaciGGZbGaaiyAaiaac6gacqaHbpGCcaaIOaGaamOyaiabgkHiTiaa dshacaaIPaaabaGaeqyWdihaaiaadghacaaIOaGaamiDaiaaiMcaca WGKbGaamiDaiabgkHiTiaadogadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaeq4UdWMaaGykamaapehabeWcbaGaaGimaaqaaiabeo7aNbqdcq GHRiI8aOWaaSaaaeaaciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0baa baGaeqyWdihaaiaadghacaaIOaGaamiDaiaaiMcacaWGKbGaamiDai abgkHiTiaadsgacaWGXbGaaGikaiabeo7aNjaaiMcadaWcaaqaamaa vacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPbGaaiOBaaaacqaHbp GCcqaHZoWzaeaacqaHbpGCdaahaaWcbeqaaiaaikdaaaaaaOGaaGil aaaa@7AEF@  (10)

где

c 1 (λ)cosρldρsinρl, c 2 (λ)dcosρl+ 1 d 2 λ ρ sinρl. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaaiIcacqaH7oaBcaaIPaGaci4yaiaac+ga caGGZbGaeqyWdiNaamiBaiabgkHiTiaadsgacqaHbpGCciGGZbGaai yAaiaac6gacqaHbpGCcaWGSbGaaGilaiaaywW7caWGJbWaaSbaaSqa aiaaikdaaeqaaOGaaGikaiabeU7aSjaaiMcacaWGKbGaci4yaiaac+ gacaGGZbGaeqyWdiNaamiBaiabgUcaRmaalaaabaGaaGymaiabgkHi TiaadsgadaahaaWcbeqaaiaaikdaaaGccqaH7oaBaeaacqaHbpGCaa Gaci4CaiaacMgacaGGUbGaeqyWdiNaamiBaiaai6caaaa@655B@

В дальнейшем нам понадобится следующая лемма.

Лемма 1 Из положительных нулей функции c 2 ( z 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG6bWaaWbaaSqabeaacaaIYaaa aOGaaGykaaaa@3B28@  можно составить такую последовательность { z n } n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadQ hadaWgaaWcbaGaamOBaaqabaGccaaI9bWaaSbaaSqaaiaad6gatuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaig daaeqaaaaa@475A@ , что системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  и {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@  являются базисами Рисса в L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadYgacaaIPaaa aa@3B80@ .

Доказательство. Рассмотрим уравнение

g(z) dz d 2 z 2 1 tanzl=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG6bGaaGykamaalaaabaGaamizaiaadQhaaeaacaWGKbWaaWba aSqabeaacaaIYaaaaOGaamOEamaaCaaaleqabaGaaGOmaaaakiabgk HiTiaaigdaaaGaeyOeI0IaciiDaiaacggacaGGUbGaamOEaiaadYga caaI9aGaaGimaiaai6caaaa@489C@

Если z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36F6@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ ненулевой корень данного уравнения, то число z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaaaa@36F6@  является нулем c 2 ( z 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG6bWaaWbaaSqabeaacaaIYaaa aOGaaGykaaaa@3B28@ . Заметим, что функция g(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG6bGaaGykaaaa@3947@  непрерывна и монотонна на любом интервале, не содержащем точек ±1/d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyySaeRaaG ymaiaai+cacaWGKbaaaa@3A42@ , ±π(n+1/2)/l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyySaeRaeq iWdaNaaGikaiaad6gacqGHRaWkcaaIXaGaaG4laiaaikdacaaIPaGa aG4laiaadYgaaaa@40B6@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . С помощью теоремы о промежуточном значении можно показать, что каждому интервалу

I n = πn l π 2l , πn l + π 2l ,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGUbaabeaakiaai2dadaqadaqaamaalaaabaGaeqiWdaNa amOBaaqaaiaadYgaaaGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYa GaamiBaaaacaaISaWaaSaaaeaacqaHapaCcaWGUbaabaGaamiBaaaa cqGHRaWkdaWcaaqaaiabec8aWbqaaiaaikdacaWGSbaaaaGaayjkai aawMcaaiaaiYcacaaMf8UaamOBaiabgIGiolaaykW7caaMc8UaeSyf Hukaaa@5456@ ,

принадлежит не менее одного нуля g(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG6bGaaGykaaaa@3947@ . Выберем в качестве z n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGUbaabeaaaaa@3815@  любой нуль из I n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGUbaabeaaaaa@37E4@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ , тогда все z n >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGUbaabeaakiaai6dacaaIWaaaaa@39A1@  и различны.

Используя стандартную технику с применением теоремы Руше (см. [15]), можно доказать, что последовательность нулей c 2 ( z 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaWG6bWaaWbaaSqabeaacaaIYaaa aOGaaGykaaaa@3B28@  имеет вид { z n } n0 { z n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabgk HiTiaadQhadaWgaaWcbaGaamOBaaqabaGccaaI9bWaaSbaaSqaaiaa d6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5 NkfkaaicdaaeqaaOGaeyOkIGSaaG4EaiaadQhadaWgaaWcbaGaamOB aaqabaGccaaI9bWaaSbaaSqaaiaad6gacqWF+PsHcaaIWaaabeaaaa a@51AF@  и выполнены асимптотические формулы

z n = πn l + 1 dπn +O 1 n 3 ,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGUbaabeaakiaai2dadaWcaaqaaiabec8aWjaad6gaaeaa caWGSbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadsgacqaHapaCca WGUbaaaiabgUcaRiaad+eadaqadaqaamaalaaabaGaaGymaaqaaiaa d6gadaahaaWcbeqaaiaaiodaaaaaaaGccaGLOaGaayzkaaGaaGilai aaywW7caWGUbGaeyicI4SaeSyfHukaaa@4DF5@ . (11)

Докажем, что {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  является базисом Рисса; для {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@  доказательство аналогично. Согласно [15, утверждение 1.8.5], достаточно доказать полноту системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@ .

Пусть f L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGSbGaaGykaaaa@3DEF@  и 0 l f(t)sin z n tdt=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqaba GccaWG0bGaamizaiaadshacaaI9aGaaGimaiaai6caaaa@4773@

Тогда функция

F(λ)= λ z 0 2 ρ c 2 (λ) 0 l f(t)sinρtdt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaaGypamaalaaabaGaeq4UdWMaeyOeI0IaamOE amaaDaaaleaacaaIWaaabaGaaGOmaaaaaOqaaiabeg8aYjaadogada WgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdWMaaGykaaaadaWdXbqa bSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGMbGaaGikaiaads hacaaIPaGaci4CaiaacMgacaGGUbGaeqyWdiNaamiDaiaadsgacaWG 0baaaa@558D@

является целой по λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWgaaa@37AB@ . Используя стандартную оценку (см. [15])

|sinρl| M 1 e |Imρ|l ,|ρ|= π(n+1/2) l ,n,n N * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiGaco hacaGGPbGaaiOBaiabeg8aYjaadYgacaaI8bWefv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaWGnbWaaWbaaSqabe aacqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaGaaGiFaiaadMea caWGTbGaeqyWdiNaaGiFaiaadYgaaaGccaaISaGaaGzbVlaaiYhacq aHbpGCcaaI8bGaaGypamaalaaabaGaeqiWdaNaaGikaiaad6gacqGH RaWkcaaIXaGaaG4laiaaikdacaaIPaaabaGaamiBaaaacaaISaGaaG zbVlaad6gacqGHiiIZcaaISaGaaGzbVlaad6gacqWF+PsHcaWGobWa aWbaaSqabeaacaaIQaaaaOGaaGilaaaa@6E47@

получим, что |F(λ)|M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadA eacaaIOaGaeq4UdWMaaGykaiaaiYhatuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGqbaiab=1Nkekaad2eaaaa@480C@  на окружностях |λ|=(π(n+1/2)/l ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeU 7aSjaaiYhacaaI9aGaaGikaiabec8aWjaaiIcacaWGUbGaey4kaSIa aGymaiaai+cacaaIYaGaaGykaiaai+cacaWGSbGaaGykamaaCaaale qabaGaaGOmaaaaaaa@459D@  при достаточно больших n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . Тогда из принципа максимума модуля и теоремы Лиувилля следует, что F(λ)C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaeyyyIORaam4qaaaa@3C6C@ . В то же время имеем

0 l f(t)sinρtdt=o(1), ρ c 2 (λ) λ z 0 2 =( 1) n+1 d 2 (1+o(1)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBaiabeg8aYjaadshacaWGKbGaamiDai aai2dacaWGVbGaaGikaiaaigdacaaIPaGaaGilaiaaywW7daWcaaqa aiabeg8aYjaadogadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdW MaaGykaaqaaiabeU7aSjabgkHiTiaadQhadaqhaaWcbaGaaGimaaqa aiaaikdaaaaaaOGaaGypaiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaGccaWGKbWaaWbaaSqabeaa caaIYaaaaOGaaGikaiaaigdacqGHRaWkcaWGVbGaaGikaiaaigdaca aIPaGaaGykaaaa@658E@

при ρ=π(n+1/2)/l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabec8aWjaaiIcacaWGUbGaey4kaSIaaGymaiaai+cacaaIYaGa aGykaiaai+cacaWGSbaaaa@414F@  в силу леммы Римана - Лебега. Отсюда следует, что возможно только C=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacaaIWaaaaa@3840@ . Тогда f0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgg Mi6kaaicdaaaa@3965@ , и полнота системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  доказана.

Рассмотрим следующую обратную задачу.

Обратная задача 1 По спектру { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  восстановить потенциал q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@ .

Докажем утверждение, которое позволяет свести обратную задачу к нахождению q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  из характеристической функции.

Утверждение 1 Характеристическая функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  строится однозначно по спектру { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@ .

Доказательство. Обозначим s(λ)= ρ 1 sinργ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaGaaGypaiabeg8aYnaaCaaaleqabaGaeyOeI0Ia aGymaaaakiGacohacaGGPbGaaiOBaiabeg8aYjabeo7aNbaa@44AD@ . Из представления (10) легко получается асимптотика

Δ(λ)= d 2 ρsinρlcosργ+O( e |Imρ|(γ+l) ), γlèëèq(γ)=0, dq(γ) s 2 (λ)+O(ρ e |Imρ|(γ+l) ), γ>lèq(γ)0, λ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aWaaeqaaeaafaqabeGacaaabaGaamiz amaaCaaaleqabaGaaGOmaaaakiabeg8aYjGacohacaGGPbGaaiOBai abeg8aYjaadYgaciGGJbGaai4BaiaacohacqaHbpGCcqaHZoWzcqGH RaWkcaWGpbGaaGikaiaadwgadaahaaWcbeqaaiaaiYhacaWGjbGaam yBaiabeg8aYjaaiYhacaaIOaGaeq4SdCMaey4kaSIaamiBaiaaiMca aaGccaaIPaGaaGilaaqaaiabeo7aNnrr1ngBPrwtHrhAYaqeguuDJX wAKbstHrhAGq1DVbacfaGae8xFQqOaamiBaiaaysW7caqGOdGaae46 aiaabIoacaaMe8UaamyCaiaaiIcacqaHZoWzcaaIPaGaaGypaiaaic dacaaISaaabaGaeyOeI0IaamizaiaadghacaaIOaGaeq4SdCMaaGyk aiaadohadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaaGykai abgUcaRiaad+eacaaIOaGaeqyWdiNaamyzamaaCaaaleqabaGaaGiF aiaadMeacaWGTbGaeqyWdiNaaGiFaiaaiIcacqaHZoWzcqGHRaWkca WGSbGaaGykaaaakiaaiMcacaaISaaabaGaeq4SdCMaaGOpaiaadYga caaMe8Uaaei6aiaaysW7caWGXbGaaGikaiabeo7aNjaaiMcacqGHGj sUcaaIWaGaaGilaaaaaiaawUhaaiaaywW7cqaH7oaBcqGHsgIRcqGH EisPcaaIUaaaaa@A913@  (12)

Пусть k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIWaaabeaaaaa@37CD@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ кратность нуля в спектре. Без потери общности можно предположить, что нуль встречается только среди первых k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaaIWaaabeaaaaa@37CD@  членов спектра, т.е. λ 0 == λ k 0 2 = λ k 0 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaaicdaaeqaaOGaaGypaiablAciljaai2dacqaH7oaBdaWg aaWcbaGaam4AamaaBaaabaGaaGimaaqabaGaeyOeI0IaaGOmaaqaba GccaaI9aGaeq4UdW2aaSbaaSqaaiaadUgadaWgaaqaaiaaicdaaeqa aiabgkHiTiaaigdaaeqaaOGaaGypaiaaicdaaaa@484E@ . По теореме Адамара, характеристическая функция определяется с точностью до некоторой постоянной C0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabgc Mi5kaaicdaaaa@3940@ :

Δ(λ)=CG(λ),G(λ) λ k 0 n= k 0 1 λ λ n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaam4qaiaadEeacaaIOaGaeq4UdWMa aGykaiaaiYcacaaMf8Uaam4raiaaiIcacqaH7oaBcaaIPaGaeq4UdW 2aaWbaaSqabeaacaWGRbWaaSbaaeaacaaIWaaabeaaaaGcdaqeWbqa bSqaaiaad6gacaaI9aGaam4AamaaBaaabaGaaGimaaqabaaabaGaey OhIukaniabg+GivdGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiab eU7aSbqaaiabeU7aSnaaBaaaleaacaWGUbaabeaaaaaakiaawIcaca GLPaaacaaIUaaaaa@5985@  (13)

Согласно (12), тип построенного бесконечного произведения G(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacqaH7oaBcaaIPaaaaa@39DC@  может быть равен либо γ+l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey 4kaSIaamiBaaaa@3971@ , либо 2γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeo 7aNbaa@385A@ . Если тип равен γ+l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey 4kaSIaamiBaaaa@3971@ , то постоянная C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  в (13) определяется первой асимптотической формулой в (12). Пусть теперь тип равен 2γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeo 7aNbaa@385A@ , что возможно только при γ>l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaaG OpaiaadYgaaaa@3957@  и q(γ)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacqaHZoWzcaaIPaGaeyiyIKRaaGimaaaa@3C7A@ . Определим

C 1 = lim λ G(λ) s 2 (λ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dadaGfqbqabSqaaiabeU7aSjabgkzi UkabgkHiTiabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaadaWcaa qaaiaadEeacaaIOaGaeq4UdWMaaGykaaqaaiaadohadaahaaWcbeqa aiaaikdaaaGccaaIOaGaeq4UdWMaaGykaaaacaaIUaaaaa@4B7B@

Из (10) видно, что C 1 =dq(γ)/C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIXaaabeaakiaai2dacqGHsislcaWGKbGaamyCaiaaiIca cqaHZoWzcaaIPaGaaG4laiaadoeaaaa@3FD0@ . Также из (10) и (13) следует, что

G(λ) C 1 s 2 (λ)= d 2 ρsinρ d 2 cosργ(1+o(1)) C ,λ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacqaH7oaBcaaIPaGaeyOeI0Iaam4qamaaBaaaleaacaaIXaaabeaa kiaadohadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaaGykai aai2dadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqaHbpGC ciGGZbGaaiyAaiaac6gacqaHbpGCcaWGKbWaaSbaaSqaaiaaikdaae qaaOGaci4yaiaac+gacaGGZbGaeqyWdiNaeq4SdCMaaGikaiaaigda cqGHRaWkcaWGVbGaaGikaiaaigdacaaIPaGaaGykaaqaaiaadoeaaa GaaGilaiaaywW7cqaH7oaBcqGHsgIRcqGHsislcqGHEisPcaaISaaa aa@627D@

C= lim λ d 2 ρsinρlcosργ G(λ) C 1 s 2 (λ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dadaGfqbqabSqaaiabeU7aSjabgkziUkabgkHiTiabg6HiLcqabOqa aiGacYgacaGGPbGaaiyBaaaadaWcaaqaaiaadsgadaahaaWcbeqaai aaikdaaaGccqaHbpGCciGGZbGaaiyAaiaac6gacqaHbpGCcaWGSbGa ci4yaiaac+gacaGGZbGaeqyWdiNaeq4SdCgabaGaam4raiaaiIcacq aH7oaBcaaIPaGaeyOeI0Iaam4qamaaBaaaleaacaaIXaaabeaakiaa dohadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaaGykaaaaca aIUaaaaa@5C8F@

Таким образом, C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  определяется однозначно, и лемма доказана.

Докажем теорему единственности решения обратной задачи 1. Доказательство основано на вычислении коэффициентов разложений функции q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  по базисам {sinπnt/γ} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaad6gacaWG0bGaaG4laiabeo7aNjaa i2hadaWgaaWcbaGaamOBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8NFQuOaaGymaaqabaaaaa@4E13@  и {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  на отрезках [0,γ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeq4SdCMaaGyxaaaa@3ADA@  и [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadg gacaaISaGaamOyaiaai2faaaa@3A46@ . Эти коэффициенты вычисляются путем подстановки значений λ=(πn/γ ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaiIcacqaHapaCcaWGUbGaaG4laiabeo7aNjaaiMcadaahaaWc beqaaiaaikdaaaaaaa@3FD0@  и λ= z n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaa@3B4D@  в представление (10), если c 2 ((πn/γ ) 2 )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIOaGaeqiWdaNaamOBaiaai+ca cqaHZoWzcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykaiabgcMi5k aaicdaaaa@431F@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . Данный подход аналогичен тому, который был использован в [25] для доказательства теоремы единственности.

Теорема 1 Обозначим через { λ ˜ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiqbeU 7aSzaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFamaaBaaaleaacaWG UbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+P sHcaaIWaaabeaaaaa@481D@  спектр краевой задачи (1)(2) с некоторым потенциалом q ˜ C(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCayaaia GaeyicI4Saam4qaiaaiIcacaWGubGaaGykaaaa@3B86@ . Если функции c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@  и s(λ) ρ 1 sinργ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaGaeqyWdi3aaWbaaSqabeaacqGHsislcaaIXaaa aOGaci4CaiaacMgacaGGUbGaeqyWdiNaeq4SdCgaaa@43E6@  не имеют общих нулей, то из равенства { λ n } n0 ={ λ ˜ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaGccaaI9aGaaG4EaiqbeU7aSzaaiaWaaSbaaSqaaiaad6ga aeqaaOGaaGyFamaaBaaaleaacaWGUbGae8NFQuOaaGimaaqabaaaaa@5162@  следует q= q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 daceWGXbGbaGaaaaa@38B9@ .

Доказательство. Согласно утверждению 1, функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  однозначно определяется заданием своих нулей { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@ . Обозначим через Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaaaa@3A85@  характеристическую функцию краевой задачи (1)(2) с потенциалом q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyCayaaia aaaa@36FC@ . Таким образом, если { λ n } n0 ={ λ ˜ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaGccaaI9aGaaG4EaiqbeU7aSzaaiaWaaSbaaSqaaiaad6ga aeqaaOGaaGyFamaaBaaaleaacaWGUbGae8NFQuOaaGimaaqabaaaaa@5162@ , то Δ(λ)= Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGafuiLdqKbaGaacaaIOaGaeq4UdWMa aGykaaaa@3FCB@ . Подставив в представление (10) значения λ=(πn/γ ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaiIcacqaHapaCcaWGUbGaaG4laiabeo7aNjaaiMcadaahaaWc beqaaiaaikdaaaaaaa@3FD0@ , получим соотношения

Δ πn γ 2 = k n (1) n+1 γ πn ϰ n , k n c 2 πn γ 2 , ϰ n 0 γ sin πn γ tq(t)dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiabeo7aNbaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacaaI9aGaam4AamaaBaaaleaacaWGUbaabeaakmaabmaabaGaaGik aiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbGaey4kaSIaaG ymaaaakiabgkHiTmaalaaabaGaeq4SdCgabaGaeqiWdaNaamOBaaaa tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=b=a5p aaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaaiYcacaaMf8Ua am4AamaaBaaaleaacaWGUbaabeaakiaadogadaWgaaWcbaGaaGOmaa qabaGcdaqadaqaamaabmaabaWaaSaaaeaacqaHapaCcaWGUbaabaGa eq4SdCgaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaay jkaiaawMcaaiaaiYcacaaMf8Uae8h8dK=aaSbaaSqaaiaad6gaaeqa aOWaa8qCaeqaleaacaaIWaaabaGaeq4SdCganiabgUIiYdGcciGGZb GaaiyAaiaac6gadaWcaaqaaiabec8aWjaad6gaaeaacqaHZoWzaaGa amiDaiaadghacaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiaaiYcaaa a@83F8@

откуда приходим к формуле

ϰ n = πn k n γ Δ πn γ 2 + (1) n k n ,n1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWpq+daWgaaWcbaGa amOBaaqabaGccaaI9aGaeyOeI0YaaSaaaeaacqaHapaCcaWGUbaaba Gaam4AamaaBaaaleaacaWGUbaabeaakiabeo7aNbaadaqadaqaaiab fs5aenaabmaabaWaaeWaaeaadaWcaaqaaiabec8aWjaad6gaaeaacq aHZoWzaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGL OaGaayzkaaGaey4kaSIaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaS qabeaacaWGUbaaaOGaam4AamaaBaaaleaacaWGUbaabeaaaOGaayjk aiaawMcaaiaaiYcacaaMf8UaamOBamrr1ngBPrwtHrhAYaqehuuDJX wAKbstHrhAGq1DVbacgaGae4NFQuOaaGymaiaai6caaaa@6DDC@  (14)

Аналогично получается равенство

0 γ sin πn γ t q ˜ (t)dt= ϰ n ,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaeq4SdCganiabgUIiYdGcciGGZbGaaiyAaiaac6ga daWcaaqaaiabec8aWjaad6gaaeaacqaHZoWzaaGaamiDaiqadghaga acaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGypamrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8h8dK=aaSbaaSqaai aad6gaaeqaaOGaaGilaiaaywW7caWGUbWefv3ySLgznfgDOjdarCqr 1ngBPrginfgDObcv39gaiyaacqGF+PsHcaaIXaGaaGilaaaa@6632@

с теми же ϰ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWpq+daWgaaWcbaGa amOBaaqabaaaaa@4311@ . Тогда

0 γ sin πn γ t(q(t) q ˜ (t))dt=0,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaeq4SdCganiabgUIiYdGcciGGZbGaaiyAaiaac6ga daWcaaqaaiabec8aWjaad6gaaeaacqaHZoWzaaGaamiDaiaaiIcaca WGXbGaaGikaiaadshacaaIPaGaeyOeI0IabmyCayaaiaGaaGikaiaa dshacaaIPaGaaGykaiaadsgacaWG0bGaaGypaiaaicdacaaISaGaaG zbVlaad6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqb aiab=5NkfkaaigdacaaISaaaaa@5F6D@

и из полноты системы {sinπnt/γ} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaad6gacaWG0bGaaG4laiabeo7aNjaa i2hadaWgaaWcbaGaamOBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8NFQuOaaGymaaqabaaaaa@4E13@  в L 2 (0,γ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiabeo7aNjaaiMca aaa@3C36@  следует, что q= q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 daceWGXbGbaGaaaaa@38B9@  на [0,γ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaic dacaaISaGaeq4SdCMaaGyxaaaa@3ADA@ .

Подставим в характеристическую функцию λ= z n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaa@3B4D@ . Полнота системы {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  в L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadYgacaaIPaaa aa@3B80@  была доказана в лемме 1. Действуя так же, как в первой части доказательства, получаем для коэффициентов

ξ n 0 l sin z n tq(bt)dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaad6gaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqd cqGHRiI8aOGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUb aabeaakiaadshacaWGXbGaaGikaiaadkgacqGHsislcaWG0bGaaGyk aiaadsgacaWG0baaaa@4A05@ ,

формулы

ξ n = z n 2 sin z n γ Δ( z n 2 )+ c 1 ( z n 2 ) sin z n γ z n +dq(γ) sin 2 z n γ z n 2 ,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaad6gaaeqaaOGaaGypaiabgkHiTmaalaaabaGaamOEamaa DaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiGacohacaGGPbGaaiOBai aadQhadaWgaaWcbaGaamOBaaqabaGccqaHZoWzaaWaaeWaaeaacqqH uoarcaaIOaGaamOEamaaDaaaleaacaWGUbaabaGaaGOmaaaakiaaiM cacqGHRaWkcaWGJbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadQha daqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaWaaSaaaeaaciGGZb GaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6gaaeqaaOGaeq4SdCga baGaamOEamaaBaaaleaacaWGUbaabeaaaaGccqGHRaWkcaWGKbGaam yCaiaaiIcacqaHZoWzcaaIPaWaaSaaaeaadaqfGaqabSqabeaacaaI YaaakeaaciGGZbGaaiyAaiaac6gaaaGaamOEamaaBaaaleaacaWGUb aabeaakiabeo7aNbqaaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikda aaaaaaGccaGLOaGaayzkaaGaaGilaiaaywW7caWGUbWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaIXaGaaGil aaaa@7BC5@  (15)

и равенство q= q ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaai2 daceWGXbGbaGaaaaa@38B9@  на [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaadg gacaaISaGaamOyaiaai2faaaa@3A46@ .

Основываясь на формулах (14) и (15), получим следующий алгоритм восстановления.

Алгоритм 1 Пусть функции c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@  и s(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaaaaa@3A08@  не имеют общих нулей. Восстановление потенциала по { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  производится в следующей последовательности: [1.]

1. Построить Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  (см. утверждение 1);.

2. Вычислить коэффициенты ϰ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFWpq+daWgaaWcbaGa amOBaaqabaaaaa@4311@  по формуле (14) и найти

q(t)= 2 γ n=1 ϰ n sin πn γ t,t(0,γ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaikdaaeaacqaHZoWzaaWa aabCaeqaleaacaWGUbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIu oatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaOGae8h8 dK=aaSbaaSqaaiaad6gaaeqaaOGaci4CaiaacMgacaGGUbWaaSaaae aacqaHapaCcaWGUbaabaGaeq4SdCgaaiaadshacaaISaGaaGzbVlaa dshacqGHiiIZcaaIOaGaaGimaiaaiYcacqaHZoWzcaaIPaGaaGOlaa aa@6209@

3. Вычислить коэффициенты ξ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaad6gaaeqaaaaa@38D9@  по формуле (15) и построить

q(bt)= n=1 ξ n χ n (t),t(0,l), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWGIbGaeyOeI0IaamiDaiaaiMcacaaI9aWaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiabe67a4naaBa aaleaacaWGUbaabeaakiabeE8aJnaaBaaaleaacaWGUbaabeaakiaa iIcacaWG0bGaaGykaiaaiYcacaaMf8UaamiDaiabgIGiolaaiIcaca aIWaGaaGilaiaadYgacaaIPaGaaGilaaaa@5380@

где система { χ n (t)} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeE 8aJnaaBaaaleaacaWGUbaabeaakiaaiIcacaWG0bGaaGykaiaai2ha daWgaaWcbaGaamOBamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq 1DVbacfaGae8NFQuOaaGymaaqabaaaaa@4A70@  является биортогональной к базису {sin z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGa aGyFamaaBaaaleaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiuaacqWF+PsHcaaIXaaabeaaaaa@4B2B@  в L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaadYgacaaIPaaa aa@3B80@ .

Утверждение 2 Можно гарантировать, что c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@  и s(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaiaaiI cacqaH7oaBcaaIPaaaaa@3A08@  не имеют общих нулей, наложив одно из трех ограничений на d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36E0@ , γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379E@  и l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E8@ : [ (i)]

1.  имеет место равенство l=kγ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaWGRbGaeq4SdCgaaa@3A46@  при некотором k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiabgI Giodaa@386B@ ;

2.  числа πl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam iBaiaai+cacqaHZoWzaaa@3B05@  и πd/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam izaiaai+cacqaHZoWzaaa@3AFD@  рациональны;

3.  числа l/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai+ cacqaHZoWzaaa@3948@ , πd/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam izaiaai+cacqaHZoWzaaa@3AFD@  рациональны и cosl/d0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamiBaiaai+cacaWGKbGaeyiyIKRaaGimaaaa@3DDE@ .

Доказательство. Если выполнено (2), то c 2 ((πn/γ ) 2 )=( 1) nk d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIOaGaeqiWdaNaamOBaiaai+ca cqaHZoWzcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykaiaai2daca aIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaad6gacaWGRbaa aOGaamizaaaa@4775@ . Пусть выполнено (2) или (3) и c 2 ((πn/γ ) 2 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIOaGaeqiWdaNaamOBaiaai+ca cqaHZoWzcaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGykaiaai2daca aIWaaaaa@421F@  при некотором n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@ . Тогда cosπnl/γ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCMaeyiyIKRa aGimaaaa@414C@  и

1 πn γ d 2 tan πnl γ = πn γ d. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0YaaeWaaeaadaWcaaqaaiabec8aWjaad6gaaeaacqaH ZoWzaaGaamizaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaO GaayjkaiaawMcaaiGacshacaGGHbGaaiOBamaalaaabaGaeqiWdaNa amOBaiaadYgaaeaacqaHZoWzaaGaaGypamaalaaabaGaeqiWdaNaam OBaaqaaiabeo7aNbaacaWGKbGaaGOlaaaa@4FEC@  (16)

Если выполнено (2), то πnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam OBaiaadYgacaaIVaGaeq4SdCMaeyicI4SaaGPaVlablQriKcaa@4077@ , и tanπnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCgaaa@3EC9@  является иррациональным числом (см. [22]). Тогда в (16) слева имеем либо нуль, либо иррациональное число, а справа " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ ненулевое рациональное число; противоречие.

Если выполнено (2), то πnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam OBaiaadYgacaaIVaGaeq4SdCgaaa@3BF8@  обозначает рациональное число градусов, и согласно [22]

tan πnl γ (\){0}{±1}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbWaaSaaaeaacqaHapaCcaWGUbGaamiBaaqaaiabeo7aNbaa cqGHiiIZcaaIOaGaaiixaiaaiMcacqGHQicYcaaI7bGaaGimaiaai2 hacqGHQicYcaaI7bGaeyySaeRaaGymaiaai2hacaaIUaaaaa@4D5C@

Случаи иррационального и нулевого tanπnl/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCgaaa@3EC9@  аналогичны (2). Если же tanπnl/γ=±1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiDaiaacg gacaGGUbGaeqiWdaNaamOBaiaadYgacaaIVaGaeq4SdCMaaGypaiab gglaXkaaigdaaaa@4239@ , то (16) приводит к противоречию потому, что рациональное число πnd/γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaam OBaiaadsgacaaIVaGaeq4SdCgaaa@3BF0@  не может быть корнем ни одного из квадратных уравнений 1 x 2 =±x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIhadaahaaWcbeqaaiaaikdaaaGccaaI9aGaeyySaeRaamiE aaaa@3D41@ .

3. Необходимые и достаточные условия

Далее получим необходимые и достаточные условия на спектр в случае

l=γ,q W 2 1 [0,γ] W 2 1 [a,b]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacqaHZoWzcaaISaGaaGzbVlaadghacqGHiiIZcaWGxbWaa0baaSqa aiaaikdaaeaacaaIXaaaaOGaaG4waiaaicdacaaISaGaeq4SdCMaaG yxaiabgMIihlaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaI BbGaamyyaiaaiYcacaWGIbGaaGyxaiaai6caaaa@4EB0@  (17)

При выполнении данных условий формулу (10) можно переписать в виде

Δ(λ)= d 2 ρ 2 sin2ρldcos2ρl sin2ρl ρ dq(γ) sin 2 ρl ρ 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aWaaSaaaeaacaWGKbWaaWbaaSqabeaa caaIYaaaaOGaeqyWdihabaGaaGOmaaaaciGGZbGaaiyAaiaac6gaca aIYaGaeqyWdiNaamiBaiabgkHiTiaadsgaciGGJbGaai4Baiaacoha caaIYaGaeqyWdiNaamiBaiabgkHiTmaalaaabaGaci4CaiaacMgaca GGUbGaaGOmaiabeg8aYjaadYgaaeaacqaHbpGCaaGaeyOeI0Iaamiz aiaadghacaaIOaGaeq4SdCMaaGykamaalaaabaWaaubiaeqaleqaba GaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaaiabeg8aYjaadYgaaeaa cqaHbpGCdaahaaWcbeqaaiaaikdaaaaaaOGaey4kaScaaa@6717@

+ ρ 2 d 2 1 ρ 2 sinρl d ρ cosρl 0 l q(t)sinρtdt sinρl ρ 2 0 l sinρtq(bt)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaam WaaeaadaWcaaqaaiabeg8aYnaaCaaaleqabaGaaGOmaaaakiaadsga daahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaabaGaeqyWdi3aaW baaSqabeaacaaIYaaaaaaakiGacohacaGGPbGaaiOBaiabeg8aYjaa dYgacqGHsisldaWcaaqaaiaadsgaaeaacqaHbpGCaaGaci4yaiaac+ gacaGGZbGaeqyWdiNaamiBaaGaay5waiaaw2faamaapehabeWcbaGa aGimaaqaaiaadYgaa0Gaey4kIipakiaadghacaaIOaGaamiDaiaaiM caciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0bGaamizaiaadshacqGH sisldaWcaaqaaiGacohacaGGPbGaaiOBaiabeg8aYjaadYgaaeaacq aHbpGCdaahaaWcbeqaaiaaikdaaaaaaOWaa8qCaeqaleaacaaIWaaa baGaamiBaaqdcqGHRiI8aOGaci4CaiaacMgacaGGUbGaeqyWdiNaam iDaiaadghacaaIOaGaamOyaiabgkHiTiaadshacaaIPaGaamizaiaa dshacaaIUaaaaa@7A09@  (18)

Выполнив подстановки λ=(πn/l ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaaiIcacqaHapaCcaWGUbGaaG4laiaadYgacaaIPaWaaWbaaSqa beaacaaIYaaaaaaa@3F1A@  и λ= z n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG ypaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaa@3B4D@  в (18), с помощью интегрирования по частям получим следующее утверждение.

Утверждение 3 При n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgI Giodaa@386E@  имеют место формулы

Δ πn l 2 =d+d l πn 2 [q(l) (1) n q(0)+ κ n ], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa GaaGypaiabgkHiTiaadsgacqGHRaWkcaWGKbWaaeWaaeaadaWcaaqa aiaadYgaaeaacqaHapaCcaWGUbaaaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiaaiUfacaWGXbGaaGikaiaadYgacaaIPaGaeyOe I0IaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaaaO GaamyCaiaaiIcacaaIWaGaaGykaiabgUcaRiabeQ7aRnaaBaaaleaa caWGUbaabeaakiaai2facaaISaaaaa@5B6C@

Δ( z n 2 )=( 1) n sin z n l z n 3 1 d 2 +q(a)q(l) (1) n q(b)+ η n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp aiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaamOBaaaakm aalaaabaGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUbaa beaakiaadYgaaeaacaWG6bWaa0baaSqaaiaad6gaaeaacaaIZaaaaa aakmaadmaabaWaaSaaaeaacaaIXaaabaGaamizamaaCaaaleqabaGa aGOmaaaaaaGccqGHRaWkcaWGXbGaaGikaiaadggacaaIPaGaeyOeI0 IaamyCaiaaiIcacaWGSbGaaGykaiabgkHiTiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaamOBaaaakiaadghacaaIOaGaamOyai aaiMcacqGHRaWkcqaH3oaAdaWgaaWcbaGaamOBaaqabaaakiaawUfa caGLDbaaaaa@629E@

с некоторыми последовательностями { κ n } n1 ,{ η n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeQ 7aRnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccaaISaGaaG4EaiabeE7aOnaaBaaaleaacaWGUbaabeaa kiaai2hadaWgaaWcbaGaamOBaiab=5NkfkaaigdaaeqaaOGaeyicI4 SaamiBamaaBaaaleaacaaIYaaabeaaaaa@54A1@ .

Введем обозначения

Q 1 (z)= z b q(t)dt, Q 2 (z)= 0 lz q(a+t)dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG6bGaaGykaiaai2dadaWdXbqa bSqaaiaadQhaaeaacaWGIbaaniabgUIiYdGccaWGXbGaaGikaiaads hacaaIPaGaamizaiaadshacaaISaGaaGzbVlaadgfadaWgaaWcbaGa aGOmaaqabaGccaaIOaGaamOEaiaaiMcacaaI9aWaa8qCaeqaleaaca aIWaaabaGaamiBaiabgkHiTiaadQhaa0Gaey4kIipakiaadghacaaI OaGaamyyaiabgUcaRiaadshacaaIPaGaamizaiaadshacaaIUaaaaa@5971@

Интегрируя по частям, получаем представление

Δ(λ)= d 2 ρ 2 sin2ρldcos2ρl sin2ρl ρ + d 2 q(0) sinρl ρ d 2 sin2ρl 2ρ q(l)+ 1 2ρ 0 2l sinρtW(t)dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aWaaSaaaeaacaWGKbWaaWbaaSqabeaa caaIYaaaaOGaeqyWdihabaGaaGOmaaaaciGGZbGaaiyAaiaac6gaca aIYaGaeqyWdiNaamiBaiabgkHiTiaadsgaciGGJbGaai4Baiaacoha caaIYaGaeqyWdiNaamiBaiabgkHiTmaalaaabaGaci4CaiaacMgaca GGUbGaaGOmaiabeg8aYjaadYgaaeaacqaHbpGCaaGaey4kaSIaamiz amaaCaaaleqabaGaaGOmaaaakiaadghacaaIOaGaaGimaiaaiMcada WcaaqaaiGacohacaGGPbGaaiOBaiabeg8aYjaadYgaaeaacqaHbpGC aaGaeyOeI0IaamizamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaci 4CaiaacMgacaGGUbGaaGOmaiabeg8aYjaadYgaaeaacaaIYaGaeqyW dihaaiaadghacaaIOaGaamiBaiaaiMcacqGHRaWkdaWcaaqaaiaaig daaeaacaaIYaGaeqyWdihaamaapehabeWcbaGaaGimaaqaaiaaikda caWGSbaaniabgUIiYdGcciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0b Gaam4vaiaaiIcacaWG0bGaaGykaiaadsgacaWG0bGaaGilaaaa@877B@  (19)

где функция W L 2 [0,2l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIBbGaaGimaiaaiYca caaIYaGaamiBaiaai2faaaa@3F03@  имеет вид

W(t)= dq(lt)dq(l) Q 1 (lt)+ d 2 q (lt) Q 2 (t), t[0,l), dq(tl)dq(l) Q 1 (tl)+ d 2 q (tl) Q 2 (2lt), t[l,2l]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaiaai2dadaqabaqaauaabeqaciaaaeaacqGHsisl caWGKbGaamyCaiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsi slcaWGKbGaamyCaiaaiIcacaWGSbGaaGykaiabgkHiTiaadgfadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiBaiabgkHiTiaadshacaaIPa Gaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiqadghagaqbaiaa iIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsislcaWGrbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaaqaaiaadsha cqGHiiIZcaaIBbGaaGimaiaaiYcacaWGSbGaaGykaiaaiYcaaeaacq GHsislcaWGKbGaamyCaiaaiIcacaWG0bGaeyOeI0IaamiBaiaaiMca cqGHsislcaWGKbGaamyCaiaaiIcacaWGSbGaaGykaiabgkHiTiaadg fadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiabgkHiTiaadYga caaIPaGaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiqadghaga qbaiaaiIcacaWG0bGaeyOeI0IaamiBaiaaiMcacqGHsislcaWGrbWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaaikdacaWGSbGaeyOeI0Iaam iDaiaaiMcacaaISaaabaGaamiDaiabgIGiolaaiUfacaWGSbGaaGil aiaaikdacaWGSbGaaGyxaiaai6caaaaacaGL7baaaaa@8EFA@

Используя формулу (19), с помощью стандартной техники [15] можно получить асимптотику спектра.

Теорема 2 Справедливы следующие асимптотические формулы:

λ n = ρ n 2 , ρ n = πn 2l + 2 dπn + 4l δ n q(0) π 2 n 2 + μ n n 2 ,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypaiabeg8aYnaaDaaaleaacaWGUbaa baGaaGOmaaaakiaaiYcacaaMf8UaeqyWdi3aaSbaaSqaaiaad6gaae qaaOGaaGypamaalaaabaGaeqiWdaNaamOBaaqaaiaaikdacaWGSbaa aiabgUcaRmaalaaabaGaaGOmaaqaaiaadsgacqaHapaCcaWGUbaaai abgUcaRmaalaaabaGaaGinaiaadYgacqaH0oazdaWgaaWcbaGaamOB aaqabaGccaWGXbGaaGikaiaaicdacaaIPaaabaGaeqiWda3aaWbaaS qabeaacaaIYaaaaOGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqGH RaWkdaWcaaqaaiabeY7aTnaaBaaaleaacaWGUbaabeaaaOqaaiaad6 gadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaiaaywW7caWGUbGaeyic I4SaaGzaVlaaygW7caaMc8UaaGPaVlablwriLcaa@6C0B@ . (20)

где δ n =sinπn/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaad6gaaeqaaOGaaGypaiGacohacaGGPbGaaiOBaiabec8a Wjaad6gacaaIVaGaaGOmaaaa@4089@ , { μ n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeY 7aTnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B78@ .

С помощью этих асимптотик формула (13) может быть уточнена следующим образом:

Δ(λ)=l d 2 (λ λ 0 ) n=1 λ n λ ( πn 2l ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaamiBaiaadsgadaahaaWcbeqaaiaa ikdaaaGccaaIOaGaeq4UdWMaeyOeI0Iaeq4UdW2aaSbaaSqaaiaaic daaeqaaOGaaGykamaarahabeWcbaGaamOBaiaai2dacaaIXaaabaGa eyOhIukaniabg+GivdGcdaWcaaqaaiabeU7aSnaaBaaaleaacaWGUb aabeaakiabgkHiTiabeU7aSbqaaiaaiIcadaWcaaqaaiabec8aWjaa d6gaaeaacaaIYaGaamiBaaaacaaIPaWaaWbaaSqabeaacaaIYaaaaa aaaaa@571F@  (21)

(доказательство аналогично доказательству теоремы 1.1.4 в [15] для классического оператора Штурма - Лиувилля).

Пусть теперь задана произвольная последовательность { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@ , члены которой удовлетворяют асимптотическим формулам

λ n = ρ n 2 , ρ n = πn 2l + 2 dπn + 4l δ n u π 2 n 2 + μ n n 2 ,n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaaGypaiabeg8aYnaaDaaaleaacaWGUbaa baGaaGOmaaaakiaaiYcacaaMf8UaeqyWdi3aaSbaaSqaaiaad6gaae qaaOGaaGypamaalaaabaGaeqiWdaNaamOBaaqaaiaaikdacaWGSbaa aiabgUcaRmaalaaabaGaaGOmaaqaaiaadsgacqaHapaCcaWGUbaaai abgUcaRmaalaaabaGaaGinaiaadYgacqaH0oazdaWgaaWcbaGaamOB aaqabaGccaWG1baabaGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaam OBamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiabeY7a TnaaBaaaleaacaWGUbaabeaaaOqaaiaad6gadaahaaWcbeqaaiaaik daaaaaaOGaaGilaiaaywW7caWGUbGaeyicI4SaaGilaaaa@6310@  (22)

где u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giodaa@3875@  C, { μ n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeY 7aTnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B78@ . Наша следующая цель " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ получить условия, которые нужно наложить на данную последовательность, чтобы она являлась спектром некоторой краевой задачи (1)(2) в частном случае (17).

Теорема 3 Пусть функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  построена по формуле (21) с произвольными числами λ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38CA@  вида (22). Имеет место представление

Δ(λ)= Δ ˜ (λ)+ C 0 sin2ρl ρ + 0 2l W(t) sinρt 2ρ dt,W L 2 (0,2l), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGafuiLdqKbaGaacaaIOaGaeq4UdWMa aGykaiabgUcaRiaadoeadaWgaaWcbaGaaGimaaqabaGcdaWcaaqaai GacohacaGGPbGaaiOBaiaaikdacqaHbpGCcaWGSbaabaGaeqyWdiha aiabgUcaRmaapehabeWcbaGaaGimaaqaaiaaikdacaWGSbaaniabgU IiYdGccaWGxbGaaGikaiaadshacaaIPaWaaSaaaeaaciGGZbGaaiyA aiaac6gacqaHbpGCcaWG0baabaGaaGOmaiabeg8aYbaacaWGKbGaam iDaiaaiYcacaaMf8Uaam4vaiabgIGiolaadYeadaWgaaWcbaGaaGOm aaqabaGccaaIOaGaaGimaiaaiYcacaaIYaGaamiBaiaaiMcacaaISa aaaa@690F@  (23)

где

Δ ˜ (λ)= d 2 ρ 2 sin2ρldcos2ρl+ d 2 u sinρl ρ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaiaai2dadaWcaaqaaiaadsgadaahaaWc beqaaiaaikdaaaGccqaHbpGCaeaacaaIYaaaaiGacohacaGGPbGaai OBaiaaikdacqaHbpGCcaWGSbGaeyOeI0IaamizaiGacogacaGGVbGa ai4CaiaaikdacqaHbpGCcaWGSbGaey4kaSIaamizamaaCaaaleqaba GaaGOmaaaakiaadwhadaWcaaqaaiGacohacaGGPbGaaiOBaiabeg8a YjaadYgaaeaacqaHbpGCaaGaaGOlaaaa@59D8@

Доказательство. Доказательство теоремы основано на технике, примененной в [12], где представление для другой характеристической функции было получено с меньшим числом слагаемых.

1. Обозначим через λ ˜ n = ρ ˜ n 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaG aadaWgaaWcbaGaamOBaaqabaGccaaI9aGafqyWdiNbaGaadaqhaaWc baGaamOBaaqaaiaaikdaaaaaaa@3D55@ , n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamrr1n gBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaGim aaaa@42F9@ , нули функции Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaaaa@3A85@ ; при этом ρ ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbaG aadaWgaaWcbaGaamOBaaqabaaaaa@38E5@  имеют ту же асимптотику, что и ρ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaad6gaaeqaaaaa@38D6@  в формулах (20). Заметим, что Δ ˜ (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaaaa@3A85@  восстанавливается по формуле (21), если в ней заменить λ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38CA@  на λ ˜ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbaG aadaWgaaWcbaGaamOBaaqabaaaaa@38D9@ . Рассмотрим числа

θ k = πk 2l [Δ(λ) Δ ˜ (λ )]| λ=( πk 2l ) 2 ,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadUgaaeqaaOGaaGypamaalaaabaGaeqiWdaNaam4Aaaqa aiaaikdacaWGSbaaaiaaiUfacqqHuoarcaaIOaGaeq4UdWMaaGykai abgkHiTiqbfs5aezaaiaGaaGikaiabeU7aSjaaiMcacaaIDbGaaGiF amaaBaaaleaacqaH7oaBcaaI9aGaaGikamaalaaabaGaeqiWdaNaam 4AaaqaaiaaikdacaWGSbaaaiaaiMcadaahaaqabeaacaaIYaaaaaqa baGccaaISaGaaGzbVlaadUgacqGHiiIZcaaIUaaaaa@599E@

Введем функцию Δ * (λ)= d 2 ρ/2sin2ρl MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaW baaSqabeaacaaIQaaaaOGaaGikaiabeU7aSjaaiMcacaaI9aGaamiz amaaCaaaleqabaGaaGOmaaaakiabeg8aYjaai+cacaaIYaGaci4Cai aacMgacaGGUbGaaGOmaiabeg8aYjaadYgaaaa@477E@ . Используя (21), запишем представление

Δ(λ)= Δ * (λ)F(λ),F(λ) n=0 λ n λ ( πn 2l ) 2 λ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcacaaI9aGaeuiLdq0aaWbaaSqabeaacaaIQaaa aOGaaGikaiabeU7aSjaaiMcacaWGgbGaaGikaiabeU7aSjaaiMcaca aISaGaaGzbVlaadAeacaaIOaGaeq4UdWMaaGykamaarahabeWcbaGa amOBaiaai2dacaaIWaaabaGaeyOhIukaniabg+GivdGcdaWcaaqaai abeU7aSnaaBaaaleaacaWGUbaabeaakiabgkHiTiabeU7aSbqaaiaa iIcadaWcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaacaaIPa WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaeq4UdWgaaiaaiYcaaaa@607E@

и, аналогично,

Δ ˜ (λ)= Δ * (λ) F ˜ (λ), F ˜ (λ) n=0 λ ˜ n λ ( πn 2l ) 2 λ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuiLdqKbaG aacaaIOaGaeq4UdWMaaGykaiaai2dacqqHuoardaahaaWcbeqaaiaa iQcaaaGccaaIOaGaeq4UdWMaaGykaiqadAeagaacaiaaiIcacqaH7o aBcaaIPaGaaGilaiaaywW7ceWGgbGbaGaacaaIOaGaeq4UdWMaaGyk amaarahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIukaniabg+ GivdGcdaWcaaqaaiqbeU7aSzaaiaWaaSbaaSqaaiaad6gaaeqaaOGa eyOeI0Iaeq4UdWgabaGaaGikamaalaaabaGaeqiWdaNaamOBaaqaai aaikdacaWGSbaaaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHsisl cqaH7oaBaaGaaGOlaaaa@60BC@

С учетом этих представлений имеем

θ k = πk 2l [ Δ * (λ) ] | λ=( πk 2l ) 2 λ ˜ k πk 2l 2 d ˜ k λ k πk 2l 2 d k ,k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadUgaaeqaaOGaaGypamaalaaabaGaeqiWdaNaam4Aaaqa aiaaikdacaWGSbaaaiaaiUfacqqHuoardaahaaWcbeqaaiaaiQcaaa GccaaIOaGaeq4UdWMaaGykaiqai2fagaqbaiaaiYhadaWgaaWcbaGa eq4UdWMaaGypaiaaiIcadaWcaaqaaiabec8aWjaadUgaaeaacaaIYa GaamiBaaaacaaIPaWaaWbaaeqabaGaaGOmaaaaaeqaaOWaamWaaeaa daqadaqaaiqbeU7aSzaaiaWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0 YaaeWaaeaadaWcaaqaaiabec8aWjaadUgaaeaacaaIYaGaamiBaaaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aaceWGKbGbaGaadaWgaaWcbaGaam4AaaqabaGccqGHsisldaqadaqa aiabeU7aSnaaBaaaleaacaWGRbaabeaakiabgkHiTmaabmaabaWaaS aaaeaacqaHapaCcaWGRbaabaGaaGOmaiaadYgaaaaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaamizamaaBa aaleaacaWGRbaabeaaaOGaay5waiaaw2faaiaaiYcacaaMf8Uaam4A aiabgIGiolaaiYcaaaa@749F@  (24)

где

d k = nk λ n ( πk 2l ) 2 ( πn 2l ) 2 ( πk 2l ) 2 , d ˜ k = nk λ ˜ n ( πk 2l ) 2 ( πn 2l ) 2 ( πk 2l ) 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiaai2dadaqeqbqabSqaaiaad6gacqGHGjsU caWGRbaabeqdcqGHpis1aOWaaSaaaeaacqaH7oaBdaWgaaWcbaGaam OBaaqabaGccqGHsislcaaIOaWaaSaaaeaacqaHapaCcaWGRbaabaGa aGOmaiaadYgaaaGaaGykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaiI cadaWcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaacaaIPaWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGikamaalaaabaGaeqiWda Naam4AaaqaaiaaikdacaWGSbaaaiaaiMcadaahaaWcbeqaaiaaikda aaaaaOGaaGilaiaaywW7ceWGKbGbaGaadaWgaaWcbaGaam4Aaaqaba GccaaI9aWaaebuaeqaleaacaWGUbGaeyiyIKRaam4Aaaqab0Gaey4d IunakmaalaaabaGafq4UdWMbaGaadaWgaaWcbaGaamOBaaqabaGccq GHsislcaaIOaWaaSaaaeaacqaHapaCcaWGRbaabaGaaGOmaiaadYga aaGaaGykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaiIcadaWcaaqaai abec8aWjaad6gaaeaacaaIYaGaamiBaaaacaaIPaWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaaGikamaalaaabaGaeqiWdaNaam4Aaaqaai aaikdacaWGSbaaaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGaaGOl aaaa@7C6B@

Далее оценим d k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaaaaa@37FC@  (для d ˜ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaia WaaSbaaSqaaiaadUgaaeqaaaaa@380B@  вычисления аналогичны) и d ˜ k d k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaaia WaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0IaamizamaaBaaaleaacaWG Rbaabeaaaaa@3B07@ . Перепишем первый коэффициент в виде

d k = nN, nk (1+ x n,k )exp H k , H k n>N, nk ln(1+ x n,k ), x n,k λ n ( πn 2l ) 2 ( πn 2l ) 2 ( πk 2l ) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiaai2dadaqeqbqabSqaaqaaceqaaiaad6ga tuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=1Nkek aad6eacaaISaaabaGaamOBaiabgcMi5kaadUgaaaaabeqdcqGHpis1 aOGaaGikaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaad6gacaaISa Gaam4AaaqabaGccaaIPaGaciyzaiaacIhacaGGWbGaamisamaaBaaa leaacaWGRbaabeaakiaaiYcacaaMf8UaamisamaaBaaaleaacaWGRb aabeaakmaaqafabeWcbaabaiqabaGaamOBaiaai6dacaWGobGaaGil aaqaaiaad6gacqGHGjsUcaWGRbaaaaqab0GaeyyeIuoakiGacYgaca GGUbGaaGikaiaaigdacqGHRaWkcaWG4bWaaSbaaSqaaiaad6gacaaI SaGaam4AaaqabaGccaaIPaGaaGilaiaaywW7caWG4bWaaSbaaSqaai aad6gacaaISaGaam4AaaqabaGcdaWcaaqaaiabeU7aSnaaBaaaleaa caWGUbaabeaakiabgkHiTiaaiIcadaWcaaqaaiabec8aWjaad6gaae aacaaIYaGaamiBaaaacaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGikamaalaaabaGaeqiWdaNaamOBaaqaaiaaikdacaWGSbaaaiaaiM cadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIOaWaaSaaaeaacqaH apaCcaWGRbaabaGaaGOmaiaadYgaaaGaaGykamaaCaaaleqabaGaaG OmaaaaaaGccaaISaaaaa@8DEF@  (25)

с некоторым фиксированным N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@ . В силу (22) имеем λ n [πn/(2l)] 2 =O(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaOGaeyOeI0IaaG4waiabec8aWjaad6gacaaI VaGaaGikaiaaikdacaWGSbGaaGykaiaai2fadaahaaWcbeqaaiaaik daaaGccaaI9aGaam4taiaaiIcacaaIXaGaaGykaaaa@46B6@ , и можно выбрать такое N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@ , не зависящее от k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ , что | x n,k |<1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI hadaWgaaWcbaGaamOBaiaaiYcacaWGRbaabeaakiaaiYhacaaI8aGa aGymaiaai+cacaaIYaaaaa@3EC5@  при n>N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai6 dacaWGobaaaa@3885@ . Используя разложение Тейлора для ln(1+ x n,k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gacaaIOaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamOBaiaaiYca caWGRbaabeaakiaaiMcaaaa@3EA9@ , можно оценить

| H k |2 n>N, nk | x n,k |2C n>k 1 (nk) 2 =O(1). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadI eadaWgaaWcbaGaam4AaaqabaGccaaI8bWefv3ySLgznfgDOjdaryqr 1ngBPrginfgDObcv39gaiuaacqWF9PcHcaaIYaWaaabuaeqaleaaea GabeaacaWGUbGaaGOpaiaad6eacaaISaaabaGaamOBaiabgcMi5kaa dUgaaaaabeqdcqGHris5aOGaaGiFaiaadIhadaWgaaWcbaGaamOBai aaiYcacaWGRbaabeaakiaaiYhacqWF9PcHcaaIYaGaam4qamaaqafa beWcbaGaamOBaiaai6dacaWGRbaabeqdcqGHris5aOWaaSaaaeaaca aIXaaabaGaaGikaiaad6gacqGHsislcaWGRbGaaGykamaaCaaaleqa baGaaGOmaaaaaaGccaaI9aGaam4taiaaiIcacaaIXaGaaGykaiaai6 caaaa@6775@  (26)

Тогда из (25) мы получим, что d k =O(1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiaai2dacaWGpbGaaGikaiaaigdacaaIPaaa aa@3BC1@ . Покажем, что d k d ˜ k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWG Rbaabeaakiaai2dacaWGpbGaaGikaiaaigdacaaIVaGaam4AamaaCa aaleqabaGaaGOmaaaakiaaiMcaaaa@4168@ . Для этого запишем

d k d ˜ k = nN, nk (1+ x n,k ) nN, nk (1+ x ˜ n,k ) exp H k + nN, nk (1+ x ˜ n,k )(exp H k exp H ˜ k ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWG Rbaabeaakiaai2dadaqadaqaamaarafabeWcbaabaiqabaGaamOBam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xFQqOa amOtaiaaiYcaaeaacaWGUbGaeyiyIKRaam4Aaaaaaeqaniabg+Givd GccaaIOaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamOBaiaaiYca caWGRbaabeaakiaaiMcacqGHsisldaqeqbqabSqaaqaaceqaaiaad6 gacqWF9PcHcaWGobGaaGilaaqaaiaad6gacqGHGjsUcaWGRbaaaaqa b0Gaey4dIunakiaaiIcacaaIXaGaey4kaSIabmiEayaaiaWaaSbaaS qaaiaad6gacaaISaGaam4AaaqabaGccaaIPaaacaGLOaGaayzkaaGa ciyzaiaacIhacaGGWbGaamisamaaBaaaleaacaWGRbaabeaakiabgU caRmaarafabeWcbaabaiqabaGaamOBaiab=1Nkekaad6eacaaISaaa baGaamOBaiabgcMi5kaadUgaaaaabeqdcqGHpis1aOGaaGikaiaaig dacqGHRaWkceWG4bGbaGaadaWgaaWcbaGaamOBaiaaiYcacaWGRbaa beaakiaaiMcacaaIOaGaciyzaiaacIhacaGGWbGaamisamaaBaaale aacaWGRbaabeaakiabgkHiTiGacwgacaGG4bGaaiiCaiqadIeagaac amaaBaaaleaacaWGRbaabeaakiaaiMcacaaISaaaaa@8CD0@

где H ˜ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaaia WaaSbaaSqaaiaadUgaaeqaaaaa@37EF@  и x ˜ n,k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia WaaSbaaSqaaiaad6gacaaISaGaam4Aaaqabaaaaa@39C8@  вводятся аналогично H k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGRbaabeaaaaa@37E0@  и x n,k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbGaaGilaiaadUgaaeqaaaaa@39B9@ . Первое слагаемое в данном равенстве оценивается как O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaaiI cacaaIXaGaaG4laiaadUgadaahaaWcbeqaaiaaikdaaaGccaaIPaaa aa@3B87@ , поскольку x n,k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGUbGaaGilaiaadUgaaeqaaOGaaGypaiaad+eacaaIOaGa aGymaiaai+cacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaGykaaaa@401A@  и x ˜ n,k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaia WaaSbaaSqaaiaad6gacaaISaGaam4AaaqabaGccaaI9aGaam4taiaa iIcacaaIXaGaaG4laiaadUgadaahaaWcbeqaaiaaikdaaaGccaaIPa aaaa@4029@  при n<N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaaiY dacaWGobaaaa@3883@ , а также выполнено (26). Для оценки второго слагаемого заметим, что из разложения Тейлора для ln(1+ x n,k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6 gacaaIOaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamOBaiaaiYca caWGRbaabeaakiaaiMcaaaa@3EA9@ , k>N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai6 dacaWGobaaaa@3882@ , можно получить формулу

H k = n>N, nk ( x n,k +O( x n,k 2 )); MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGRbaabeaakiaai2dadaaeqbqabSqaaqaaceqaaiaad6ga caaI+aGaamOtaiaaiYcaaeaacaWGUbGaeyiyIKRaam4Aaaaaaeqani abggHiLdGccaaIOaGaamiEamaaBaaaleaacaWGUbGaaGilaiaadUga aeqaaOGaey4kaSIaam4taiaaiIcacaWG4bWaa0baaSqaaiaad6gaca aISaGaam4AaaqaaiaaikdaaaGccaaIPaGaaGykaiaaiUdaaaa@4F70@

формула такого же вида имеет место для H ˜ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaaia WaaSbaaSqaaiaadUgaaeqaaaaa@37EF@ . Используя их и формулу оценки разности значений функции через ее производную, получим

|exp H k exp H ˜ k | max z[ H k , H ˜ k ] |expz|| H k H ˜ k | MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiGacw gacaGG4bGaaiiCaiaadIeadaWgaaWcbaGaam4AaaqabaGccqGHsisl ciGGLbGaaiiEaiaacchaceWGibGbaGaadaWgaaWcbaGaam4Aaaqaba GccaaI8bWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF9PcHdaGfqbqabSqaaiaadQhacqGHiiIZcaaIBbGaamisamaaBa aabaGaam4AaaqabaGaaGilaiqadIeagaacamaaBaaabaGaam4Aaaqa baGaaGyxaaqabOqaaiGac2gacaGGHbGaaiiEaaaacaaI8bGaciyzai aacIhacaGGWbGaamOEaiaaiYhacaaI8bGaamisamaaBaaaleaacaWG RbaabeaakiabgkHiTiqadIeagaacamaaBaaaleaacaWGRbaabeaaki aaiYhacqWF9PcHaaa@689A@

C n>N, nk | x n,k x ˜ n,k |+C n>N, nk 1 k 2 (nk) 2 C n>N, nk μ ^ n n( n 2 k 2 ) + C k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF9PcHcaWGdbWaaabu aeqaleaaeaGabeaacaWGUbGaaGOpaiaad6eacaaISaaabaGaamOBai abgcMi5kaadUgaaaaabeqdcqGHris5aOGaaGiFaiaadIhadaWgaaWc baGaamOBaiaaiYcacaWGRbaabeaakiabgkHiTiqadIhagaacamaaBa aaleaacaWGUbGaaGilaiaadUgaaeqaaOGaaGiFaiabgUcaRiaadoea daaeqbqabSqaaqaaceqaaiaad6gacaaI+aGaamOtaiaaiYcaaeaaca WGUbGaeyiyIKRaam4AaaaaaeqaniabggHiLdGcdaWcaaqaaiaaigda aeaacaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaad6gacqGHsi slcaWGRbGaaGykamaaCaaaleqabaGaaGOmaaaaaaGccqWF9PcHcaWG dbWaaabuaeqaleaaeaGabeaacaWGUbGaaGOpaiaad6eacaaISaaaba GaamOBaiabgcMi5kaadUgaaaaabeqdcqGHris5aOWaaSaaaeaacuaH 8oqBgaqcamaaBaaaleaacaWGUbaabeaaaOqaaiaad6gacaaIOaGaam OBamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadUgadaahaaWcbeqa aiaaikdaaaGccaaIPaaaaiabgUcaRmaalaaabaGaam4qaaqaaiaadU gadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa@8279@

где { μ ^ n } n0 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiqbeY 7aTzaajaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFamaaBaaaleaacaWG UbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+P sHcaaIWaaabeaakiabgIGiolaadYgadaWgaaWcbaGaaGOmaaqabaaa aa@4B87@  в силу асимптотических формул (22). При этом

n1, nk μ ^ n n( n 2 k 2 ) 1 k n1, nk μ ^ n n(nk) 1 k n=1 μ ^ n 2 n1, nk 1 n 2 (nk) 2 C k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabuaeqale aaeaGabeaacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWF+PsHcaaIXaGaaGilaaqaaiaad6gacqGHGjsUcaWGRb aaaaqab0GaeyyeIuoakmaalaaabaGafqiVd0MbaKaadaWgaaWcbaGa amOBaaqabaaakeaacaWGUbGaaGikaiaad6gadaahaaWcbeqaaiaaik daaaGccqGHsislcaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaGykaaaa cqWF9PcHdaWcaaqaaiaaigdaaeaacaWGRbaaamaaqafabeWcbaabai qabaGaamOBaiab=5NkfkaaigdacaaISaaabaGaamOBaiabgcMi5kaa dUgaaaaabeqdcqGHris5aOWaaSaaaeaacuaH8oqBgaqcamaaBaaale aacaWGUbaabeaaaOqaaiaad6gacaaIOaGaamOBaiabgkHiTiaadUga caaIPaaaaiab=1NkeoaalaaabaGaaGymaaqaaiaadUgaaaWaaOaaae aadaaeWbqabSqaaiaad6gacaaI9aGaaGymaaqaaiabg6HiLcqdcqGH ris5aOGafqiVd0MbaKaadaqhaaWcbaGaamOBaaqaaiaaikdaaaaabe aakmaakaaabaWaaabuaeqaleaaeaGabeaacaWGUbGae8NFQuOaaGym aiaaiYcaaeaacaWGUbGaeyiyIKRaam4AaaaaaeqaniabggHiLdGcda WcaaqaaiaaigdaaeaacaWGUbWaaWbaaSqabeaacaaIYaaaaOGaaGik aiaad6gacqGHsislcaWGRbGaaGykamaaCaaaleqabaGaaGOmaaaaaa aabeaakiab=1NkeoaalaaabaGaam4qaaqaaiaadUgadaahaaWcbeqa aiaaikdaaaaaaOGaaGilaaaa@8D82@

следовательно, |exp H k exp H ˜ k |=O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiGacw gacaGG4bGaaiiCaiaadIeadaWgaaWcbaGaam4AaaqabaGccqGHsisl ciGGLbGaaiiEaiaacchaceWGibGbaGaadaWgaaWcbaGaam4Aaaqaba GccaaI8bGaaGypaiaad+eacaaIOaGaaGymaiaai+cacaWGRbWaaWba aSqabeaacaaIYaaaaOGaaGykaaaa@48F2@  и d k d ˜ k =O(1/ k 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWG Rbaabeaakiaai2dacaWGpbGaaGikaiaaigdacaaIVaGaam4AamaaCa aaleqabaGaaGOmaaaakiaaiMcaaaa@4168@ .

Из асимптотик (22) следует, что

λ k λ ˜ k = ν k k , λ k πk 2l 2 =O(1), λ ˜ k πk 2l 2 =O(1), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaeyOeI0Iafq4UdWMbaGaadaWgaaWcbaGa am4AaaqabaGccaaI9aWaaSaaaeaacqaH9oGBdaWgaaWcbaGaam4Aaa qabaaakeaacaWGRbaaaiaaiYcacaaMf8Uaeq4UdW2aaSbaaSqaaiaa dUgaaeqaaOGaeyOeI0YaaeWaaeaadaWcaaqaaiabec8aWjaadUgaae aacaaIYaGaamiBaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaGccaaI9aGaam4taiaaiIcacaaIXaGaaGykaiaaiYcacaaMf8Uafq 4UdWMbaGaadaWgaaWcbaGaam4AaaqabaGccqGHsisldaqadaqaamaa laaabaGaeqiWdaNaam4AaaqaaiaaikdacaWGSbaaaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiaai2dacaWGpbGaaGikaiaaigda caaIPaGaaGilaaaa@6369@

где последовательность { ν k } k1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabe2 7aUnaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4Aamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B74@ . Тогда

k λ k πk 2l 2 d k λ ˜ k πk 2l 2 d ˜ k =k d k ( λ k λ ˜ k )+ λ ˜ k πk 2l 2 ( d k d ˜ k ) l 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aamaadm aabaWaaeWaaeaacqaH7oaBdaWgaaWcbaGaam4AaaqabaGccqGHsisl daqadaqaamaalaaabaGaeqiWdaNaam4AaaqaaiaaikdacaWGSbaaaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aiaadsgadaWgaaWcbaGaam4AaaqabaGccqGHsisldaqadaqaaiqbeU 7aSzaaiaWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0YaaeWaaeaadaWc aaqaaiabec8aWjaadUgaaeaacaaIYaGaamiBaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaceWGKbGbaGaa daWgaaWcbaGaam4AaaqabaaakiaawUfacaGLDbaacaaI9aGaam4Aam aadmaabaGaamizamaaBaaaleaacaWGRbaabeaakiaaiIcacqaH7oaB daWgaaWcbaGaam4AaaqabaGccqGHsislcuaH7oaBgaacamaaBaaale aacaWGRbaabeaakiaaiMcacqGHRaWkdaqadaqaaiqbeU7aSzaaiaWa aSbaaSqaaiaadUgaaeqaaOGaeyOeI0YaaeWaaeaadaWcaaqaaiabec 8aWjaadUgaaeaacaaIYaGaamiBaaaaaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaakiaawIcacaGLPaaacaaIOaGaamizamaaBaaale aacaWGRbaabeaakiabgkHiTiqadsgagaacamaaBaaaleaacaWGRbaa beaakiaaiMcaaiaawUfacaGLDbaacqGHiiIZcaWGSbWaaSbaaSqaai aaikdaaeqaaOGaaGilaaaa@7BFE@

и из (24) мы получаем, что { θ k } k1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeI 7aXnaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4Aamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B72@ .

2. Так как система {sinπkt/(2l)} k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaadUgacaWG0bGaaG4laiaaiIcacaaI YaGaamiBaiaaiMcacaaI9bWaaSbaaSqaaiaadUgatuuDJXwAK1uy0H MmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaigdaaeqaaaaa @4F78@  является ортогональным базисом в пространстве L 2 (0,2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGilaiaaikdacaWGSbGa aGykaaaa@3C3C@ , существует функция W L 2 (0,2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caaIYaGaamiBaiaaiMcaaaa@3E9C@ , для которой

0 2l W(t)sin πk 2l tdt=2 θ k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaaGOmaiaadYgaa0Gaey4kIipakiaadEfacaaIOaGa amiDaiaaiMcaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec8aWjaadU gaaeaacaaIYaGaamiBaaaacaWG0bGaamizaiaadshacaaI9aGaaGOm aiabeI7aXnaaBaaaleaacaWGRbaabeaakiaai6caaaa@4D40@

Введем в рассмотрение функции

θ(ρ)= 0 2l W(t)sinρtdt,P(λ)=λ θ(ρ)/(2ρ)Δ(λ)+ Δ ˜ (λ) Δ * (λ) = θ(ρ) d 2 sin2ρl +λ( F ˜ (λ)F(λ)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaaG ikaiabeg8aYjaaiMcacaaI9aWaa8qCaeqaleaacaaIWaaabaGaaGOm aiaadYgaa0Gaey4kIipakiaadEfacaaIOaGaamiDaiaaiMcaciGGZb GaaiyAaiaac6gacqaHbpGCcaWG0bGaamizaiaadshacaaISaGaaGzb VlaadcfacaaIOaGaeq4UdWMaaGykaiaai2dacqaH7oaBdaWcaaqaai abeI7aXjaaiIcacqaHbpGCcaaIPaGaaG4laiaaiIcacaaIYaGaeqyW diNaaGykaiabgkHiTiabfs5aejaaiIcacqaH7oaBcaaIPaGaey4kaS IafuiLdqKbaGaacaaIOaGaeq4UdWMaaGykaaqaaiabfs5aenaaCaaa leqabaGaaGOkaaaakiaaiIcacqaH7oaBcaaIPaaaaiaai2dadaWcaa qaaiabeI7aXjaaiIcacqaHbpGCcaaIPaaabaGaamizamaaCaaaleqa baGaaGOmaaaakiGacohacaGGPbGaaiOBaiaaikdacqaHbpGCcaWGSb aaaiabgUcaRiabeU7aSjaaiIcaceWGgbGbaGaacaaIOaGaeq4UdWMa aGykaiabgkHiTiaadAeacaaIOaGaeq4UdWMaaGykaiaaiMcacaaIUa aaaa@88E3@

Функция P(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacqaH7oaBcaaIPaaaaa@39E5@  является целой. Действуя аналогично доказательству в части 1, можно показать, что | F ˜ (λ)F(λ)|M/ k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiqadA eagaacaiaaiIcacqaH7oaBcaaIPaGaeyOeI0IaamOraiaaiIcacqaH 7oaBcaaIPaGaaGiFamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq 1DVbacfaGae8xFQqOaamytaiaai+cacaWGRbWaaWbaaSqabeaacaaI Yaaaaaaa@4F7E@  на каждой окружности |λ|=[πk/(2l)+π/(4l )] 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeU 7aSjaaiYhacaaI9aGaaG4waiabec8aWjaadUgacaaIVaGaaGikaiaa ikdacaWGSbGaaGykaiabgUcaRiabec8aWjaai+cacaaIOaGaaGinai aadYgacaaIPaGaaGyxamaaCaaaleqabaGaaGOmaaaaaaa@4A17@ , k>N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai6 dacaWGobaaaa@3882@ . Отсюда следует, что функция P(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacqaH7oaBcaaIPaaaaa@39E5@  ограничена по модулю во всей плоскости, и по теореме Лиувилля P(λ) C 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaaiI cacqaH7oaBcaaIPaGaeyyyIORaam4qamaaBaaaleaacaaIWaaabeaa aaa@3D5C@ . Таким образом, представление (23) доказано.

Построим Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  по формуле (21) с заданными λ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gaaeqaaaaa@38CA@  с асимптотикой (22). Мы доказали, что данная функция имеет вид (23) с некоторыми W L 2 (0,2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caaIYaGaamiBaiaaiMcaaaa@3E9C@  и C 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaakiabgIGiodaa@3933@  C. Легко заметить, что функция W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@  определяется единственным образом:

W(t)= 1 l n=1 β n sin πn 2l t, β n πn l Δ πn 2l 2 + πn l (1) n d2 d 2 u δ n ,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaWGSbaaamaa qahabeWcbaGaamOBaiaai2dacaaIXaaabaGaeyOhIukaniabggHiLd GccqaHYoGydaWgaaWcbaGaamOBaaqabaGcciGGZbGaaiyAaiaac6ga daWcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaacaWG0bGaaG ilaiaaywW7cqaHYoGydaWgaaWcbaGaamOBaaqabaGcdaWcaaqaaiab ec8aWjaad6gaaeaacaWGSbaaaiabfs5aenaabmaabaWaaeWaaeaada Wcaaqaaiabec8aWjaad6gaaeaacaaIYaGaamiBaaaaaiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRaWkda Wcaaqaaiabec8aWjaad6gaaeaacaWGSbaaaiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaamOBaaaakiaadsgacqGHsislcaaIYa GaamizamaaCaaaleqabaGaaGOmaaaakiaadwhacqaH0oazdaWgaaWc baGaamOBaaqabaGccaaISaGaaGzbVlaad6gacqGHiiIZcaaIUaaaaa@75F9@  (27)

Согласно формуле (19), построенная Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  является характеристической функцией некоторой краевой задачи только в случае, когда для W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@  выполнено представление

WtdgltdglG1lt+d2g'ltG2ttldgtldglG1tl+d2g'tlG2lttl,2l (28)

с функциями g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ , G 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaaaaa@37AA@  и G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaaaaa@37AB@ , удовлетворяющими следующим условиям: [ (a)]

1. g W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@ , G 2 W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaaa@3FF1@  и G 1 (z)= z l g(t)dt,z[0,l]; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaakiaaiIcacaWG6bGaaGykaiaai2dadaWdXbqa bSqaaiaadQhaaeaacaWGSbaaniabgUIiYdGccaWGNbGaaGikaiaads hacaaIPaGaamizaiaadshacaaISaGaaGzbVlaadQhacqGHiiIZcaaI BbGaaGimaiaaiYcacaWGSbGaaGyxaiaaiUdaaaa@4E28@

2. g(l)=2( C 0 +1)/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWGSbGaaGykaiaai2dacqGHsislcaaIYaGaaGikaiaadoeadaWg aaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaGaaGykaiaai+cacaWGKb WaaWbaaSqabeaacaaIYaaaaaaa@42EE@  и g(0)=u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaaIWaGaaGykaiaai2dacaWG1baaaa@3AC3@ ;

3. G 2 (l)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiaaiIcacaWGSbGaaGykaiaai2dacaaIWaaa aa@3B8C@ .

Легко заметить, что в случае представления (28) можно восстановить последовательно g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@ , G 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaaabeaaaaa@37AA@  и G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaaaaa@37AB@  по формулам

g(t)= 1 2d {W(lt)W(l+t)}, G 1 (t)= t l g(w)dw, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG0bGaaGykaiaai2dadaWcaaqaaiaaigdaaeaacaaIYaGaamiz aaaacaaI7bGaam4vaiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacq GHsislcaWGxbGaaGikaiaadYgacqGHRaWkcaWG0bGaaGykaiaai2ha caaISaGaaGzbVlaadEeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam iDaiaaiMcacaaI9aWaa8qCaeqaleaacaWG0baabaGaamiBaaqdcqGH RiI8aOGaam4zaiaaiIcacaWG3bGaaGykaiaadsgacaWG3bGaaGilaa aa@5B02@

G 2 (t)=dg(lt)dg(l) G 1 (lt)+ d 2 g (lt)W(2lt), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqGHsisl caWGKbGaam4zaiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsi slcaWGKbGaam4zaiaaiIcacaWGSbGaaGykaiabgkHiTiaadEeadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiBaiabgkHiTiaadshacaaIPa Gaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiqadEgagaqbaiaa iIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsislcaWGxbGaaGikai aaikdacaWGSbGaeyOeI0IaamiDaiaaiMcacaaISaaaaa@5D3F@  (29)

где t[0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgI GiolaaiUfacaaIWaGaaGilaiaadYgacaaIDbaaaa@3CA1@ . Обратно, пусть функция W(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaaaa@3931@  из представления (23) имеет вид (28). Рассмотрим функцию

q(t)= g(t), t[0,γ], G 2 (lt+a), t[a,b]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiaaiI cacaWG0bGaaGykaiaai2dadaqabaqaauaabeqaciaaaeaacaWGNbGa aGikaiaadshacaaIPaGaaGilaaqaaiaadshacqGHiiIZcaaIBbGaaG imaiaaiYcacqaHZoWzcaaIDbGaaGilaaqaaiqadEeagaqbamaaBaaa leaacaaIYaaabeaakiaaiIcacaWGSbGaeyOeI0IaamiDaiabgUcaRi aadggacaaIPaGaaGilaaqaaiaadshacqGHiiIZcaaIBbGaamyyaiaa iYcacaWGIbGaaGyxaiaai6caaaaacaGL7baaaaa@5759@

Из условия (1) следует, что q W 2 1 [0,γ] W 2 1 [a,b] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacqaHZoWzcaaIDbGaeyykICSaam4vamaaDaaaleaacaaIYa aabaGaaGymaaaakiaaiUfacaWGHbGaaGilaiaadkgacaaIDbaaaa@4855@ . Сравнивая формулу (19) с (23) при условиях (2)(3), получим, что характеристическая функция краевой задачи (1)(2) с построенным q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36ED@  равна Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@ , и { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  является спектром данной краевой задачи.

Далее получим условия, из которых следует вид (28) функции W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36D3@ . Для этого понадобятся две следующие леммы.

Лемма 2 (см. [12]) Пусть { γ k } k1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabeo 7aNnaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4Aamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4B63@  и f L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGSbGaaGykaaaa@3DEF@ . Функция f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@  принадлежит классу W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGymaaaakiaaiUfacaaIWaGaaGilaiaadYga caaIDbaaaa@3CAE@  тогда и только тогда, когда имеет место асимптотика

0 l f(x)sin πk l + γ k xdx= l πk ( w 1 (1) k w 2 )+ γ ˜ k k ,k, { γ ˜ k } k1 l 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGa aGykaiGacohacaGGPbGaaiOBamaabmaabaWaaSaaaeaacqaHapaCca WGRbaabaGaamiBaaaacqGHRaWkcqaHZoWzdaWgaaWcbaGaam4Aaaqa baaakiaawIcacaGLPaaacaWG4bGaamizaiaadIhacaaI9aWaaSaaae aacaWGSbaabaGaeqiWdaNaam4AaaaacaaIOaGaam4DamaaBaaaleaa caaIXaaabeaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCa aaleqabaGaam4AaaaakiaadEhadaWgaaWcbaGaaGOmaaqabaGccaaI PaGaey4kaSYaaSaaaeaacuaHZoWzgaacamaaBaaaleaacaWGRbaabe aaaOqaaiaadUgaaaGaaGilaiaaywW7caWGRbGaeyicI4SaaGilaiaa ywW7caaI7bGafq4SdCMbaGaadaWgaaWcbaGaam4AaaqabaGccaaI9b WaaSbaaSqaaiaadUgatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab=5NkfkaaigdaaeqaaOGaeyicI4SaamiBamaaBaaale aacaaIYaaabeaakiaaiUdaaaa@7CDE@

при этом w 1 =f(0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaakiaai2dacaWGMbGaaGikaiaaicdacaaIPaaa aa@3BB5@ , w 2 =f(l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIYaaabeaakiaai2dacaWGMbGaaGikaiaadYgacaaIPaaa aa@3BED@ .

Лемма 3 Пусть f L 2 (0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadYeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaaGimaiaaiYca caWGSbGaaGykaaaa@3DEF@ . Функция f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@  принадлежит классу W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaDa aaleaacaaIYaaabaGaaGOmaaaakiaaiUfacaaIWaGaaGilaiaadYga caaIDbaaaa@3CAF@  тогда и только тогда, когда

0 l f(x)cos z k xdx= 1 z k 2 (( 1) k v 2 v 1 + γ ˜ k ),k, { γ ˜ k } k1 l 2 ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGa aGykaiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaam4Aaaqaba GccaWG4bGaamizaiaadIhacaaI9aWaaSaaaeaacaaIXaaabaGaamOE amaaDaaaleaacaWGRbaabaGaaGOmaaaaaaGccaaIOaGaaGikaiabgk HiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamODamaaBaaa leaacaaIYaaabeaakiabgkHiTiaadAhadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcuaHZoWzgaacamaaBaaaleaacaWGRbaabeaakiaaiMca caaISaGaaGzbVlaadUgacqGHiiIZcaaISaGaaGzbVlaaiUhacuaHZo WzgaacamaaBaaaleaacaWGRbaabeaakiaai2hadaWgaaWcbaGaam4A amrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQu OaaGymaaqabaGccqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaOGa aG4oaaaa@7515@  (30)

при этом v 1 = f (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIXaaabeaakiaai2daceWGMbGbauaacaaIOaGaaGimaiaa iMcaaaa@3BC0@  и v 2 = f (l)+f(l)/d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaai2daceWGMbGbauaacaaIOaGaamiBaiaa iMcacqGHRaWkcaWGMbGaaGikaiaadYgacaaIPaGaaG4laiaadsgaaa a@41BD@ .

Доказательство. Необходимость. Если f W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@ , то формула (30), в которой

v 1 = f (0), v 2 = f (l)+ f(l) d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIXaaabeaakiaai2daceWGMbGbauaacaaIOaGaaGimaiaa iMcacaaISaGaaGzbVlaadAhadaWgaaWcbaGaaGOmaaqabaGccaaI9a GabmOzayaafaGaaGikaiaadYgacaaIPaGaey4kaSYaaSaaaeaacaWG MbGaaGikaiaadYgacaaIPaaabaGaamizaaaaaaa@4921@

получается двукратным интегрированием по частям.

Достаточность. Пусть выполнена формула (30). Построим такую функцию g W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1F@ , что её коэффициенты по системе {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@  совпадают с коэффициентами f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@ . Найдем g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E3@  в виде

g(x)= x l g ˜ (t)dt+C. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiaai2dadaWdXbqabSqaaiaadIhaaeaacaWGSbaa niabgUIiYdGcceWGNbGbaGaacaaIOaGaamiDaiaaiMcacaWGKbGaam iDaiabgUcaRiaadoeacaaIUaaaaa@460B@

Вычисляя коэффициент при cos z k t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOEamaaBaaaleaacaWGRbaabeaakiaadshaaaa@3BE8@ , с помощью интегрирования по частям получим

Csin z k l z k + 1 z k 0 l g ˜ (t)sin z k tdt= 1 z k 2 (( 1) k v 2 v 1 + γ ˜ k ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGdbGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGRbaabeaa kiaadYgaaeaacaWG6bWaaSbaaSqaaiaadUgaaeqaaaaakiabgUcaRm aalaaabaGaaGymaaqaaiaadQhadaWgaaWcbaGaam4AaaqabaaaaOWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGabm4zayaaia GaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaamOEamaaBaaa leaacaWGRbaabeaakiaadshacaWGKbGaamiDaiaai2dadaWcaaqaai aaigdaaeaacaWG6bWaa0baaSqaaiaadUgaaeaacaaIYaaaaaaakiaa iIcacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaa GccaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamODamaaBaaa leaacaaIXaaabeaakiabgUcaRiqbeo7aNzaaiaWaaSbaaSqaaiaadU gaaeqaaOGaaGykaiaai6caaaa@654D@

Тогда g ˜ (x)=h(x)C F s (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4zayaaia GaaGikaiaadIhacaaIPaGaaGypaiaadIgacaaIOaGaamiEaiaaiMca cqGHsislcaWGdbGaamOramaaBaaaleaacaWGZbaabeaakiaaiIcaca WG4bGaaGykaaaa@437A@ , где функции h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E4@  и F s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGZbaabeaaaaa@37E6@  определяются единственным образом равенствами

0 l h(t)sin z k tdt= 1 z k (( 1) k v 2 v 1 + γ ˜ k ), 0 l F s (t)sin z k tdt=sin z k l,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiAaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaam4Aaaqaba GccaWG0bGaamizaiaadshacaaI9aWaaSaaaeaacaaIXaaabaGaamOE amaaBaaaleaacaWGRbaabeaaaaGccaaIOaGaaGikaiabgkHiTiaaig dacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamODamaaBaaaleaacaaI YaaabeaakiabgkHiTiaadAhadaWgaaWcbaGaaGymaaqabaGccqGHRa WkcuaHZoWzgaacamaaBaaaleaacaWGRbaabeaakiaaiMcacaaISaGa aGzbVpaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadA eadaWgaaWcbaGaam4CaaqabaGccaaIOaGaamiDaiaaiMcaciGGZbGa aiyAaiaac6gacaWG6bWaaSbaaSqaaiaadUgaaeqaaOGaamiDaiaads gacaWG0bGaaGypaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGa am4AaaqabaGccaWGSbGaaGilaiaaywW7caWGRbWefv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaIXaGaaGOlaaaa @8050@  (31)

Из формулы (11) следует, что k(sin z k l (1) k l/(dπk)) l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaiaaiI caciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaadUgaaeqaaOGa amiBaiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba Gaam4AaaaakiaadYgacaaIVaGaaGikaiaadsgacqaHapaCcaWGRbGa aGykaiaaiMcacqGHiiIZcaWGSbWaaSbaaSqaaiaaikdaaeqaaaaa@4D5D@ . Согласно лемме 2 выполнены включения h, F s W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiY cacaWGgbWaaSbaaSqaaiaadohaaeqaaOGaeyicI4Saam4vamaaDaaa leaacaaIYaaabaGaaGymaaaakiaaiUfacaaIWaGaaGilaiaadYgaca aIDbaaaa@41CE@ . Для построения искомой g W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1F@  остается выбрать C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  таким образом, чтобы

0 l f(t)dt= 0 l g(t)dt= 0 l x b h(t)dtC 0 l t F s (t)dt+Cl. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiaadsgacaWG0bGaaGypamaapehabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadEgacaaIOaGaamiDaiaaiMcacaWGKbGaamiD aiaai2dadaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcda WdXbqabSqaaiaadIhaaeaacaWGIbaaniabgUIiYdGccaWGObGaaGik aiaadshacaaIPaGaamizaiaadshacqGHsislcaWGdbWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiDaiaadAeadaWgaaWc baGaam4CaaqabaGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgU caRiaadoeacaWGSbGaaGOlaaaa@6817@

Эта постоянная C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BF@  существует, если

0 l t F s (t)dtl. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiDaiaadAeadaWgaaWc baGaam4CaaqabaGccaaIOaGaamiDaiaaiMcacaWGKbGaamiDaiabgc Mi5kaadYgacaaIUaaaaa@44B8@  (32)

Докажем от противного, что неравенство (32) выполняется. Построим целую функцию

F(λ)= λ z 0 2 ρ c 2 (λ) sinρl 0 l F s (t)sinρtdt , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaaGypamaalaaabaGaeq4UdWMaeyOeI0IaamOE amaaDaaaleaacaaIWaaabaGaaGOmaaaaaOqaaiabeg8aYjaadogada WgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdWMaaGykaaaadaqadaqa aiGacohacaGGPbGaaiOBaiabeg8aYjaadYgacqGHsisldaWdXbqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGgbWaaSbaaSqaaiaa dohaaeqaaOGaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaeq yWdiNaamiDaiaadsgacaWG0baacaGLOaGaayzkaaGaaGilaaaa@5F50@

где { z n 2 } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadQ hadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaI9bWaaSbaaSqaaiaa d6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5 Nkfkaaicdaaeqaaaaa@4816@  " MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSn0BKvguHDwzZbqef00uGuvsGC0B0H wAJbWexLMBbXgBcf2CPn2qVrwzqf2zLnharyavP1wzZbItLDhis9wB H5garmWu51MyVXgaryWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaie Ydh9qrpeeu0dXdh9vqqj=hEeeu0xXdbba9arpi0=irpK0dbba91qpK 0=vr0RYxir=dbbc9q8aq0=yqpe0xbba9suk9fr=xfr=xfrpiWZqaai aaciWacmaadaGabiaaeaGaauaaaOqaaeHbdfgBPjMCPbacgaqcLbya qaaaaaaaaaWdbiaa=rbiaaa@4605@ последовательность нулей c 2 (λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaaiIcacqaH7oaBcaaIPaaaaa@3AEA@ . Действуя так же, как в доказательстве леммы 1, получим F(λ)C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiaaiI cacqaH7oaBcaaIPaGaeyyyIORaam4qaaaa@3C6C@ , откуда следует

sinρl 0 l F s (t)sinρtdt Cρ c 2 (λ) λ z 0 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM gacaGGUbGaeqyWdiNaamiBaiabgkHiTmaapehabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaadAeadaWgaaWcbaGaam4CaaqabaGcca aIOaGaamiDaiaaiMcaciGGZbGaaiyAaiaac6gacqaHbpGCcaWG0bGa amizaiaadshacqGHHjIUdaWcaaqaaiaadoeacqaHbpGCcaWGJbWaaS baaSqaaiaaikdaaeqaaOGaaGikaiabeU7aSjaaiMcaaeaacqaH7oaB cqGHsislcaWG6bWaa0baaSqaaiaaicdaaeaacaaIYaaaaaaakiaai6 caaaa@5BAF@

Подставляя в последнее равенство ρ=πn/l+π/(2l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabec8aWjaad6gacaaIVaGaamiBaiabgUcaRiabec8aWjaai+ca caaIOaGaaGOmaiaadYgacaaIPaaaaa@4342@ , применяя лемму Римана - Лебега, находим C=1/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dacqGHsislcaaIXaGaaG4laiaadsgadaahaaWcbeqaaiaaikdaaaaa aa@3BB9@ . Тогда

0 l F s (t)sinρtdt 1 d 2 (λ z 0 2 ) [(1 z 0 2 )sinρl+dρcosρl]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOramaaBaaaleaacaWG ZbaabeaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBaiabeg 8aYjaadshacaWGKbGaamiDaiabggMi6oaalaaabaGaaGymaaqaaiaa dsgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaeq4UdWMaeyOeI0Iaam OEamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaaiMcaaaGaaG4waiaa iIcacaaIXaGaeyOeI0IaamOEamaaDaaaleaacaaIWaaabaGaaGOmaa aakiaaiMcaciGGZbGaaiyAaiaac6gacqaHbpGCcaWGSbGaey4kaSIa amizaiabeg8aYjGacogacaGGVbGaai4Caiabeg8aYjaadYgacaaIDb GaaGOlaaaa@67D7@  (33)

Ясно, что F s (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGZbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A4E@  однозначно определяется по коэффициентам

0 l F s (t)sin πn l tdt= πn dl (1) n ( πn l ) 2 z 0 2 , z 0 πn l ,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOramaaBaaaleaacaWG ZbaabeaakiaaiIcacaWG0bGaaGykaiGacohacaGGPbGaaiOBamaala aabaGaeqiWdaNaamOBaaqaaiaadYgaaaGaamiDaiaadsgacaWG0bGa aGypamaalaaabaGaeqiWdaNaamOBaaqaaiaadsgacaWGSbaaamaala aabaGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaa aaGcbaGaaGikamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaGaaG ykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadQhadaqhaaWcbaGa aGimaaqaaiaaikdaaaaaaOGaaGilaiaaywW7caWG6bWaaSbaaSqaai aaicdaaeqaaOGaeyiyIK7aaSaaaeaacqaHapaCcaWGUbaabaGaamiB aaaacaaISaGaaGzbVlaad6gacqGHiiIZcaaIUaaaaa@6A39@

В силу полноты системы {sinπnt/l} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiGaco hacaGGPbGaaiOBaiabec8aWjaad6gacaWG0bGaaG4laiaadYgacaaI 9bWaaSbaaSqaaiaad6gatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0H giuD3BaGqbaiab=5Nkfkaaigdaaeqaaaaa@4D5D@  имеем F s (t)=sin z 0 t/(dsin z 0 l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGZbaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqGHsisl ciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaaicdaaeqaaOGaam iDaiaai+cacaaIOaGaamizaiGacohacaGGPbGaaiOBaiaadQhadaWg aaWcbaGaaGimaaqabaGccaWGSbGaaGykaaaa@4A81@ . Подставив данную функцию в (33), приходим к противоречию. Следовательно, неравенство (32) выполняется.

Мы доказали, что существует функция g W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1F@  с такими же коэффициентами по системе {1} {cos z n t} n1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiaaig dacaaI9bGaeyOkIGSaaG4EaiGacogacaGGVbGaai4CaiaadQhadaWg aaWcbaGaamOBaaqabaGccaWG0bGaaGyFamaaBaaaleaacaWGUbWefv 3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+PsHcaaI Xaaabeaaaaa@4F8D@ , что и у f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@ . В силу полноты этой системы получим f=g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaai2 dacaWGNbaaaa@3895@ . Сравнивая (30) с формулой, записанной по необходимости, приходим к v 1 = f (0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIXaaabeaakiaai2daceWGMbGbauaacaaIOaGaaGimaiaa iMcaaaa@3BC0@  и v 2 = f (l)+f(l)/d MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaaIYaaabeaakiaai2daceWGMbGbauaacaaIOaGaamiBaiaa iMcacqGHRaWkcaWGMbGaaGikaiaadYgacaaIPaGaaG4laiaadsgaaa a@41BD@ .

Теорема 4 Для того чтобы функция W(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaiI cacaWG0bGaaGykaaaa@3931@  из представления (23) имела вид (28) с условиями (1)(2), достаточно выполнения следующих асимптотик:

Δ πn l 2 =d+d l πn 2 [c (1) n u+ κ n ],c 2( C 0 +1) d 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa GaaGypaiabgkHiTiaadsgacqGHRaWkcaWGKbWaaeWaaeaadaWcaaqa aiaadYgaaeaacqaHapaCcaWGUbaaaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiaaiUfacaWGJbGaeyOeI0IaaGikaiabgkHiTiaa igdacaaIPaWaaWbaaSqabeaacaWGUbaaaOGaamyDaiabgUcaRiabeQ 7aRnaaBaaaleaacaWGUbaabeaakiaai2facaaISaGaaGzbVlaadoga cqGHsisldaWcaaqaaiaaikdacaaIOaGaam4qamaaBaaaleaacaaIWa aabeaakiabgUcaRiaaigdacaaIPaaabaGaamizamaaCaaaleqabaGa aGOmaaaaaaGccaaISaaaaa@6268@  (34)

Δ( z n 2 )= sin z n l z n 3 [ h 2 (1) n h 1 + η n ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp amaalaaabaGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUb aabeaakiaadYgaaeaacaWG6bWaa0baaSqaaiaad6gaaeaacaaIZaaa aaaakiaaiUfacaWGObWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaaG ikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaaaOGaamiA amaaBaaaleaacaaIXaaabeaakiabgUcaRiabeE7aOnaaBaaaleaaca WGUbaabeaakiaai2faaaa@53B9@  (35)

с некоторыми h 1 , h 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGObWaaSbaaSqaaiaaikdaaeqa aOGaeyicI4maaa@3BEE@  и последовательностями { κ n } n1 ,{ η n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeQ 7aRnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG ymaaqabaGccaaISaGaaG4EaiabeE7aOnaaBaaaleaacaWGUbaabeaa kiaai2hadaWgaaWcbaGaamOBaiab=5NkfkaaigdaaeqaaOGaeyicI4 SaamiBamaaBaaaleaacaaIYaaabeaaaaa@54A1@ .

Доказательство. Достаточно доказать, что для построенных по формуле (29) функций выполняются включения g W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@  и G 2 W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaaa@3FF1@ , при этом g(0)=u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaaIWaGaaGykaiaai2dacaWG1baaaa@3AC3@ , g(l)=c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWGSbGaaGykaiaai2dacaWGJbaaaa@3AE8@ . Подставив в (23) ρ=πn/l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiabec8aWjaad6gacaaIVaGaamiBaaaa@3CD8@ , получаем

Δ πn l 2 =d+ l 2πn 0 2l W(t)sin πn l tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aae WaaeaadaqadaqaamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaa GaaGypaiabgkHiTiaadsgacqGHRaWkdaWcaaqaaiaadYgaaeaacaaI YaGaeqiWdaNaamOBaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaam iBaaqdcqGHRiI8aOGaam4vaiaaiIcacaWG0bGaaGykaiGacohacaGG PbGaaiOBamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaGaamiDai aadsgacaWG0bGaaGOlaaaa@5930@

Разбивая последний интеграл на два, имеем

0 l W(lt)sin πn l (lt)dt+ 0 l W(l+t)sin πn l (l+t)dt=( 1) n+1 0 l 2dg(t)sin πn l tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vaiaaiIcacaWGSbGa eyOeI0IaamiDaiaaiMcaciGGZbGaaiyAaiaac6gadaWcaaqaaiabec 8aWjaad6gaaeaacaWGSbaaaiaaiIcacaWGSbGaeyOeI0IaamiDaiaa iMcacaWGKbGaamiDaiabgUcaRmaapehabeWcbaGaaGimaaqaaiaadY gaa0Gaey4kIipakiaadEfacaaIOaGaamiBaiabgUcaRiaadshacaaI PaGaci4CaiaacMgacaGGUbWaaSaaaeaacqaHapaCcaWGUbaabaGaam iBaaaacaaIOaGaamiBaiabgUcaRiaadshacaaIPaGaamizaiaadsha caaI9aGaaGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUb Gaey4kaSIaaGymaaaakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Ga ey4kIipakiaaikdacaWGKbGaam4zaiaaiIcacaWG0bGaaGykaiGaco hacaGGPbGaaiOBamaalaaabaGaeqiWdaNaamOBaaqaaiaadYgaaaGa amiDaiaadsgacaWG0bGaaGOlaaaa@7C44@

Таким образом, из (35) следует асимптотика

0 l g(t)sin πn l tdt= l πn [u (1) n c (1) n κ n ]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4zaiaaiIcacaWG0bGa aGykaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWdaNaamOBaaqaai aadYgaaaGaamiDaiaadsgacaWG0bGaaGypamaalaaabaGaamiBaaqa aiabec8aWjaad6gaaaGaaG4waiaadwhacqGHsislcaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaad6gaaaGccaWGJbGaeyOeI0Ia aGikaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaWGUbaaaOGaeq OUdS2aaSbaaSqaaiaad6gaaeqaaOGaaGyxaiaai6caaaa@5CC5@

Согласно лемме 2 имеем g W 2 1 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaigdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@ , а также g(0)=u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaaIWaGaaGykaiaai2dacaWG1baaaa@3AC3@ , g(l)=c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWGSbGaaGykaiaai2dacaWGJbaaaa@3AE8@ . Подставив в (23) ρ= z n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG ypaiaadQhadaWgaaWcbaGaamOBaaqabaaaaa@3A9C@ , находим

Δ( z n 2 )= ( C 0 +1)sin2 z n l z n + d 2 u sin z n l z n + sin 2 z n l d z n 2 + 1 2 z n 0 2l W(t)sin z n tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp amaalaaabaGaaGikaiaadoeadaWgaaWcbaGaaGimaaqabaGccqGHRa WkcaaIXaGaaGykaiGacohacaGGPbGaaiOBaiaaikdacaWG6bWaaSba aSqaaiaad6gaaeqaaOGaamiBaaqaaiaadQhadaWgaaWcbaGaamOBaa qabaaaaOGaey4kaSIaamizamaaCaaaleqabaGaaGOmaaaakiaadwha daWcaaqaaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaa qabaGccaWGSbaabaGaamOEamaaBaaaleaacaWGUbaabeaaaaGccqGH RaWkdaWcaaqaamaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPb GaaiOBaaaacaWG6bWaaSbaaSqaaiaad6gaaeqaaOGaamiBaaqaaiaa dsgacaWG6bWaa0baaSqaaiaad6gaaeaacaaIYaaaaaaakiabgUcaRm aalaaabaGaaGymaaqaaiaaikdacaWG6bWaaSbaaSqaaiaad6gaaeqa aaaakmaapehabeWcbaGaaGimaaqaaiaaikdacaWGSbaaniabgUIiYd GccaWGxbGaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaamOE amaaBaaaleaacaWGUbaabeaakiaadshacaWGKbGaamiDaiaai6caaa a@76E7@

Преобразуем интеграл следующим образом:

1 2 0 2l W(t)sin z n tdt= 1 2 0 l W(t)sin z n tdt+ 1 2 0 l W(2lt)sin z n (2lt)dt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaamiB aaqdcqGHRiI8aOGaam4vaiaaiIcacaWG0bGaaGykaiGacohacaGGPb GaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGaamizaiaa dshacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaadaWdXbqabSqaai aaicdaaeaacaWGSbaaniabgUIiYdGccaWGxbGaaGikaiaadshacaaI PaGaci4CaiaacMgacaGGUbGaamOEamaaBaaaleaacaWGUbaabeaaki aadshacaWGKbGaamiDaiabgUcaRmaalaaabaGaaGymaaqaaiaaikda aaWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vai aaiIcacaaIYaGaamiBaiabgkHiTiaadshacaaIPaGaci4CaiaacMga caGGUbGaamOEamaaBaaaleaacaWGUbaabeaakiaaiIcacaaIYaGaam iBaiabgkHiTiaadshacaaIPaGaamizaiaadshacaaI9aaaaa@71ED@

= 0 l dg(lt)sin z n tdt+sin z n l 0 l W(2lt)cos z n (lt)dt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypamaape habeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadsgacaWGNbGa aGikaiaadYgacqGHsislcaWG0bGaaGykaiGacohacaGGPbGaaiOBai aadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGaamizaiaadshacqGH RaWkciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6gaaeqaaO GaamiBamaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaa dEfacaaIOaGaaGOmaiaadYgacqGHsislcaWG0bGaaGykaiGacogaca GGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaaqabaGccaaIOaGaamiB aiabgkHiTiaadshacaaIPaGaamizaiaadshacaaI9aaaaa@656F@

=sin z n l 0 l W(l+t)cos z n tdt+d 0 l g(t)sin z n (lt)dt= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vaiaaiI cacaWGSbGaey4kaSIaamiDaiaaiMcaciGGJbGaai4BaiaacohacaWG 6bWaaSbaaSqaaiaad6gaaeqaaOGaamiDaiaadsgacaWG0bGaey4kaS IaamizamaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaa dEgacaaIOaGaamiDaiaaiMcaciGGZbGaaiyAaiaac6gacaWG6bWaaS baaSqaaiaad6gaaeqaaOGaaGikaiaadYgacqGHsislcaWG0bGaaGyk aiaadsgacaWG0bGaaGypaaaa@62CA@

=sin z n l 0 l W(l+t)cos z n tdt+dsin z n l 0 l g(t)cos z n tdtdcos z n l 0 l g(t)sin z n tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiGaco hacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam4vaiaaiI cacaWGSbGaey4kaSIaamiDaiaaiMcaciGGJbGaai4BaiaacohacaWG 6bWaaSbaaSqaaiaad6gaaeqaaOGaamiDaiaadsgacaWG0bGaey4kaS IaamizaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqa baGccaWGSbWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aO Gaam4zaiaaiIcacaWG0bGaaGykaiGacogacaGGVbGaai4CaiaadQha daWgaaWcbaGaamOBaaqabaGccaWG0bGaamizaiaadshacqGHsislca WGKbGaci4yaiaac+gacaGGZbGaamOEamaaBaaaleaacaWGUbaabeaa kiaadYgadaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcca WGNbGaaGikaiaadshacaaIPaGaci4CaiaacMgacaGGUbGaamOEamaa BaaaleaacaWGUbaabeaakiaadshacaWGKbGaamiDaiaai6caaaa@7C6A@

Выполняя подстановку cos z n l=[d z n 1/(d z n )]sin z n l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaamOEamaaBaaaleaacaWGUbaabeaakiaadYgacaaI9aGa aG4waiaadsgacaWG6bWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaG ymaiaai+cacaaIOaGaamizaiaadQhadaWgaaWcbaGaamOBaaqabaGc caaIPaGaaGyxaiGacohacaGGPbGaaiOBaiaadQhadaWgaaWcbaGaam OBaaqabaGccaWGSbaaaa@4E4F@  в последнем слагаемом и интегрируя по частям, получаем

d 2 z n 1 z n 0 l g(t)sin z n tdt= d 2 uccos z n l+ 0 l g (t)cos z n tdt + 0 l G 1 (t)cos z n tdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGKbWaaWbaaSqabeaacaaIYaaaaOGaamOEamaaBaaaleaacaWGUbaa beaakiabgkHiTmaalaaabaGaaGymaaqaaiaadQhadaWgaaWcbaGaam OBaaqabaaaaaGccaGLOaGaayzkaaWaa8qCaeqaleaacaaIWaaabaGa amiBaaqdcqGHRiI8aOGaam4zaiaaiIcacaWG0bGaaGykaiGacohaca GGPbGaaiOBaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG0bGaamiz aiaadshacaaI9aGaamizamaaCaaaleqabaGaaGOmaaaakmaadmaaba GaamyDaiabgkHiTiaadogaciGGJbGaai4BaiaacohacaWG6bWaaSba aSqaaiaad6gaaeqaaOGaamiBaiabgUcaRmaapehabeWcbaGaaGimaa qaaiaadYgaa0Gaey4kIipakiqadEgagaqbaiaaiIcacaWG0bGaaGyk aiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaaqabaGcca WG0bGaamizaiaadshaaiaawUfacaGLDbaacqGHRaWkdaWdXbqabSqa aiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGhbWaaSbaaSqaaiaaig daaeqaaOGaaGikaiaadshacaaIPaGaci4yaiaac+gacaGGZbGaamOE amaaBaaaleaacaWGUbaabeaakiaadshacaWGKbGaamiDaiaai6caaa a@7DCF@

В итоге с учетом (29) и c=2( C 0 +1)/ d 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacqGHsislcaaIYaGaaGikaiaadoeadaWgaaWcbaGaaGimaaqabaGc cqGHRaWkcaaIXaGaaGykaiaai+cacaWGKbWaaWbaaSqabeaacaaIYa aaaaaa@4094@  имеем

Δ( z n 2 )= sin 2 z n l d z n 2 + sin z n l z n 0 l f(t)cos z n tdt,f(t)= G 2 (lt)2 G 1 (t)dg(l). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaaIPaGaaGyp amaalaaabaWaaubiaeqaleqabaGaaGOmaaGcbaGaci4CaiaacMgaca GGUbaaaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbaabaGaamiz aiaadQhadaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaOGaey4kaSYaaS aaaeaaciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6gaaeqa aOGaamiBaaqaaiaadQhadaWgaaWcbaGaamOBaaqabaaaaOWaa8qCae qaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG 0bGaaGykaiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaa qabaGccaWG0bGaamizaiaadshacaaISaGaaGzbVlaadAgacaaIOaGa amiDaiaaiMcacaaI9aGaeyOeI0Iaam4ramaaBaaaleaacaaIYaaabe aakiaaiIcacaWGSbGaeyOeI0IaamiDaiaaiMcacqGHsislcaaIYaGa am4ramaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiabgk HiTiaadsgacaWGNbGaaGikaiaadYgacaaIPaGaaGOlaaaa@7864@

Приравнивая полученное выражение к правой части (35) и деля на z n 1 sin z n l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa aaleaacaWGUbaabaGaeyOeI0IaaGymaaaakiGacohacaGGPbGaaiOB aiaadQhadaWgaaWcbaGaamOBaaqabaGccaWGSbaaaa@3FB9@ , приходим к формуле

0 l f(t)cos z n tdt= 1 z n 2 [ h 2 (1) n h 1 + η n ] sin z n l z n d = 1 z n 2 h 2 (1) n h 1 + 1 d 2 + η ˜ n ,n1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamOzaiaaiIcacaWG0bGa aGykaiGacogacaGGVbGaai4CaiaadQhadaWgaaWcbaGaamOBaaqaba GccaWG0bGaamizaiaadshacaaI9aWaaSaaaeaacaaIXaaabaGaamOE amaaDaaaleaacaWGUbaabaGaaGOmaaaaaaGccaaIBbGaamiAamaaBa aaleaacaaIYaaabeaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGyk amaaCaaaleqabaGaamOBaaaakiaadIgadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcqaH3oaAdaWgaaWcbaGaamOBaaqabaGccaaIDbGaeyOe I0YaaSaaaeaaciGGZbGaaiyAaiaac6gacaWG6bWaaSbaaSqaaiaad6 gaaeqaaOGaamiBaaqaaiaadQhadaWgaaWcbaGaamOBaaqabaGccaWG Kbaaaiaai2dadaWcaaqaaiaaigdaaeaacaWG6bWaa0baaSqaaiaad6 gaaeaacaaIYaaaaaaakmaadmaabaGaamiAamaaBaaaleaacaaIYaaa beaakiabgkHiTiaaiIcacqGHsislcaaIXaGaaGykamaaCaaaleqaba GaamOBaaaakmaabmaabaGaamiAamaaBaaaleaacaaIXaaabeaakiab gUcaRmaalaaabaGaaGymaaqaaiaadsgadaahaaWcbeqaaiaaikdaaa aaaaGccaGLOaGaayzkaaGaey4kaSIafq4TdGMbaGaadaWgaaWcbaGa amOBaaqabaaakiaawUfacaGLDbaacaaISaGaaGzbVlaad6gatuuDJX wAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=5Nkfkaaigda caaISaaaaa@8A2E@

где { η ˜ n } n1 l 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiqbeE 7aOzaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaGyFamaaBaaaleaacaWG UbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWF+P sHcaaIXaaabeaakiabgIGiolaadYgadaWgaaWcbaGaaGOmaaqabaaa aa@4B7D@ . Применив лемму 3, получим f W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabgI GiolaadEfadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaIBbGaaGim aiaaiYcacaWGSbGaaGyxaaaa@3F1E@  и G 2 W 2 2 [0,l] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaakiabgIGiolaadEfadaqhaaWcbaGaaGOmaaqa aiaaikdaaaGccaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaaa@3FF1@ .

Из утверждения 3 следует, что асимптотики (34) и (35) являются необходимыми для того, чтобы Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  была характеристической функцией. Основываясь на вышесказанном, сформулируем следующий результат.

Теорема 5 Для того чтобы последовательность { λ n } n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeU 7aSnaaBaaaleaacaWGUbaabeaakiaai2hadaWgaaWcbaGaamOBamrr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8NFQuOaaG imaaqabaaaaa@480E@  являлась спектром некоторой краевой задачи (1)(2) в случае (17), необходимыми и достаточными являются следующие условия: [(i)]

1. выполнены асимптотические формулы (22);

2. построенная по формуле (21) функция Δ(λ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ikaiabeU7aSjaaiMcaaaa@3A76@  удовлетворяет условиям (34), (35);

3. функция G 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaaabeaaaaa@37AB@ , построенная с помощью последовательного применения формул (21), (27) и (29), обращается в нуль в точке b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaaaa@36DE@ .

×

Об авторах

Мария Андреевна Кузнецова

Саратовский государственный университет им. Н. Г. Чернышевского

Автор, ответственный за переписку.
Email: kuznetsovama@info.sgu.ru
Россия, Саратов

Список литературы

  1. Кузнецова М. А. О восстановлении дифференциальных операторов Штурма—Лиувилля на временных шкалах// Мат. заметки. — 2021. — 109, № 1. — С. 82–100
  2. Левитан Б. М. Обратные задачи Штурма—Лиувилля. — М.: Наука, 1984
  3. Марченко В. А. Операторы Штурма—Лиувилля и их приложения. — Киев: Наукова думка, 1977
  4. Мышкис А. Д. Линейные дифференциальные уравнения с запаздывающим аргументом. — М.: Наука, 1972.
  5. Нахушев А. М. Нагруженные уравнения и их применение. — М.: Наука, 2012.
  6. Adalar I˙., Ozkan A. S. An interior inverse Sturm–Liouville problem on a time scale// Anal. Math. Phys. — 2020. — 10. — 58.
  7. Albeverio S., Hryniv R. O., Nizhnik L. P. Inverse spectral problems for nonlocal Sturm–Liouville operators// Inverse Probl. — 2007. — 23, № 2. — P. 523–535
  8. Ambarzumyan V. A. U¨ber eine Frage der Eigenwerttheorie// 53 — 1929. — P. 690–695
  9. Bohner M., Peterson A. Advances in Dynamic Equations on Time Scales. — Boston: Birkha¨user, 2003
  10. Bohner M., Peterson A. Dynamic Equations on Time Scales. — Boston: Birkha¨user, 2001
  11. Bondarenko N. P., Buterin S. A., Vasiliev S. V. An inverse spectral problem for Sturm–Liouville operators with frozen argument// J. Math. Anal. Appl. — 2019. — 472, № 1. — P. 1028–1041
  12. Buterin S. A. On an inverse spectral problem for a convolution integro-differential operator// Res. Math. — 2007. — 50, № 3. — P. 173–181.
  13. Buterin S., Kuznetsova M. On the inverse problem for Sturm–Liouville-type operators with frozen argument: rational case// Comp. Appl. Math. — 2020. — 39, № 1. — P. 1–15.
  14. Buterin S. A., Vasiliev S. V. On recovering a Sturm–Liouville-type operator with the frozen argument rationally proportioned to the interval length// J. Inverse and Ill-Posed Probl. — 2019. — 27, № 3. — P. 429–438.
  15. Freiling G., Yurko V. A. Inverse Sturm–Liouville Problems and Their Applications. — New York: NOVA Science, 2001
  16. Hale J. Theory of Functional-Differential Equations. — New York: Springer-Verlag, 1977
  17. Hilger S. Analysis on measure chains—a unified approach to continuous and discrete calculus// Res. Math. — 1990. — 18, № 1. — P. 18–56.
  18. Hu Y.-T., Bondarenko N. P., Yang C.-F. Traces and inverse nodal problem for Sturm–Liouville operators with frozen argument// Appl. Math. Lett. — 2020. — 102. — 106096
  19. Kuznetsova M. A. A uniqueness theorem on inverse spectral problems for the Sturm–Liouville differential operators on time scales// Res. Math — 2020. — 75. — 44
  20. Kuznetsova M. A., Buterin S. A., Yurko V. A. On inverse spectral problems for Sturm–Liouville differential operators on closed sets// Lobachevskii J. Math. — 2021. — 42, № 6. — P. 1201–1209
  21. Nizhnik L. P. Inverse nonlocal Sturm–Liouville problem// Inverse Probl. — 2010. — 26, № 12. — 125006
  22. Niven I. Irrational Numbers. — New Jersey: Mathematical Association of America, 1956
  23. Ozkan S. Ambarzumyan-type theorems on a time scale// J. Inverse Ill-Posed Probl. — 2018. — 26, № 5. — P. 633–637.
  24. Ozkan A. S., Adalar I˙. Half-inverse Sturm–Liouville problem on a time scale// Inverse Probl. — 2020. — 36, № 2. — 025015.
  25. Wang Yu P., Zhang M., Zhao W., Wei X. Reconstruction for Sturm–Liouville operators with frozen argument for irrational cases// Appl. Math. Lett. — 2021. — 111. — 106590. 26. Yurko V. Inverse problems for Sturm–Liouville differential operators on closed sets// Tamkang J. Math. — 2019. — 50, № 3. — P. 199–206.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кузнецова М.А., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».