Analytical estimates of the accuracy of wind profile reconstruction from lidar scanning data

Cover Page

Cite item

Full Text

Abstract

We consider the problem of reconstructing three components of wind velocity from measurement data of the radial component along directions uniformly located on the surface of a vertical cone using the least squares method. Estimates are obtained for the maximum error in the reconstruction of each component of the wind speed vector and for the mean square errors in the asymptotic approximation. Estimates are obtained taking into account the completeness of measurement data.

Full Text

1. Введение.

В практике метеорологических измерений все более широкое распространение получают средства дистанционного зондирования, в частности, лидарные средства измерения профиля ветра (см. [20, 26]). Интенсивное их развитие стимулировалось прежде всего потребностями ветровой энергетики, поскольку для принятия решения о развертывании кластера ветровых генераторов требуется статистическая информации о профиле ветра в предполагаемом районе развертывании (см. [12, 17, 23, 25]). Статистические данные о значениях скорости ветра на различных высотах служат основой для оценки потенциальной эффективности генерации ветровой электроэнергии.

Кроме того, ветровые лидарные профилометры находят свое применение в экологии для оценки неблагопритяных условий рассеивания загрязняющих веществ и прогнозирования условий их распространения (см. [11]). Данные ветровых профилометров усваиваются в численных моделях прогноза погоды для повышения его точности (см. [6, 9, 18, 28, 29]).

Лидарные средства дистанционного измерения ветровых параметров используют эффект Допплера изменения частоты лазерного излучения, отраженного от аэрозольных образований, которые движутся с локальной скоростью ветра (см. [26]). Особенность определения компонент скорости ветра при лидарном дистанционном зондировании состоит в том, что непосредственно может быть измерена только одна составляющая скорости ветра, направленная вдоль текущего направления измерений (так называемая радиальная составляющая). Поэтому технология определения компонент скорости ветра состоит в получении значений радиальной скорости для нескольких направлений измерений, расположенных с одним и тем же углом места, а затем решается обратная задача восстановления трехмерного вектора скорости, проекции которого на направления измерения совпадают с измеренными значениями (см. [5, 7, 15]).

Для определения профиля ветра, т.е. расчета трех составляющих скорости ветра для различных высот над поверхностью земли, используется режим сканирования VAD (Velocity Azimuth Display; см. [7, 26]). В режиме VAD выполняется круговое сканирование приземного слоя атмосферы при постоянном значении угла места. Круговое сканирование означает, что азимут направления измерения изменяется в диапазоне [0,2π] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIYaGaeq iWdaNaaGyxaaaa@3776@ . Кроме того, в режиме VAD сканирование выполняется с большими углами места ( 70 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWF8i IocaaI3aGaaGimamaaCaaaleqabaGaeSigI8gaaaaa@3A5B@  ). С одной стороны, это обеспечивает большой диапазон высот измерения, а с другой, позволяет определять вертикальную составляющую скорости ветра, поскольку очевидно, что при малых углах места проекция вертикальной составляющей скорости ветра, которая, как правило, и так имеет малые значения ( 0,5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWF8i IocaaIWaGaaGilaiaaiwdaaaa@39A8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@   1,0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaGilaiaaicdaaaa@33EC@  м/с), на направление измерений будет мала настолько, что окажется сравнимой с инструментальной погрешностью измерений. По сути режим сканирования VAD является частным случаем режима PPI (Plan Position Indicator), когда сканирование осуществляется при постоянном угле места в определенном диапазоне азимутальных углов.

Требования к точности измерения радиальной скорости ветра устанавливаются стандартом ISO [26]; там же описаны некоторые методы оценки точности измерения радиальной скорости ветра. Точность измерения радиальной скорости исследовалась как теоретически (см. [4]), так и экспериментально. Оценка точности измерений радиальной скорости в натурных услових регламентируется стандартом (см. [26]). Лабораторные методы ее оценки были предложены в [13].

С практической точки зрения важнее точность определения всех составляющих скорости ветра. Основным методом оценки точностных характеристик измерений компонент скорости ветра в настоящее время являются экспериментальные методы (см. [10, 21, 22]). Было проведено множество экспериментов по оценке точности определения параметров профиля ветра, которые стимулировались, как было отмечено, потребностями ветровой энергии (см. [18, 29]). Для оценки точности лидарных измерений использовались анемометры [19, 30], радиозонды [14], локаторы, содары [16], самолетные ретрансляторы метеорологических данных (AMDAR) летных наблюдений [8, 24]. Кроме того, эксперименты проводились в различных географических и климатических регионах (см. [3, 27]).

Теоретическим оценкам точности решения задачи восстановления трех компонент скорости ветра поданным лидарного сканирования до последнего времени не уделялось внимания. Данная работа призвана частично устранить этот пробел.

2. Постановка задачи.

Рассмотрим правую декартову земную систему координат OXYZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaiaadMfacaWGAbaaaa@352F@  с центром в точке O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbaaaa@3295@ , оси OX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaaaa@3372@ , OY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamywaaaa@3373@  лежат в горизонтальной плоскости, а ось OZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOwaaaa@3374@  направлена вертикально вверх (рис. 1). Измерения выполняются вдоль лучей O R j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOuamaaBaaaleaacaWGQb aabeaaaaa@3487@ , выходящих из начала системы координат O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbaaaa@3295@ . Положение луча в рассматриваемой декартовой системе координат определяется углами ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYdaa@3DBB@  и ϕ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHvpGzdaWgaaWcbaGaamOAaaqaba aaaa@34A4@ , где ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYdaa@3DBB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  угол между горизонтальной плоскостью и лучом O R j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOuamaaBaaaleaacaWGQb aabeaaaaa@3487@  (угол места), φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOAaaqaba aaaa@3499@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  угол между осью OX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaaaa@3372@  и проекцией луча O R j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOuamaaBaaaleaacaWGQb aabeaaaaa@3487@  на горизонтальную плоскость (азимут). Все точки измерений равноудалены от начала системы координат на расстояние R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbaaaa@3298@ , т.е. находятся на одной высоте.

 

Рис. 1. Схема измерений скорости ветра

 

Трехмерный вектор скорости ветра W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieWacaWFxbaaaa@32A5@  определяется своими компонентами u 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaa aa@33A1@ , v 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaa aa@33A2@ , w 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaaicdaaeqaaa aa@33A3@ , которые являются его проекциями на оси OX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaaaa@3372@ , OY MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamywaaaa@3373@ , OZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOwaaaa@3374@  соответственно. Будем предполагать, что в пределах области измерений скорость ветра является постоянной величиной.

В соответствии с принятыми обозначениями проекция V rj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadkhacaWGQb aabeaaaaa@34AE@  скорости ветра W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaieWacaWFxbaaaa@32A5@  на направление O R j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamOuamaaBaaaleaacaWGQb aabeaaaaa@3487@  определяется соотношением

                                               V rj =( u 0 cos φ j + v 0 sin φ j )cosϵ+ w 0 sinϵ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadkhacaWGQb aabeaakiaai2dacaaIOaGaamyDamaaBaaaleaacaaIWaaabeaakiGa cogacaGGVbGaai4CaiabeA8aQnaaBaaaleaacaWGQbaabeaakiabgU caRiaadAhadaWgaaWcbaGaaGimaaqabaGcciGGZbGaaiyAaiaac6ga cqaHgpGAdaWgaaWcbaGaamOAaaqabaGccaaIPaGaci4yaiaac+gaca GGZbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWF 1pG8cqGHRaWkcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaci4CaiaacM gacaGGUbGae8x9diVaaGOlaaaa@5EA4@

 Задача определения компонент скорости ветра u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@ , v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@ , w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  формулируется как задача минимизации функционала

                                J(u,v,w)= j=0 n1 ( V rj (ucos φ j +vsin φ j )cosϵwsinϵ) 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadwhacaaISaGaam ODaiaaiYcacaWG3bGaaGykaiaai2dadaaeWbqabSqaaiaadQgacaaI 9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGccaaIOa GabmOvayaafaWaaSbaaSqaaiaadkhacaWGQbaabeaakiabgkHiTiaa iIcacaWG1bGaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQ gaaeqaaOGaey4kaSIaamODaiGacohacaGGPbGaaiOBaiabeA8aQnaa BaaaleaacaWGQbaabeaakiaaiMcaciGGJbGaai4BaiaacohatuuDJX wAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=v=aYlabgkHi TiaadEhaciGGZbGaaiyAaiaac6gacqWF1pG8caaIPaWaaWbaaSqabe aacaaIYaaaaOGaaGilaaaa@6D17@ (1)

 где V rj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbauaadaWgaaWcbaGaamOCai aadQgaaeqaaaaa@34BA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  измеренное значение радиальной составляющей скорости ветра в азимутальном направлении φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOAaaqaba aaaa@3499@  с углом места ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYdaa@3DBB@ , а n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  число направлений измерений.

Будем предполагать, что ошибки измерений радиальной скорости являются такими независимыми случайными величинами, что

                                                                             V rj V rj δ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiqadAfagaqbamaaBaaale aacaWGYbGaamOAaaqabaGccqGHsislcaWGwbWaaSbaaSqaaiaadkha caWGQbaabeaaaOGaay5bSlaawIa7aiabgsMiJkabes7aKjaaiYcaaa a@3FDA@ (2)

 где V rj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadkhacaWGQb aabeaaaaa@34AE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  истинное значение радиальной составляющей скорости ветра в азимутальном направлении φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOAaaqaba aaaa@3499@  с углом места ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYdaa@3DBB@ . Будем также предполагать, что азимутальные направления измерений расположены равномерно, т.е.

                                              φ j =jΔφ,j=0,1,,n1,Δφ= 2π n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOAaaqaba GccaaI9aGaamOAaiabgwSixlabfs5aejabeA8aQjaaiYcacaaMf8Ua amOAaiaai2dacaaIWaGaaGilaiaaigdacaaISaGaeSOjGSKaaGilai aad6gacqGHsislcaaIXaGaaGilaiaaywW7cqqHuoarcqaHgpGAcaaI 9aWaaSaaaeaacaaIYaGaeqiWdahabaGaamOBaaaacaaIUaaaaa@5176@

 Требуется найти оценки величин

                                            max u * u 0 ,max v * v 0 ,max w * w 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGTbGaaiyyaiaacIhadaabdaqaai aadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG1bWaaSbaaSqa aiaaicdaaeqaaaGccaGLhWUaayjcSdGaaGilaiaaywW7ciGGTbGaai yyaiaacIhadaabdaqaaiaadAhadaahaaWcbeqaaiaaiQcaaaGccqGH sislcaWG2bWaaSbaaSqaaiaaicdaaeqaaaGccaGLhWUaayjcSdGaaG ilaiaaywW7ciGGTbGaaiyyaiaacIhadaabdaqaaiaadEhadaahaaWc beqaaiaaiQcaaaGccqGHsislcaWG3bWaaSbaaSqaaiaaicdaaeqaaa GccaGLhWUaayjcSdGaaGilaaaa@571B@

 где u * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIQaaaaa aa@339C@ , v * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaWbaaSqabeaacaaIQaaaaa aa@339D@ , w * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaWbaaSqabeaacaaIQaaaaa aa@339E@  минимизируют функционал (1):

                                                          ( u * , v * , w * )=argminJ(u,v,w). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamyDamaaCaaaleqabaGaaG OkaaaakiaaiYcacaWG2bWaaWbaaSqabeaacaaIQaaaaOGaaGilaiaa dEhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaaGypaiGacggacaGGYb Gaai4zaiGac2gacaGGPbGaaiOBaiaadQeacaaIOaGaamyDaiaaiYca caWG2bGaaGilaiaadEhacaaIPaGaaGOlaaaa@47EE@

3. Оценки максимальной ошибки восстановления компонент вектора скорости ветра для случая полных исходных данных.

В точках экстремума частные производные функционала (1) согласно необходимому условию экстремума функции многих переменных должны обращаться в ноль (см. [2]). Дифференцируя J(u,v,w) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGkbGaaGikaiaadwhacaaISaGaam ODaiaaiYcacaWG3bGaaGykaaaa@3852@  по координатам u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1baaaa@32BB@ , v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2baaaa@32BC@ , w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3baaaa@32BD@  и приравнивая производные нулю, после преобразований получим следующую систему уравнений: 

                 ucosϵ j=0 n1 cos 2 φ j +vcosϵ j=0 n1 sin φ j cos φ j +wsinϵ j=0 n1 cos φ j = j=0 n1 V rj cos φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaci4yaiaac+gacaGGZbWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWF1pG8daae WbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXa aaniabggHiLdGcdaqfGaqabSqabeaacaaIYaaakeaaciGGJbGaai4B aiaacohaaaGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaOGaey4kaSIaam ODaiGacogacaGGVbGaai4Caiab=v=aYpaaqahabeWcbaGaamOAaiaa i2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiGaco hacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaWGQbaabeaakiabgwSi xlGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaacaWGQbaabeaaki abgUcaRiaadEhaciGGZbGaaiyAaiaac6gacqWF1pG8daaeWbqabSqa aiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabgg HiLdGcciGGJbGaai4BaiaacohacqaHgpGAdaWgaaWcbaGaamOAaaqa baGccaaI9aWaaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOGabmOvayaafaWaaSbaaSqaaiaa dkhacaWGQbaabeaakiGacogacaGGVbGaai4CaiabeA8aQnaaBaaale aacaWGQbaabeaakiaaiYcaaaa@9193@ (3a)

                 ucosϵ j=0 n1 cos φ j sin φ j +vcosϵ j=0 n1 sin 2 φ j +wsinϵ j=0 n1 sin φ j = j=0 n1 V rj sin φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaci4yaiaac+gacaGGZbWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWF1pG8daae WbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXa aaniabggHiLdGcciGGJbGaai4BaiaacohacqaHgpGAdaWgaaWcbaGa amOAaaqabaGccqGHflY1ciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaa WcbaGaamOAaaqabaGccqGHRaWkcaWG2bGaci4yaiaac+gacaGGZbGa e8x9di=aaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUbGaey OeI0IaaGymaaqdcqGHris5aOWaaubiaeqaleqabaGaaGOmaaGcbaGa ci4CaiaacMgacaGGUbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaaki abgUcaRiaadEhaciGGZbGaaiyAaiaac6gacqWF1pG8daaeWbqabSqa aiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabgg HiLdGcciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaamOAaaqa baGccaaI9aWaaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOGabmOvayaafaWaaSbaaSqaaiaa dkhacaWGQbaabeaakiGacohacaGGPbGaaiOBaiabeA8aQnaaBaaale aacaWGQbaabeaakiaaiYcaaaa@91A2@ (3b)

                 ucosϵ j=0 n1 cos φ j +vcosϵ j=0 n1 sin φ j +wsinϵ j=0 n1 1= j=0 n1 V rj . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaci4yaiaac+gacaGGZbWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWF1pG8daae WbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXa aaniabggHiLdGcciGGJbGaai4BaiaacohacqaHgpGAdaWgaaWcbaGa amOAaaqabaGccqGHRaWkcaWG2bGaci4yaiaac+gacaGGZbGae8x9di =aaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0Ia aGymaaqdcqGHris5aOGaci4CaiaacMgacaGGUbGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaOGaey4kaSIaam4DaiGacohacaGGPbGaaiOBaiab =v=aYpaaqahabeWcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgk HiTiaaigdaa0GaeyyeIuoakiaaigdacaaI9aWaaabCaeqaleaacaWG QbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aO GabmOvayaafaWaaSbaaSqaaiaadkhacaWGQbaabeaakiaai6caaaa@7DD8@ (3c)

  Поскольку углы φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaamOAaaqaba aaaa@3499@  расположены равномерно, то в силу симметрии внедиагональные члены в левой части системы уравнений (3) равны нулю, и можно записать решение в явном виде:

                 u * = 1 cosϵ j=0 n1 V rj cos φ j j=0 n1 cos 2 φ j , v * = 1 cosϵ j=0 n1 V rj sin φ j j=0 n1 sin 2 φ j , w * = 1 sinϵ j=0 n1 V rj n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIQaaaaO GaaGypamaalaaabaGaaGymaaqaaiGacogacaGGVbGaai4Camrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9dipaaiabgw SixpaalaaabaWaaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWG UbGaeyOeI0IaaGymaaqdcqGHris5aOGabmOvayaafaWaaSbaaSqaai aadkhacaWGQbaabeaakiGacogacaGGVbGaai4CaiabeA8aQnaaBaaa leaacaWGQbaabeaaaOqaamaaqahabeWcbaGaamOAaiaai2dacaaIWa aabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaavacabeWcbeqa aiaaikdaaOqaaiGacogacaGGVbGaai4CaaaacqaHgpGAdaWgaaWcba GaamOAaaqabaaaaOGaaGilaiaaywW7caWG2bWaaWbaaSqabeaacaaI QaaaaOGaaGypamaalaaabaGaaGymaaqaaiGacogacaGGVbGaai4Cai ab=v=aYdaacqGHflY1daWcaaqaamaaqahabeWcbaGaamOAaiaai2da caaIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakiqadAfaga qbamaaBaaaleaacaWGYbGaamOAaaqabaGcciGGZbGaaiyAaiaac6ga cqaHgpGAdaWgaaWcbaGaamOAaaqabaaakeaadaaeWbqabSqaaiaadQ gacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGc daqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeq OXdO2aaSbaaSqaaiaadQgaaeqaaaaakiaaiYcacaaMf8Uaam4Damaa CaaaleqabaGaaGOkaaaakiaai2dadaWcaaqaaiaaigdaaeaaciGGZb GaaiyAaiaac6gacqWF1pG8aaGaeyyXIC9aaSaaaeaadaaeWbqabSqa aiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabgg HiLdGcceWGwbGbauaadaWgaaWcbaGaamOCaiaadQgaaeqaaaGcbaGa amOBaaaacaaIUaaaaa@A97D@ (4)

 Для истинных значений u 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaa aa@33A1@ , v 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaa aa@33A2@ , w 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaaicdaaeqaaa aa@33A3@  составляющих скорости ветра справедливы аналогичные соотношения. Таким образом, для ошибок восстановления компонент скорости ветра можем записать 

                 u * u 0 = 1 cosϵ j=0 n1 ( V rj V rj )cos φ j / j=0 n1 cos 2 φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaWbaaSqabeaacaaIQaaaaO GaeyOeI0IaamyDamaaBaaaleaacaaIWaaabeaakiaai2dadaWcaaqa aiaaigdaaeaaciGGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGabciab=v=aYdaacqGHflY1daqadaqaamaa qahabeWcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaig daa0GaeyyeIuoakiaaiIcaceWGwbGbauaadaWgaaWcbaGaamOCaiaa dQgaaeqaaOGaeyOeI0IaamOvamaaBaaaleaacaWGYbGaamOAaaqaba GccaaIPaGaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQga aeqaaaGccaGLOaGaayzkaaGaaG4lamaabmaabaWaaabCaeqaleaaca WGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5 aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaaai abeA8aQnaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYca aaa@711C@ (5a)

                 v * v 0 = 1 cosϵ j=0 n1 ( V rj V rj )sin φ j / j=0 n1 sin 2 φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaWbaaSqabeaacaaIQaaaaO GaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaakiaai2dadaWcaaqa aiaaigdaaeaaciGGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGabciab=v=aYdaacqGHflY1daqadaqaamaa qahabeWcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaig daa0GaeyyeIuoakiaaiIcaceWGwbGbauaadaWgaaWcbaGaamOCaiaa dQgaaeqaaOGaeyOeI0IaamOvamaaBaaaleaacaWGYbGaamOAaaqaba GccaaIPaGaci4CaiaacMgacaGGUbGaeqOXdO2aaSbaaSqaaiaadQga aeqaaaGccaGLOaGaayzkaaGaaG4lamaabmaabaWaaabCaeqaleaaca WGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5 aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaai abeA8aQnaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYca aaa@7128@ (5b)

                 w * w 0 = 1 sinϵ j=0 n1 ( V rj V rj ) /n, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaWbaaSqabeaacaaIQaaaaO GaeyOeI0Iaam4DamaaBaaaleaacaaIWaaabeaakiaai2dadaWcaaqa aiaaigdaaeaaciGGZbGaaiyAaiaac6gatuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGabciab=v=aYdaacqGHflY1daqadaqaamaa qahabeWcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaig daa0GaeyyeIuoakiaaiIcaceWGwbGbauaadaWgaaWcbaGaamOCaiaa dQgaaeqaaOGaeyOeI0IaamOvamaaBaaaleaacaWGYbGaamOAaaqaba GccaaIPaaacaGLOaGaayzkaaGaaG4laiaad6gacaaISaaaaa@5CBE@ (5c)

  откуда с учетом условия (2) получаем 

                 u * u 0 δ 1 cosϵ j=0 n1 cos φ j / j=0 n1 cos 2 φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadwhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG1bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdGaeyizImQaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaaba Gaci4yaiaac+gacaGGZbWefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiqGacqWF1pG8aaGaeyyXIC9aaeWaaeaadaaeWbqabSqaai aadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHi LdGcdaabdaqaaiGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaaca WGQbaabeaaaOGaay5bSlaawIa7aaGaayjkaiaawMcaaiaai+cadaqa daqaamaaqahabeWcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgk HiTiaaigdaa0GaeyyeIuoakmaavacabeWcbeqaaiaaikdaaOqaaiGa cogacaGGVbGaai4CaaaacqaHgpGAdaWgaaWcbaGaamOAaaqabaaaki aawIcacaGLPaaacaaISaaaaa@73F1@ (6a)

                 v * v 0 δ 1 cosϵ j=0 n1 sin φ j / j=0 n1 sin 2 φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadAhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdGaeyizImQaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaaba Gaci4yaiaac+gacaGGZbWefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiqGacqWF1pG8aaGaeyyXIC9aaeWaaeaadaaeWbqabSqaai aadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHi LdGcdaabdaqaaiGacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaaca WGQbaabeaaaOGaay5bSlaawIa7aaGaayjkaiaawMcaaiaai+cadaqa daqaamaaqahabeWcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgk HiTiaaigdaa0GaeyyeIuoakmaavacabeWcbeqaaiaaikdaaOqaaiGa cohacaGGPbGaaiOBaaaacqaHgpGAdaWgaaWcbaGaamOAaaqabaaaki aawIcacaGLPaaacaaISaaaaa@73FD@ (6b)

                 w * w 0 δ 1 sinϵ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadEhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG3bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdGaeyizImQaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaaba Gaci4CaiaacMgacaGGUbWefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiqGacqWF1pG8aaGaaGOlaaaa@4F9C@ (6c)

  Нетрудно заметить, что при использовании метода наименьших квадратов оценка для ошибки восстановления вертикальной компоненты не зависит от количества измерений радиальной составляющей и определяется только точностью измерений радиальной скорости δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@  и углом места ϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabciab=v=aYdaa@3DBB@ , с которым выполняются измерения.

Найдем асимптотические оценки для правых частей неравенств, определяющих максимальное значение шибок восстановления горизонтальных компонент скорости ветра. Рассмотрим вначале сумму в числителе первого неравенства (6): представить в виде

     j=0 n1 cos φ j = 1 2 cos φ 0 + 1 Δφ 1 2 cos φ 0 + j=1 n2 cos φ j + 1 2 cos φ n1 Δφ+ 1 2 cos φ n1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG imaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaabdaqaaiGa cogacaGGVbGaai4CaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaay 5bSlaawIa7aiaai2dadaWcaaqaaiaaigdaaeaacaaIYaaaamaaemaa baGaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaa GccaGLhWUaayjcSdGaey4kaSYaaSaaaeaacaaIXaaabaGaeuiLdqKa eqOXdOgaamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaabda qaaiGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaacaaIWaaabeaa aOGaay5bSlaawIa7aiabgUcaRmaaqahabeWcbaGaamOAaiaai2daca aIXaaabaGaamOBaiabgkHiTiaaikdaa0GaeyyeIuoakmaaemaabaGa ci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaaGcca GLhWUaayjcSdGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaab daqaaiGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaacaWGUbGaey OeI0IaaGymaaqabaaakiaawEa7caGLiWoaaiaawIcacaGLPaaacqGH flY1cqqHuoarcqaHgpGAcqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYa aaamaaemaabaGaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaa d6gacqGHsislcaaIXaaabeaaaOGaay5bSlaawIa7aiaai6caaaa@8E72@ (7)

 Величина

                                                1 2 cos φ 0 + j=1 n2 cos φ j + 1 2 cos φ n1 Δφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaaGymaaqaai aaikdaaaWaaqWaaeaaciGGJbGaai4BaiaacohacqaHgpGAdaWgaaWc baGaaGimaaqabaaakiaawEa7caGLiWoacqGHRaWkdaaeWbqabSqaai aadQgacaaI9aGaaGymaaqaaiaad6gacqGHsislcaaIYaaaniabggHi LdGcdaabdaqaaiGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaaca WGQbaabeaaaOGaay5bSlaawIa7aiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaaqWaaeaaciGGJbGaai4BaiaacohacqaHgpGAdaWgaa WcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLhWUaayjcSdaacaGL OaGaayzkaaGaeyyXICTaeuiLdqKaeqOXdOgaaa@60DF@

 в правой части равенства (7) представляет собой интегральную сумму, соответствующую численному интегрированию функции cosφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiGacogacaGGVbGaai4Cai abeA8aQbGaay5bSlaawIa7aaaa@3973@  методом трапеций на интервале [0,2π] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIYaGaeq iWdaNaaGyxaaaa@3776@  при разбиении этого интервала с шагом Δφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcqaHgpGAaaa@34E4@  (см. [1]):

                                 1 2 cos φ 0 + j=1 n2 cos φ j + 1 2 cos φ n1 Δφ 0 2π cosφ dφ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaaGymaaqaai aaikdaaaWaaqWaaeaaciGGJbGaai4BaiaacohacqaHgpGAdaWgaaWc baGaaGimaaqabaaakiaawEa7caGLiWoacqGHRaWkdaaeWbqabSqaai aadQgacaaI9aGaaGymaaqaaiaad6gacqGHsislcaaIYaaaniabggHi LdGcdaabdaqaaiGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaaca WGQbaabeaaaOGaay5bSlaawIa7aiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaaqWaaeaaciGGJbGaai4BaiaacohacqaHgpGAdaWgaa WcbaGaamOBaiabgkHiTiaaigdaaeqaaaGccaGLhWUaayjcSdaacaGL OaGaayzkaaGaeyyXICTaeuiLdqKaeqOXdOMaeyisIS7aa8qCaeqale aacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aOWaaqWaaeaaciGG JbGaai4BaiaacohacqaHgpGAaiaawEa7caGLiWoacaaMi8Uaamizai abeA8aQjaai6caaaa@74D8@ (8)

 Поскольку

                  cos φ 0 =1,cos φ n1 1приΔφ0, 0 2π cosφ dφ=4 0 π 2 cosφdφ=4, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGJbGaai4BaiaacohacqaHgpGAda WgaaWcbaGaaGimaaqabaGccaaI9aGaaGymaiaaiYcacaaMf8Uaci4y aiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaad6gacqGHsislcaaIXa aabeaakiabgkziUkaaigdacaqG=qGaaeiqeiaabIdbcqqHuoarcqaH gpGAcqGHsgIRcaaIWaGaaGilaiaaywW7daWdXbqabSqaaiaaicdaae aacaaIYaGaeqiWdahaniabgUIiYdGcdaabdaqaaiGacogacaGGVbGa ai4CaiabeA8aQbGaay5bSlaawIa7aiaayIW7caWGKbGaeqOXdOMaaG ypaiaaisdadaWdXbqabSqaaiaaicdaaeaadaWcaaqaaiabec8aWbqa aiaaikdaaaaaniabgUIiYdGcciGGJbGaai4BaiaacohacqaHgpGAca aMi8UaamizaiabeA8aQjaai2dacaaI0aGaaGilaaaa@7338@

 можем записать следующее асимптотическое приближение:

                                                                     j=0 n1 cos φ j 1+ 4 Δφ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG imaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaabdaqaaiGa cogacaGGVbGaai4CaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaay 5bSlaawIa7aebbfv3ySLgzGueE0jxyaGabaiab=XJi6iaaigdacqGH RaWkdaWcaaqaaiaaisdaaeaacqqHuoarcqaHgpGAaaGaaGOlaaaa@4DEE@ (9)

 Аналогичным образом для других сумм в правых частях первых двух неравенств (6) имеем

                                   j=0 n1 sin φ j 1 2 sin φ 0 + 1 Δφ 0 2π sinφ dφ+ 1 2 sin φ n1 , j=0 n1 cos 2 φ j 1 2 cos 2 φ 0 + 1 Δφ 0 2π cos 2 φdφ+ 1 2 cos 2 φ n1 , j=0 n1 sin 2 φ j 1 2 sin 2 φ 0 + 1 Δφ 0 2π sin 2 φdφ+ 1 2 sin 2 φ n1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeWacaaabaWaaabCaeqaleaaca WGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5 aOWaaqWaaeaaciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaam OAaaqabaaakiaawEa7caGLiWoaaeaarqqr1ngBPrgifHhDYfgaiqaa cqWF8iIodaWcaaqaaiaaigdaaeaacaaIYaaaamaaemaabaGaci4Cai aacMgacaGGUbGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaaGccaGLhWUa ayjcSdGaey4kaSYaaSaaaeaacaaIXaaabaGaeuiLdqKaeqOXdOgaam aapehabeWcbaGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakmaa emaabaGaci4CaiaacMgacaGGUbGaeqOXdOgacaGLhWUaayjcSdGaaG jcVlaadsgacqaHgpGAcqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaa amaaemaabaGaci4CaiaacMgacaGGUbGaeqOXdO2aaSbaaSqaaiaad6 gacqGHsislcaaIXaaabeaaaOGaay5bSlaawIa7aiaaiYcaaeaadaae WbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXa aaniabggHiLdGcdaqfGaqabSqabeaacaaIYaaakeaaciGGJbGaai4B aiaacohaaaGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaaGcbaGae8hpIO ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqfGaqabSqabeaacaaIYaaa keaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaSqaaiaaicdaae qaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaeuiLdqKaeqOXdOgaamaa pehabeWcbaGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakmaava cabeWcbeqaaiaaikdaaOqaaiGacogacaGGVbGaai4CaaaacqaHgpGA caaMi8UaamizaiabeA8aQjabgUcaRmaalaaabaGaaGymaaqaaiaaik daaaWaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaa aiabeA8aQnaaBaaaleaacaWGUbGaeyOeI0IaaGymaaqabaGccaaISa aabaWaaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUbGaeyOe I0IaaGymaaqdcqGHris5aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci 4CaiaacMgacaGGUbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOqa aiab=XJi6maalaaabaGaaGymaaqaaiaaikdaaaWaaubiaeqaleqaba GaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaaiabeA8aQnaaBaaaleaa caaIWaaabeaakiabgUcaRmaalaaabaGaaGymaaqaaiabfs5aejabeA 8aQbaadaWdXbqabSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIi YdGcdaqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaa GaeqOXdOMaaGjcVlaadsgacqaHgpGAcqGHRaWkdaWcaaqaaiaaigda aeaacaaIYaaaamaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPb GaaiOBaaaacqaHgpGAdaWgaaWcbaGaamOBaiabgkHiTiaaigdaaeqa aOGaaGilaaaaaaa@E463@

 откуда, вычисляя интегралы в правых частях, получаем

                              j=0 n1 sin φ j 4 Δφ , j=0 n1 cos 2 φ j 1+ π Δφ , j=0 n1 sin 2 φ j π Δφ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG imaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaabdaqaaiGa cohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaay 5bSlaawIa7aebbfv3ySLgzGueE0jxyaGabaiab=XJi6maalaaabaGa aGinaaqaaiabfs5aejabeA8aQbaacaaISaGaaGzbVpaaqahabeWcba GaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaeyye IuoakmaavacabeWcbeqaaiaaikdaaOqaaiGacogacaGGVbGaai4Caa aacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqWF8iIocaaIXaGaey4k aSYaaSaaaeaacqaHapaCaeaacqqHuoarcqaHgpGAaaGaaGilaiaayw W7daaeWbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsisl caaIXaaaniabggHiLdGcdaqfGaqabSqabeaacaaIYaaakeaaciGGZb GaaiyAaiaac6gaaaGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaOGae8hp IOZaaSaaaeaacqaHapaCaeaacqqHuoarcqaHgpGAaaGaaGOlaaaa@7AD2@ (10)

 Отметим, что замена интегральных сумм на интегралы вида (8) имеет достаточно высокую с практической точки зрения точность. Действительно,

                                          φ 0 φ n f(φ)dφ S n max f (φ) φ n φ 0 Δ φ 2 12 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaapehabeWcbaGaeqOXdO 2aaSbaaeaacaaIWaaabeaaaeaacqaHgpGAdaWgaaqaaiaad6gaaeqa aaqdcqGHRiI8aOGaamOzaiaaiIcacqaHgpGAcaaIPaGaaGjcVlaads gacqaHgpGAcqGHsislcaWGtbWaaSbaaSqaaiaad6gaaeqaaaGccaGL hWUaayjcSdGaeyizImQaciyBaiaacggacaGG4bWaaqWaaeaaceWGMb GbauGbauaacaaIOaGaeqOXdOMaaGykaaGaay5bSlaawIa7aiabgwSi xpaabmaabaGaeqOXdO2aaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Iaeq OXdO2aaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaeyyXIC9a aSaaaeaacqqHuoarcqaHgpGAdaahaaWcbeqaaiaaikdaaaaakeaaca aIXaGaaGOmaaaacaaISaaaaa@66B1@

 где [ φ 0 , φ n ] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaeqOXdO2aaSbaaSqaaiaaic daaeqaaOGaaGilaiabeA8aQnaaBaaaleaacaWGUbaabeaakiaai2fa aaa@39D6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  интервал интегрирования, S n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaSbaaSqaaiaad6gaaeqaaa aa@33B8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  интегральная сумма, соответствующая соответствующая численному вычислению интеграла от функции f(φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiabeA8aQjaaiMcaaa a@35CE@  методом трапеций с шагом Δφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcqaHgpGAaaa@34E4@ . Применительно к рассматриваемому случаю интегрирования тригонометрических функций на интервале [0,2π] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIYaGaeq iWdaNaaGyxaaaa@3776@  имеем

                                                   φ 0 φ n f(φ)dφ S n 2 3 max f (φ) π 3 n 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaapehabeWcbaGaeqOXdO 2aaSbaaeaacaaIWaaabeaaaeaacqaHgpGAdaWgaaqaaiaad6gaaeqa aaqdcqGHRiI8aOGaamOzaiaaiIcacqaHgpGAcaaIPaGaaGjcVlaads gacqaHgpGAcqGHsislcaWGtbWaaSbaaSqaaiaad6gaaeqaaaGccaGL hWUaayjcSdGaeyizIm6aaSaaaeaacaaIYaaabaGaaG4maaaacqGHfl Y1ciGGTbGaaiyyaiaacIhadaabdaqaaiqadAgagaqbgaqbaiaaiIca cqaHgpGAcaaIPaaacaGLhWUaayjcSdGaeyyXIC9aaSaaaeaacqaHap aCdaahaaWcbeqaaiaaiodaaaaakeaacaWGUbWaaWbaaSqabeaacaaI YaaaaaaakiaaiYcaaaa@5F3B@

 где max f (φ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGTbGaaiyyaiaacIhadaabdaqaai qadAgagaqbgaqbaiaaiIcacqaHgpGAcaaIPaaacaGLhWUaayjcSdGa eyizImQaaGOmaaaa@3E4C@ . Уже при φ =12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaI9aGaaGymaiaaikdada ahaaWcbeqaaiablIHiVbaaaaa@3723@ , n=30 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaiodacaaIWaaaaa@34F2@  имеем

                                                                  φ 0 φ n f(φ)dφ S n 0,05. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaamaapehabeWcbaGaeqOXdO 2aaSbaaeaacaaIWaaabeaaaeaacqaHgpGAdaWgaaqaaiaad6gaaeqa aaqdcqGHRiI8aOGaamOzaiaaiIcacqaHgpGAcaaIPaGaaGjcVlaads gacqaHgpGAcqGHsislcaWGtbWaaSbaaSqaaiaad6gaaeqaaaGccaGL hWUaayjcSdGaeyizImQaaGimaiaaiYcacaaIWaGaaGynaiaai6caaa a@4D48@

 Объединяя асимптотические оценки (9), (10), из неравенств (6) находим следующие асимптотические оценки для максимальных ошибок восстановления горизонтальных компонент скорости ветра:

                         max u * u 0 δ 1 cosϵ 4+Δφ π+Δφ ,max v * v 0 δ 1 cosϵ 4 π . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGTbGaaiyyaiaacIhadaabdaqaai aadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG1bWaaSbaaSqa aiaaicdaaeqaaaGccaGLhWUaayjcSdWefv3ySLgznfgDOjdaryqr1n gBPrginfgDObcv39gaiqaacqWFYjcIcqaH0oazcqGHflY1daWcaaqa aiaaigdaaeaaciGGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeXbfv 3ySLgzG0uy0Hgip5wzaGqbciab+v=aYdaacqGHflY1daWcaaqaaiaa isdacqGHRaWkcqqHuoarcqaHgpGAaeaacqaHapaCcqGHRaWkcqqHuo arcqaHgpGAaaGaaGilaiaaywW7ciGGTbGaaiyyaiaacIhadaabdaqa aiaadAhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG2bWaaSbaaS qaaiaaicdaaeqaaaGccaGLhWUaayjcSdGae8NCIGOaeqiTdqMaeyyX IC9aaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbGae4x9dipaai abgwSixpaalaaabaGaaGinaaqaaiabec8aWbaacaaIUaaaaa@863E@ (11)

 В пределе при Δφ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcqaHgpGAcqGHsgIRcaaIWa aaaa@378B@  получаем предельные асимптотические оценки вида

                                max u * u 0 δ 1 cosϵ 4 π ,max v * v 0 δ 1 cosϵ 4 π . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGTbGaaiyyaiaacIhadaabdaqaai aadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG1bWaaSbaaSqa aiaaicdaaeqaaaGccaGLhWUaayjcSdGaeyizImQaeqiTdqMaeyyXIC 9aaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiqGacqWF1pG8aaGaeyyXIC9aaS aaaeaacaaI0aaabaGaeqiWdahaaiaaiYcacaaMf8UaciyBaiaacgga caGG4bWaaqWaaeaacaWG2bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0 IaamODamaaBaaaleaacaaIWaaabeaaaOGaay5bSlaawIa7aiabgsMi Jkabes7aKjabgwSixpaalaaabaGaaGymaaqaaiGacogacaGGVbGaai 4Caiab=v=aYdaacqGHflY1daWcaaqaaiaaisdaaeaacqaHapaCaaGa aGOlaaaa@74BA@ (12)

На рис. 2 в качестве иллюстрации показаны зависимости значений коэффициентов при величине δ/cosϵ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaIVaGaci4yaiaac+gaca GGZbWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWF 1pG8aaa@42EC@  в правых частях точных оценок для максимальной ошибки восстановления горизонтальных компонент скорости ветра вида (6) и соответствующих асимптотических оценок вида (11), отмеченных треугольными маркерами, от величины Δφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcqaHgpGAaaa@34E4@ .

 

Рис. 2. Зависимости параметров оценок максимальной ошибки восстановления горизонтальных компонент скорости ветра от углового шага измерений Δφ.

 

Как нетрудно заметить, коэффициенты в оценках точности восстановления горизонтальных компонент скорости ветра асимптотически возрастают к предельному значению 4/π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI0aGaaG4laiabec8aWbaa@34F5@  при возрастании числа измерений. Тем не менее, дискретность измерений в целом слабо влияет на точность восстановления, которая в большей степени определяется углом места сканирования.

Представленная теоретическая модель геометрии дистанционного зондирования не учитывает ошибки позиционирования направлений измерения. Однако их можно учитывать как составляющую погрешности измерений радиальной составляющей скорости ветра δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazaaa@3366@ .

4. Оценки среднеквадратической ошибки восстановления компонент вектора скорости ветра для случая полных исходных данных.

Если рассматривать измерения V rj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbauaadaWgaaWcbaGaamOCai aadQgaaeqaaaaa@34BA@  радиальной составляющей скорости ветра вдоль произвольного j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  -го направления как независимые, нормально распределенные случайные величины с математическим ожиданием V rj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGwbWaaSbaaSqaaiaadkhacaWGQb aabeaaaaa@34AE@  и среднеквадратическим отклонением σ V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamOvaaqaba aaaa@348B@ , то согласно (5) ошибки определения компонент скорости ветра будут представлять собой взвешенные суммы нормально распределенных независимых случайных величин с нулевым математическим ожиданием. Тогда среднеквадратические ошибки определения горизонтальных компонент скорости ветра будут равны

                       σ u = σ V 2 j=0 n1 cos 2 φ j cosϵ j=0 n1 cos 2 φ j , σ v = σ V 2 j=0 n1 sin 2 φ j cosϵ j=0 n1 sin 2 φ j , σ w = σ V 2 j=0 n1 1 sinϵn , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaaI9aWaaSaaaeaadaGcaaqaaiabeo8aZnaaDaaaleaacaWGwbaa baGaaGOmaaaakiabgwSixpaaqahabeWcbaGaamOAaiaai2dacaaIWa aabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaavacabeWcbeqa aiaaikdaaOqaaiGacogacaGGVbGaai4CaaaacqaHgpGAdaWgaaWcba GaamOAaaqabaaabeaaaOqaaiGacogacaGGVbGaai4Camrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9diVaeyyXIC9aaa bCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGym aaqdcqGHris5aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+ gacaGGZbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaaaaGccaaISaGa aGzbVlabeo8aZnaaBaaaleaacaWG2baabeaakiaai2dadaWcaaqaam aakaaabaGaeq4Wdm3aa0baaSqaaiaadAfaaeaacaaIYaaaaOGaeyyX IC9aaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0 IaaGymaaqdcqGHris5aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4C aiaacMgacaGGUbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaaaeqaaa GcbaGaci4yaiaac+gacaGGZbGae8x9diVaeyyXIC9aaabCaeqaleaa caWGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHri s5aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4CaiaacMgacaGGUbaa aiabeA8aQnaaBaaaleaacaWGQbaabeaaaaGccaaISaGaaGzbVlabeo 8aZnaaBaaaleaacaWG3baabeaakiaai2dadaWcaaqaamaakaaabaGa eq4Wdm3aa0baaSqaaiaadAfaaeaacaaIYaaaaOGaeyyXIC9aaabCae qaleaacaWGQbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqd cqGHris5aOGaaGymaaWcbeaaaOqaaiGacohacaGGPbGaaiOBaiab=v =aYlabgwSixlaad6gaaaGaaGilaaaa@B5EA@

 откуда находим

                   σ u = σ V cosϵ j=0 n1 cos 2 φ j , σ v = σ V cosϵ j=0 n1 sin 2 φ j , σ w = σ V sinϵ n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaaI9aWaaSaaaeaacqaHdpWCdaWgaaWcbaGaamOvaaqabaaakeaa ciGGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGabciab=v=aYlabgwSixpaakaaabaWaaabCaeqaleaacaWG QbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aO WaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaaaiab eA8aQnaaBaaaleaacaWGQbaabeaaaeqaaaaakiaaiYcacaaMf8Uaeq 4Wdm3aaSbaaSqaaiaadAhaaeqaaOGaaGypamaalaaabaGaeq4Wdm3a aSbaaSqaaiaadAfaaeqaaaGcbaGaci4yaiaac+gacaGGZbGae8x9di VaeyyXIC9aaOaaaeaadaaeWbqabSqaaiaadQgacaaI9aGaaGimaaqa aiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaqfGaqabSqabeaaca aIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqOXdO2aaSbaaSqaaiaa dQgaaeqaaaqabaaaaOGaaGilaiaaywW7cqaHdpWCdaWgaaWcbaGaam 4DaaqabaGccaaI9aWaaSaaaeaacqaHdpWCdaWgaaWcbaGaamOvaaqa baaakeaaciGGZbGaaiyAaiaac6gacqWF1pG8cqGHflY1daGcaaqaai aad6gaaSqabaaaaOGaaGilaaaa@8885@

 или с учетом полученных асимптотических приближений для j=0 n1 cos 2 φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG imaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaqfGaqabSqa beaacaaIYaaakeaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaaaa@3FD3@ , j=0 n1 sin 2 φ j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaaG imaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaqfGaqabSqa beaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaaaa@3FD8@ :

                                        σ u = σ v σ V 2 cosϵ n , σ w = σ V 1 sinϵ n , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaaI9aGaeq4Wdm3aaSbaaSqaaiaadAhaaeqaaebbfv3ySLgzGueE 0jxyaGabaOGae8hpIOJaeq4Wdm3aaSbaaSqaaiaadAfaaeqaaOGaey yXIC9aaSaaaeaadaGcaaqaaiaaikdaaSqabaaakeaaciGGJbGaai4B aiaacohatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbci ab+v=aYlabgwSixpaakaaabaGaamOBaaWcbeaaaaGccaaISaGaaGzb Vlabeo8aZnaaBaaaleaacaWG3baabeaakiaai2dacqaHdpWCdaWgaa WcbaGaamOvaaqabaGccqGHflY1daWcaaqaaiaaigdaaeaaciGGZbGa aiyAaiaac6gacqGF1pG8cqGHflY1daGcaaqaaiaad6gaaSqabaaaaO GaaGilaaaa@6BAC@

 где, напомним, n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  число измерений.

5. Оценки максимальной ошибки восстановления компонент вектора скорости ветра для случая неполных исходных данных

Рассмотрим теперь случай, когда в некотором секторе размера 2 φ max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaeqOXdO2aaSbaaSqaaiGac2 gacaGGHbGaaiiEaaqabaaaaa@373A@  отсутствуют данные измерений. Для упрощения рассуждений будем предполагать, этот сектор расположен симметрично относительно оси абсцисс OX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaaaa@3372@ , т.е. измерения отсутствуют в секторе φ max , φ max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaaiabgkHiTiabeA8aQnaaBa aaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaaGilaiabeA8aQnaaBaaa leaaciGGTbGaaiyyaiaacIhaaeqaaaGccaGLBbGaayzxaaaaaa@3EE4@ , причем

                                                                             φ max =kΔφ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaciyBaiaacg gacaGG4baabeaakiaai2dacaWGRbGaeyyXICTaeuiLdqKaeqOXdOMa aGOlaaaa@3E64@

 Таким образом, общее число пропущенных измерений составляет 2k+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIYaGaam4AaiabgUcaRiaaigdaaa a@350A@ . В этом случае соотношения (4) для определения компонент скорости ветра примут вид

                                           u * = 1 cosϵ j=k+1 nk V rj cos φ j / j=k+1 nk cos 2 φ j , v * = 1 cosϵ j=k+1 nk V rj sin φ j / j=k+1 nk sin 2 φ j , w * = 1 sinϵ 1 n2k1 j=k+1 nk V rj . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeWacaaabaGaamyDamaaCaaale qabaGaaGOkaaaaaOqaaiaai2dadaWcaaqaaiaaigdaaeaaciGGJbGa ai4BaiaacohatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaG abciab=v=aYdaacqGHflY1daqadaqaamaaqahabeWcbaGaamOAaiaa i2dacaWGRbGaey4kaSIaaGymaaqaaiaad6gacqGHsislcaWGRbaani abggHiLdGcceWGwbGbauaadaWgaaWcbaGaamOCaiaadQgaaeqaaOGa eyyXICTaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQgaae qaaaGccaGLOaGaayzkaaGaaG4lamaabmaabaWaaabCaeqaleaacaWG QbGaaGypaiaadUgacqGHRaWkcaaIXaaabaGaamOBaiabgkHiTiaadU gaa0GaeyyeIuoakmaavacabeWcbeqaaiaaikdaaOqaaiGacogacaGG VbGaai4CaaaacqaHgpGAdaWgaaWcbaGaamOAaaqabaaakiaawIcaca GLPaaacaaISaaabaGaamODamaaCaaaleqabaGaaGOkaaaaaOqaaiaa i2dadaWcaaqaaiaaigdaaeaaciGGJbGaai4BaiaacohacqWF1pG8aa GaeyyXIC9aaeWaaeaadaaeWbqabSqaaiaadQgacaaI9aGaam4Aaiab gUcaRiaaigdaaeaacaWGUbGaeyOeI0Iaam4AaaqdcqGHris5aOGabm OvayaafaWaaSbaaSqaaiaadkhacaWGQbaabeaakiabgwSixlGacoha caGGPbGaaiOBaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaayjkai aawMcaaiaai+cadaqadaqaamaaqahabeWcbaGaamOAaiaai2dacaWG RbGaey4kaSIaaGymaaqaaiaad6gacqGHsislcaWGRbaaniabggHiLd GcdaqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGa eqOXdO2aaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGilaa qaaiaadEhadaahaaWcbeqaaiaaiQcaaaaakeaacaaI9aWaaSaaaeaa caaIXaaabaGaci4CaiaacMgacaGGUbGae8x9dipaaiabgwSixpaala aabaGaaGymaaqaaiaad6gacqGHsislcaaIYaGaam4AaiabgkHiTiaa igdaaaWaaabCaeqaleaacaWGQbGaaGypaiaadUgacqGHRaWkcaaIXa aabaGaamOBaiabgkHiTiaadUgaa0GaeyyeIuoakiqadAfagaqbamaa BaaaleaacaWGYbGaamOAaaqabaGccaaIUaaaaaaa@C1A1@

 Тогда соотношения для оценок абсолютных ошибок определения компонент скорости ветра (6) преобразуются к виду

                                      u * u 0 δ 1 cosϵ j=k+1 nk cos φ j j=k+1 nk cos 2 φ j , v * v 0 δ 1 cosϵ j=k+1 nk sin φ j j=k+1 nk sin 2 φ j , w * w 0 δ 1 sinϵ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeWacaaabaWaaqWaaeaacaWG1b WaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaaBaaaleaacaaI WaaabeaaaOGaay5bSlaawIa7aaqaaiabgsMiJkabes7aKjabgwSixp aalaaabaGaaGymaaqaaiGacogacaGGVbGaai4Camrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9dipaaiabgwSixpaabm aabaWaaabCaeqaleaacaWGQbGaaGypaiaadUgacqGHRaWkcaaIXaaa baGaamOBaiabgkHiTiaadUgaa0GaeyyeIuoakmaaemaabaGaci4yai aac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaaGccaGLhWUa ayjcSdaacaGLOaGaayzkaaWaaeWaaeaadaaeWbqabSqaaiaadQgaca aI9aGaam4AaiabgUcaRiaaigdaaeaacaWGUbGaeyOeI0Iaam4Aaaqd cqGHris5aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gaca GGZbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMca aiaaiYcaaeaadaabdaqaaiaadAhadaahaaWcbeqaaiaaiQcaaaGccq GHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaaGccaGLhWUaayjcSdaa baGaeyizImQaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaabaGaci4yai aac+gacaGGZbGae8x9dipaaiabgwSixpaabmaabaWaaabCaeqaleaa caWGQbGaaGypaiaadUgacqGHRaWkcaaIXaaabaGaamOBaiabgkHiTi aadUgaa0GaeyyeIuoakmaaemaabaGaci4CaiaacMgacaGGUbGaeqOX dO2aaSbaaSqaaiaadQgaaeqaaaGccaGLhWUaayjcSdaacaGLOaGaay zkaaWaaeWaaeaadaaeWbqabSqaaiaadQgacaaI9aGaam4AaiabgUca RiaaigdaaeaacaWGUbGaeyOeI0Iaam4AaaqdcqGHris5aOWaaubiae qaleqabaGaaGOmaaGcbaGaci4CaiaacMgacaGGUbaaaiabeA8aQnaa BaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiYcaaeaadaabda qaaiaadEhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG3bWaaSba aSqaaiaaicdaaeqaaaGccaGLhWUaayjcSdaabaGaeyizImQaeqiTdq MaeyyXIC9aaSaaaeaacaaIXaaabaGaci4CaiaacMgacaGGUbGae8x9 dipaaiaai6caaaaaaa@C7B2@ (13)

 Даже в случае отсутствия части измерений оценка ошибки восстановления вертикальной составляющей скорости ветра остается без изменений и не зависит от числа измерений.

Представим правые части неравенств (13) для ошибок определения горизонтальных компонент скорости ветра в следующем виде: 

                 u * u 0 δ 1 cosϵ j=0 n1 cos φ j j=k k cos φ j j=0 n1 cos 2 φ j j=k k cos 2 φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadwhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG1bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdGaeyizImQaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaaba Gaci4yaiaac+gacaGGZbWefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiqGacqWF1pG8aaGaeyyXIC9aaSaaaeaadaaeWbqabSqaai aadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHi LdGcdaabdaqaaiGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaaca WGQbaabeaaaOGaay5bSlaawIa7aiabgkHiTmaaqahabeWcbaGaamOA aiaai2dacqGHsislcaWGRbaabaGaam4AaaqdcqGHris5aOWaaqWaae aaciGGJbGaai4BaiaacohacqaHgpGAdaWgaaWcbaGaamOAaaqabaaa kiaawEa7caGLiWoaaeaadaaeWbqabSqaaiaadQgacaaI9aGaaGimaa qaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaqfGaqabSqabeaa caaIYaaakeaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaSqaai aadQgaaeqaaOGaeyOeI0YaaabCaeqaleaacaWGQbGaaGypaiabgkHi TiaadUgaaeaacaWGRbaaniabggHiLdGcdaqfGaqabSqabeaacaaIYa aakeaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaSqaaiaadQga aeqaaaaakiaaiYcaaaa@8F4B@ (14a)

                 v * v 0 δ 1 cosϵ j=0 n1 sin φ j j=k k sin φ j j=0 n1 sin 2 φ j j=k k sin 2 φ j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadAhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdGaeyizImQaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaaba Gaci4yaiaac+gacaGGZbWefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiqGacqWF1pG8aaGaeyyXIC9aaSaaaeaadaaeWbqabSqaai aadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHi LdGcdaabdaqaaiGacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaaca WGQbaabeaaaOGaay5bSlaawIa7aiabgkHiTmaaqahabeWcbaGaamOA aiaai2dacqGHsislcaWGRbaabaGaam4AaaqdcqGHris5aOWaaqWaae aaciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaamOAaaqabaaa kiaawEa7caGLiWoaaeaadaaeWbqabSqaaiaadQgacaaI9aGaaGimaa qaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaqfGaqabSqabeaa caaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqOXdO2aaSbaaSqaai aadQgaaeqaaOGaeyOeI0YaaabCaeqaleaacaWGQbGaaGypaiabgkHi TiaadUgaaeaacaWGRbaaniabggHiLdGcdaqfGaqabSqabeaacaaIYa aakeaaciGGZbGaaiyAaiaac6gaaaGaeqOXdO2aaSbaaSqaaiaadQga aeqaaaaakiaai6caaaa@8F63@  (14b)

  Сумму в правой части первого неравенства (14) представим в виде

                            j=k k cos 2 φ j =2 1 2 cos 2 φ 0 + j=1 k1 cos 2 φ j + 1 2 cos 2 φ k + 1 2 cos 2 φ k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaey OeI0Iaam4AaaqaaiaadUgaa0GaeyyeIuoakmaavacabeWcbeqaaiaa ikdaaOqaaiGacogacaGGVbGaai4CaaaacqaHgpGAdaWgaaWcbaGaam OAaaqabaGccaaI9aGaaGOmaiabgwSixpaabmaabaWaaSaaaeaacaaI XaaabaGaaGOmaaaadaqfGaqabSqabeaacaaIYaaakeaaciGGJbGaai 4BaiaacohaaaGaeqOXdO2aaSbaaSqaaiaaicdaaeqaaOGaey4kaSYa aabCaeqaleaacaWGQbGaaGypaiaaigdaaeaacaWGRbGaeyOeI0IaaG ymaaqdcqGHris5aOWaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaa c+gacaGGZbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaakiabgUcaRm aalaaabaGaaGymaaqaaiaaikdaaaWaaubiaeqaleqabaGaaGOmaaGc baGaci4yaiaac+gacaGGZbaaaiabeA8aQnaaBaaaleaacaWGRbaabe aakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaWaaubiaeqaleqa baGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaaaiabeA8aQnaaBaaale aacaWGRbaabeaaaOGaayjkaiaawMcaaiaai6caaaa@6ED1@

 Выражение

                                                   1 2 cos 2 φ 0 + j=1 k1 cos 2 φ j + 1 2 cos 2 φ k Δφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqadaqaamaalaaabaGaaGymaaqaai aaikdaaaWaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaac+gacaGG ZbaaaiabeA8aQnaaBaaaleaacaaIWaaabeaakiabgUcaRmaaqahabe WcbaGaamOAaiaai2dacaaIXaaabaGaam4AaiabgkHiTiaaigdaa0Ga eyyeIuoakmaavacabeWcbeqaaiaaikdaaOqaaiGacogacaGGVbGaai 4CaaaacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqGHRaWkdaWcaaqa aiaaigdaaeaacaaIYaaaamaavacabeWcbeqaaiaaikdaaOqaaiGaco gacaGGVbGaai4CaaaacqaHgpGAdaWgaaWcbaGaam4Aaaqabaaakiaa wIcacaGLPaaacqGHflY1cqqHuoarcqaHgpGAaaa@58F7@

 представляет собой формулу численного интегрирования методом трапеций интеграла

                                                                  S φ max = 0 φ max cos 2 φdφ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGtbWaaeWaaeaacqaHgpGAdaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaOGaayjkaiaawMcaaiaai2da daWdXbqabSqaaiaaicdaaeaacqaHgpGAdaWgaaqaaiGac2gacaGGHb GaaiiEaaqabaaaniabgUIiYdGcdaqfGaqabSqabeaacaaIYaaakeaa ciGGJbGaai4BaiaacohaaaGaeqOXdOMaaGjcVlaadsgacqaHgpGAca aIUaaaaa@4C1E@

 Следовательно,

                                                j=k k cos 2 φ j 2 Δφ 0 φ max cos 2 φdφ+ cos 2 φ max . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaadQgacaaI9aGaey OeI0Iaam4AaaqaaiaadUgaa0GaeyyeIuoakmaavacabeWcbeqaaiaa ikdaaOqaaiGacogacaGGVbGaai4CaaaacqaHgpGAdaWgaaWcbaGaam OAaaqabaGccqGHijYUdaWcaaqaaiaaikdaaeaacqqHuoarcqaHgpGA aaGaeyyXIC9aa8qCaeqaleaacaaIWaaabaGaeqOXdO2aaSbaaeaaci GGTbGaaiyyaiaacIhaaeqaaaqdcqGHRiI8aOWaaubiaeqaleqabaGa aGOmaaGcbaGaci4yaiaac+gacaGGZbaaaiabeA8aQjaayIW7caWGKb GaeqOXdOMaey4kaSYaaubiaeqaleqabaGaaGOmaaGcbaGaci4yaiaa c+gacaGGZbaaaiabeA8aQnaaBaaaleaaciGGTbGaaiyyaiaacIhaae qaaOGaaGOlaaaa@6338@

 Аналогичным образом имеем

                                             j=k k sin 2 φ j 2 Δφ 0 φ max sin 2 φdφ+ sin 2 φ max , j=k k cos φ j 2 Δφ 0 φ max cosφdφ+cos φ max , j=k k sin φ j 2 Δφ 0 φ max sinφdφ+sin φ max . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeWacaaabaWaaabCaeqaleaaca WGQbGaaGypaiabgkHiTiaadUgaaeaacaWGRbaaniabggHiLdGcdaqf GaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeqOXdO 2aaSbaaSqaaiaadQgaaeqaaaGcbaGaeyisIS7aaSaaaeaacaaIYaaa baGaeuiLdqKaeqOXdOgaaiabgwSixpaapehabeWcbaGaaGimaaqaai abeA8aQnaaBaaabaGaciyBaiaacggacaGG4baabeaaa0Gaey4kIipa kmaavacabeWcbeqaaiaaikdaaOqaaiGacohacaGGPbGaaiOBaaaacq aHgpGAcaaMi8UaamizaiabeA8aQjabgUcaRmaavacabeWcbeqaaiaa ikdaaOqaaiGacohacaGGPbGaaiOBaaaacqaHgpGAdaWgaaWcbaGaci yBaiaacggacaGG4baabeaakiaaiYcaaeaadaaeWbqabSqaaiaadQga caaI9aGaeyOeI0Iaam4AaaqaaiaadUgaa0GaeyyeIuoakmaaemaaba Gaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaaGc caGLhWUaayjcSdaabaGaeyisIS7aaSaaaeaacaaIYaaabaGaeuiLdq KaeqOXdOgaaiabgwSixpaapehabeWcbaGaaGimaaqaaiabeA8aQnaa BaaabaGaciyBaiaacggacaGG4baabeaaa0Gaey4kIipakiGacogaca GGVbGaai4CaiabeA8aQjaayIW7caWGKbGaeqOXdOMaey4kaSIaci4y aiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiEaa qabaGccaaISaaabaWaaabCaeqaleaacaWGQbGaaGypaiabgkHiTiaa dUgaaeaacaWGRbaaniabggHiLdGcdaabdaqaaiGacohacaGGPbGaai OBaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaay5bSlaawIa7aaqa aiabgIKi7oaalaaabaGaaGOmaaqaaiabfs5aejabeA8aQbaacqGHfl Y1daWdXbqabSqaaiaaicdaaeaacqaHgpGAdaWgaaqaaiGac2gacaGG HbGaaiiEaaqabaaaniabgUIiYdGcciGGZbGaaiyAaiaac6gacqaHgp GAcaaMi8UaamizaiabeA8aQjabgUcaRiGacohacaGGPbGaaiOBaiab eA8aQnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaaGOlaaaaaa a@C63C@

 С учетом полученных асимптотических оценок сумм, входящих в правые части неравенств (14), их можно преобразовать к виду

                           u * u 0 δ 1 cosϵ 4+Δφ 1cos φ max 2sin φ max π φ max 1 2 sin 2 φ max +Δφsi n 2 φ max , v * v 0 δ 1 cosϵ 42 1cos φ max Δφsin φ max π φ max + 1 2 sin 2 φ max Δφsi n 2 φ max . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeGacaaabaWaaqWaaeaacaWG1b WaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaaBaaaleaacaaI WaaabeaaaOGaay5bSlaawIa7aaqaamrr1ngBPrwtHrhAYaqeguuDJX wAKbstHrhAGq1DVbaceaGae8NCIGOaeqiTdqMaeyyXIC9aaSaaaeaa caaIXaaabaGaci4yaiaac+gacaGGZbWefv3ySLgznfgDOfdarCqr1n gBPrginfgDObYtUvgaiuGacqGF1pG8aaGaeyyXIC9aaSaaaeaacaaI 0aGaey4kaSIaeuiLdqKaeqOXdOMaeyyXIC9aaeWaaeaacaaIXaGaey OeI0Iaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiGac2gacaGG HbGaaiiEaaqabaaakiaawIcacaGLPaaacqGHsislcaaIYaGaci4Cai aacMgacaGGUbGaeqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa baaakeaacqaHapaCcqGHsislcqaHgpGAdaWgaaWcbaGaciyBaiaacg gacaGG4baabeaakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGa ci4CaiaacMgacaGGUbWaaeWaaeaacaaIYaGaeqOXdO2aaSbaaSqaai Gac2gacaGGHbGaaiiEaaqabaaakiaawIcacaGLPaaacqGHRaWkcqqH uoarcqaHgpGAcqGHflY1caWGZbGaamyAaiaad6gadaahaaWcbeqaai aaikdaaaGccqaHgpGAdaWgaaWcbaGaciyBaiaacggacaGG4baabeaa aaGccaaISaaabaWaaqWaaeaacaWG2bWaaWbaaSqabeaacaaIQaaaaO GaeyOeI0IaamODamaaBaaaleaacaaIWaaabeaaaOGaay5bSlaawIa7 aaqaaiab=jNiikabes7aKjabgwSixpaalaaabaGaaGymaaqaaiGaco gacaGGVbGaai4Caiab+v=aYdaacqGHflY1daWcaaqaaiaaisdacqGH sislcaaIYaGaeyyXIC9aaeWaaeaacaaIXaGaeyOeI0Iaci4yaiaac+ gacaGGZbGaeqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaa kiaawIcacaGLPaaacqGHsislcqqHuoarcqaHgpGAcqGHflY1ciGGZb GaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaciyBaiaacggacaGG4baa beaaaOqaaiabec8aWjabgkHiTiabeA8aQnaaBaaaleaaciGGTbGaai yyaiaacIhaaeqaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaa ciGGZbGaaiyAaiaac6gadaqadaqaaiaaikdacqaHgpGAdaWgaaWcba GaciyBaiaacggacaGG4baabeaaaOGaayjkaiaawMcaaiabgkHiTiab fs5aejabeA8aQjabgwSixlaadohacaWGPbGaamOBamaaCaaaleqaba GaaGOmaaaakiabeA8aQnaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqa aaaakiaai6caaaaaaa@F002@ (15)

 Предполагая, что размер сектора φ max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaciyBaiaacg gacaGG4baabeaaaaa@367E@  пропущенных данных измерений является малой величиной, воспользуемся асимптотическими оценками

                            sin φ max φ max , 1 2 sin 2 φ max φ max ,1cos φ max 1 2 φ max 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGZbGaaiyAaiaac6gacqaHgpGAda WgaaWcbaGaciyBaiaacggacaGG4baabeaarqqr1ngBPrgifHhDYfga iqaakiab=XJi6iabeA8aQnaaBaaaleaaciGGTbGaaiyyaiaacIhaae qaaOGaaGilamaalaaabaGaaGymaaqaaiaaikdaaaGaci4CaiaacMga caGGUbWaaeWaaeaacaaIYaGaeqOXdO2aaSbaaSqaaiGac2gacaGGHb GaaiiEaaqabaaakiaawIcacaGLPaaacqWF8iIocqaHgpGAdaWgaaWc baGaciyBaiaacggacaGG4baabeaakiaaiYcacaaMf8UaaGymaiabgk HiTiGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaaciGGTbGaaiyy aiaacIhaaeqaaOGae8hpIOZaaSaaaeaacaaIXaaabaGaaGOmaaaacq aHgpGAdaqhaaWcbaGaciyBaiaacggacaGG4baabaGaaGOmaaaakiaa i6caaaa@6A4A@

 Тогда из неравенств (15) после преобразований находим

                          u * u 0 δ 1 cosϵ 42 φ max π2 φ max , v * v 0 δ 1 cosϵ 4+ φ max 2 π ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadwhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG1bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiq aacqWFYjcIcqaH0oazcqGHflY1daWcaaqaaiaaigdaaeaaciGGJbGa ai4BaiaacohatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaG qbciab+v=aYdaacqGHflY1daWcaaqaaiaaisdacqGHsislcaaIYaGa eqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaakeaacqaHap aCcqGHsislcaaIYaGaeqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiE aaqabaaaaOGaaGilaiaaywW7daabdaqaaiaadAhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdGae8NCIGOaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaaba Gaci4yaiaac+gacaGGZbGae4x9dipaaiabgwSixpaalaaabaGaaGin aiabgUcaRiabeA8aQnaaDaaaleaaciGGTbGaaiyyaiaacIhaaeaaca aIYaaaaaGcbaGaeqiWdahaaiaaiUdaaaa@8BDF@

 пренебрегая членом φ max 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaqhaaWcbaGaciyBaiaacg gacaGG4baabaGaaGOmaaaaaaa@373B@  с учетом малости φ max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaciyBaiaacg gacaGG4baabeaaaaa@367E@ ,

                                 u * u 0 δ 1 cosϵ 42 φ max π2 φ max , v * v 0 δ 1 cosϵ 4 π . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiaadwhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG1bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiq aacqWFYjcIcqaH0oazcqGHflY1daWcaaqaaiaaigdaaeaaciGGJbGa ai4BaiaacohatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaG qbciab+v=aYdaacqGHflY1daWcaaqaaiaaisdacqGHsislcaaIYaGa eqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaakeaacqaHap aCcqGHsislcaaIYaGaeqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiE aaqabaaaaOGaaGilaiaaywW7daabdaqaaiaadAhadaahaaWcbeqaai aaiQcaaaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaaGccaGL hWUaayjcSdGae8NCIGOaeqiTdqMaeyyXIC9aaSaaaeaacaaIXaaaba Gaci4yaiaac+gacaGGZbGae4x9dipaaiabgwSixpaalaaabaGaaGin aaqaaiabec8aWbaacaaIUaaaaa@856C@  (16)

 Из неравенств (16) можно сделать вывод, что при наличии пропусков измерений, расположенных в некотором секторе размера φ max , φ max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWadaqaaiabgkHiTiabeA8aQnaaBa aaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaaGilaiabeA8aQnaaBaaa leaaciGGTbGaaiyyaiaacIhaaeqaaaGccaGLBbGaayzxaaaaaa@3EE4@ , асимптотическая оценка точности восстановления компоненты скорости ветра, ортогональной биссектрисе этого сектора, не изменяется по сравнению со случаем полных данных. В то же время асимптотическая оценка точности восстановления компоненты скорости, направленной вдоль биссектрисы сектора пропущенных данных, ухудшается. График коэффициента 42 φ max π2 φ max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiaaisdacqGHsislcaaIYa GaeqOXdO2aaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaakeaacqaH apaCcqGHsislcaaIYaGaeqOXdO2aaSbaaSqaaiGac2gacaGGHbGaai iEaaqabaaaaaaa@4122@  показан на рис. 3.

 

Рис. 3. График коэффициента 42φmaxπ2φmax, характеризующего точность восстановления компоненты скорости ветра вдоль биссектрисы сектора пропущенных данных.

 

При увеличении размеров сектора пропуска данных до φ max =30 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAdaWgaaWcbaGaciyBaiaacg gacaGG4baabeaakiaai2dacaaIZaGaaGimamaaCaaaleqabaGaeSig I8gaaaaa@3A2D@  ошибка восстановления компонент скорости ветра возрастает примерно на 11% для компоненты скорости, направленной вдоль биссектрисы сектора пропущенных данных.

6. Оценки максимальной ошибки восстановления компонент вектора скорости в случае ненулевого градиента горизонтального поля ветра.

Рассмотрим случай, когда горизонтальные компоненты скорости ветра линейно возрастают вдоль некоторого направления. Будем предполагать, что ориентация декартовой системы координат OXYZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaiaadMfacaWGAbaaaa@352F@  выбрана таким образом, что компоненты скорости ветра изменяются вдоль оси OX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaaaa@3372@ :

                                                u(x,y)= u 0 + α u x,v(x,y)= v 0 + α v x. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam yEaiaaiMcacaaI9aGaamyDamaaBaaaleaacaaIWaaabeaakiabgUca Riabeg7aHnaaBaaaleaacaWG1baabeaakiabgwSixlaadIhacaaISa GaaGzbVlaadAhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2da caWG2bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeqySde2aaSbaaS qaaiaadAhaaeqaaOGaeyyXICTaamiEaiaai6caaaa@5232@

 Поскольку точки измерений расположены на окружности некоторого радиуса r 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbWaaSbaaSqaaiaaicdaaeqaaa aa@339E@  компоненты скорости ветра в j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  -й точке измерений будут равны

                                         u j = u 0 + α u r 0 cos φ j , v j = v 0 + α v r 0 cos φ j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaadwhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcqaHXoqy daWgaaWcbaGaamyDaaqabaGccqGHflY1caWGYbWaaSbaaSqaaiaaic daaeqaaOGaeyyXICTaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqa aiaadQgaaeqaaOGaaGilaiaaywW7caWG2bWaaSbaaSqaaiaadQgaae qaaOGaaGypaiaadAhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcqaH XoqydaWgaaWcbaGaamODaaqabaGccqGHflY1caWGYbWaaSbaaSqaai aaicdaaeqaaOGaeyyXICTaci4yaiaac+gacaGGZbGaeqOXdO2aaSba aSqaaiaadQgaaeqaaOGaaGOlaaaa@5E22@ (17)

 Задачу восстановления скорости ветра будем рассматривать как задачу определения компонент средней скорости ветра u 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaicdaaeqaaa aa@33A1@ , v 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bWaaSbaaSqaaiaaicdaaeqaaa aa@33A2@ , w 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bWaaSbaaSqaaiaaicdaaeqaaa aa@33A3@ .

Значение радиальной компоненты скорости ветра в j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  -й точке измерений с учетом соотношений (17) будет иметь следующее значение:

                 V rj =( u 0 cos φ j + v 0 sin φ j )cosϵ+ w 0 sinϵ+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlaadAfadaWgaaWcba GaamOCaiaadQgaaeqaaOGaaGypaiaaiIcacaWG1bWaaSbaaSqaaiaa icdaaeqaaOGaeyyXICTaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaOGaey4kaSIaamODamaaBaaaleaacaaIWaaabeaa kiabgwSixlGacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaWGQb aabeaakiaaiMcacqGHflY1ciGGJbGaai4BaiaacohatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=v=aYlabgUcaRiaadE hadaWgaaWcbaGaaGimaaqabaGccqGHflY1ciGGZbGaaiyAaiaac6ga cqWF1pG8cqGHRaWkaaa@6B12@

                                      +( α u r 0 cos 2 φ j + α v r 0 cos φ j sin φ j )cosϵ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHRaWkcaaIOaGaeqySde2aaSbaaS qaaiaadwhaaeqaaOGaeyyXICTaamOCamaaBaaaleaacaaIWaaabeaa kiabgwSixpaavacabeWcbeqaaiaaikdaaOqaaiGacogacaGGVbGaai 4CaaaacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqGHRaWkcqaHXoqy daWgaaWcbaGaamODaaqabaGccqGHflY1caWGYbWaaSbaaSqaaiaaic daaeqaaOGaeyyXICTaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqa aiaadQgaaeqaaOGaeyyXICTaci4CaiaacMgacaGGUbGaeqOXdO2aaS baaSqaaiaadQgaaeqaaOGaaGykaiabgwSixlGacogacaGGVbGaai4C amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9di VaaGOlaiaaywW7caaMf8oaaa@70E7@   (18)

 Последнее слагаемое в правой части (18) будем рассматривать как дополнительную ошибку измерений радиальной составляющей средней скорости ветра

                                           V ¯ rj = u 0 cos φ j + v 0 sin φ j cosϵ+ w 0 sinϵ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGwbGbaebadaWgaaWcbaGaamOCai aadQgaaeqaaOGaaGypamaabmaabaGaamyDamaaBaaaleaacaaIWaaa beaakiabgwSixlGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaaca WGQbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaaGimaaqabaGccqGH flY1ciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaamOAaaqaba aakiaawIcacaGLPaaacqGHflY1ciGGJbGaai4BaiaacohatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=v=aYlabgUcaRi aadEhadaWgaaWcbaGaaGimaaqabaGccqGHflY1ciGGZbGaaiyAaiaa c6gacqWF1pG8caaISaaaaa@6806@

 т.е.

                 V rj V ¯ rj = V rj V rj + u 0 cos φ j + v 0 sin φ j cosϵ+ w 0 sinϵ= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVlqadAfagaqbamaaBa aaleaacaWGYbGaamOAaaqabaGccqGHsislceWGwbGbaebadaWgaaWc baGaamOCaiaadQgaaeqaaOGaaGypaiqadAfagaqbamaaBaaaleaaca WGYbGaamOAaaqabaGccqGHsislcaWGwbWaaSbaaSqaaiaadkhacaWG QbaabeaakiabgUcaRmaabmaabaGaamyDamaaBaaaleaacaaIWaaabe aakiabgwSixlGacogacaGGVbGaai4CaiabeA8aQnaaBaaaleaacaWG QbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaaGimaaqabaGccqGHfl Y1ciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaamOAaaqabaaa kiaawIcacaGLPaaacqGHflY1ciGGJbGaai4BaiaacohatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=v=aYlabgUcaRiaa dEhadaWgaaWcbaGaaGimaaqabaGccqGHflY1ciGGZbGaaiyAaiaac6 gacqWF1pG8caaI9aaaaa@76EC@

                                    = δ j + u 0 cos φ j + v 0 sin φ j cosϵ+ w 0 sinϵ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaeqiTdq2aaSbaaSqaaiaadQ gaaeqaaOGaey4kaSYaaeWaaeaacaWG1bWaaSbaaSqaaiaaicdaaeqa aOGaeyyXICTaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQ gaaeqaaOGaey4kaSIaamODamaaBaaaleaacaaIWaaabeaakiabgwSi xlGacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaWGQbaabeaaaO GaayjkaiaawMcaaiabgwSixlGacogacaGGVbGaai4Camrr1ngBPrwt HrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9diVaey4kaSIaam 4DamaaBaaaleaacaaIWaaabeaakiabgwSixlGacohacaGGPbGaaiOB aiab=v=aYlaaiYcacaaMf8UaaGzbVdaa@6BBF@

 где δ j = V rj V rj MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazdaWgaaWcbaGaamOAaaqaba GccaaI9aGabmOvayaafaWaaSbaaSqaaiaadkhacaWGQbaabeaakiab gkHiTiaadAfadaWgaaWcbaGaamOCaiaadQgaaeqaaaaa@3C2F@ . Тогда систему уравнений (5) для ошибок восстановления компонент скорости ветра можно записать в виде

u * u 0 = 1 cosϵ 1 j=0 n1 cos 2 φ j j=0 n1 δ j + α u r 0 cos 2 φ j + α v r 0 cos φ j sin φ j cosϵ cos φ j , v * v 0 = 1 cosϵ 1 j=0 n1 sin 2 φ j j=0 n1 δ j + α u r 0 cos 2 φ j + α v r 0 cos φ j sin φ j cosϵ sin φ j , w * w 0 = 1 sinϵ 1 n j=0 n1 δ j + α u r 0 cos 2 φ j + α v r 0 cos φ j sin φ j cosϵ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeWacaaabaGaamyDamaaCaaale qabaGaaGOkaaaakiabgkHiTiaadwhadaWgaaWcbaGaaGimaaqabaaa keaacaaI9aWaaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbWefv 3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqGacqWF1pG8aaGa eyyXIC9aaSaaaeaacaaIXaaabaWaaabCaeqaleaacaWGQbGaaGypai aaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aOWaaubiaeqa leqabaGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaaaiabeA8aQnaaBa aaleaacaWGQbaabeaaaaGcdaaeWbqabSqaaiaadQgacaaI9aGaaGim aaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiabes 7aKnaaBaaaleaacaWGQbaabeaakiabgUcaRmaabmaabaGaeqySde2a aSbaaSqaaiaadwhaaeqaaOGaeyyXICTaamOCamaaBaaaleaacaaIWa aabeaakiabgwSixpaavacabeWcbeqaaiaaikdaaOqaaiGacogacaGG VbGaai4CaaaacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqGHRaWkcq aHXoqydaWgaaWcbaGaamODaaqabaGccqGHflY1caWGYbWaaSbaaSqa aiaaicdaaeqaaOGaeyyXICTaci4yaiaac+gacaGGZbGaeqOXdO2aaS baaSqaaiaadQgaaeqaaOGaeyyXICTaci4CaiaacMgacaGGUbGaeqOX dO2aaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaeyyXICTaci 4yaiaac+gacaGGZbGae8x9dipacaGLOaGaayzkaaGaeyyXICTaci4y aiaac+gacaGGZbGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaOGaaGilaa qaaiaadAhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG2bWaaSba aSqaaiaaicdaaeqaaaGcbaGaaGypamaalaaabaGaaGymaaqaaiGaco gacaGGVbGaai4Caiab=v=aYdaacqGHflY1daWcaaqaaiaaigdaaeaa daaeWbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislca aIXaaaniabggHiLdGcdaqfGaqabSqabeaacaaIYaaakeaaciGGZbGa aiyAaiaac6gaaaGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaaaakmaaqa habeWcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigda a0GaeyyeIuoakmaabmaabaGaeqiTdq2aaSbaaSqaaiaadQgaaeqaaO Gaey4kaSYaaeWaaeaacqaHXoqydaWgaaWcbaGaamyDaaqabaGccqGH flY1caWGYbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXIC9aaubiaeqale qabaGaaGOmaaGcbaGaci4yaiaac+gacaGGZbaaaiabeA8aQnaaBaaa leaacaWGQbaabeaakiabgUcaRiabeg7aHnaaBaaaleaacaWG2baabe aakiabgwSixlaadkhadaWgaaWcbaGaaGimaaqabaGccqGHflY1ciGG JbGaai4BaiaacohacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqGHfl Y1ciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaamOAaaqabaaa kiaawIcacaGLPaaacqGHflY1ciGGJbGaai4BaiaacohacqWF1pG8ai aawIcacaGLPaaacqGHflY1ciGGZbGaaiyAaiaac6gacqaHgpGAdaWg aaWcbaGaamOAaaqabaGccaaISaaabaGaam4DamaaCaaaleqabaGaaG OkaaaakiabgkHiTiaadEhadaWgaaWcbaGaaGimaaqabaaakeaacaaI 9aWaaSaaaeaacaaIXaaabaGaci4CaiaacMgacaGGUbGae8x9dipaai abgwSixpaalaaabaGaaGymaaqaaiaad6gaaaWaaabCaeqaleaacaWG QbGaaGypaiaaicdaaeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aO WaaeWaaeaacqaH0oazdaWgaaWcbaGaamOAaaqabaGccqGHRaWkdaqa daqaaiabeg7aHnaaBaaaleaacaWG1baabeaakiabgwSixlaadkhada WgaaWcbaGaaGimaaqabaGccqGHflY1daqfGaqabSqabeaacaaIYaaa keaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaSqaaiaadQgaae qaaOGaey4kaSIaeqySde2aaSbaaSqaaiaadAhaaeqaaOGaeyyXICTa amOCamaaBaaaleaacaaIWaaabeaakiabgwSixlGacogacaGGVbGaai 4CaiabeA8aQnaaBaaaleaacaWGQbaabeaakiabgwSixlGacohacaGG PbGaaiOBaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawM caaiabgwSixlGacogacaGGVbGaai4Caiab=v=aYdGaayjkaiaawMca aiaai6caaaaaaa@4F71@ (19)

 Из соотношений (19) получаем следующие неравенства для ошибок восстановления компонент вектора скорости ветра: 

                 u * u 0 1 cosϵ j=0 n1 cos 2 φ j δ j=0 n1 cos φ j + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVpaaemaabaGaamyDam aaCaaaleqabaGaaGOkaaaakiabgkHiTiaadwhadaWgaaWcbaGaaGim aaqabaaakiaawEa7caGLiWoacqGHKjYOdaWcaaqaaiaaigdaaeaaci GGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=v=aYlabgwSixpaaqahabeWcbaGaamOAaiaai2daca aIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaavacabeWc beqaaiaaikdaaOqaaiGacogacaGGVbGaai4CaaaacqaHgpGAdaWgaa WcbaGaamOAaaqabaaaaOWaamqaaeaacqaH0oazcqGHflY1daaeWbqa bSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaani abggHiLdGcdaabdaqaaiGacogacaGGVbGaai4CaiabeA8aQnaaBaaa leaacaWGQbaabeaaaOGaay5bSlaawIa7aiabgUcaRaGaay5waaaaaa@7469@

                     + α u r 0 cosϵ j=0 n1 cos 3 φ j + α v r 0 cosϵ j=0 n1 cos 2 φ j sin φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWacaqaaiabgUcaRmaaemaabaGaeq ySde2aaSbaaSqaaiaadwhaaeqaaaGccaGLhWUaayjcSdGaeyyXICTa amOCamaaBaaaleaacaaIWaaabeaakiabgwSixlGacogacaGGVbGaai 4Camrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9 diVaeyyXIC9aaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOWaaqWaaeaadaqfGaqabSqabeaa caaIZaaakeaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaSqaai aadQgaaeqaaaGccaGLhWUaayjcSdGaey4kaSYaaqWaaeaacqaHXoqy daWgaaWcbaGaamODaaqabaaakiaawEa7caGLiWoacqGHflY1caWGYb WaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaci4yaiaac+gacaGGZbGa e8x9diVaeyyXIC9aaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaaca WGUbGaeyOeI0IaaGymaaqdcqGHris5aOWaaqWaaeaadaqfGaqabSqa beaacaaIYaaakeaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaOGaeyyXICTaci4CaiaacMgacaGGUbGaeqOXdO2a aSbaaSqaaiaadQgaaeqaaaGccaGLhWUaayjcSdaacaGLDbaacaaISa GaaGzbVlaaywW7aaa@9452@ (20a)

 

                 v * v 0 1 cosϵ j=0 n1 sin 2 φ j δ j=0 n1 sin φ j + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVpaaemaabaGaamODam aaCaaaleqabaGaaGOkaaaakiabgkHiTiaadAhadaWgaaWcbaGaaGim aaqabaaakiaawEa7caGLiWoacqGHKjYOdaWcaaqaaiaaigdaaeaaci GGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabciab=v=aYlabgwSixpaaqahabeWcbaGaamOAaiaai2daca aIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIuoakmaavacabeWc beqaaiaaikdaaOqaaiGacohacaGGPbGaaiOBaaaacqaHgpGAdaWgaa WcbaGaamOAaaqabaaaaOWaamqaaeaacqaH0oazcqGHflY1daaeWbqa bSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaani abggHiLdGcdaabdaqaaiGacohacaGGPbGaaiOBaiabeA8aQnaaBaaa leaacaWGQbaabeaaaOGaay5bSlaawIa7aiabgUcaRaGaay5waaaaaa@7475@

              + α u r 0 cosϵ j=0 n1 cos 2 φ j sin φ j + α v r 0 cosϵ j=0 n1 cos φ j sin 2 φ j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWacaqaaiabgUcaRmaaemaabaGaeq ySde2aaSbaaSqaaiaadwhaaeqaaaGccaGLhWUaayjcSdGaeyyXICTa amOCamaaBaaaleaacaaIWaaabeaakiabgwSixlGacogacaGGVbGaai 4Camrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceiGae8x9 diVaeyyXIC9aaabCaeqaleaacaWGQbGaaGypaiaaicdaaeaacaWGUb GaeyOeI0IaaGymaaqdcqGHris5aOWaaqWaaeaadaqfGaqabSqabeaa caaIYaaakeaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaSqaai aadQgaaeqaaOGaeyyXICTaci4CaiaacMgacaGGUbGaeqOXdO2aaSba aSqaaiaadQgaaeqaaaGccaGLhWUaayjcSdGaey4kaSYaaqWaaeaacq aHXoqydaWgaaWcbaGaamODaaqabaaakiaawEa7caGLiWoacqGHflY1 caWGYbWaaSbaaSqaaiaaicdaaeqaaOGaeyyXICTaci4yaiaac+gaca GGZbGae8x9diVaeyyXIC9aaabCaeqaleaacaWGQbGaaGypaiaaicda aeaacaWGUbGaeyOeI0IaaGymaaqdcqGHris5aOWaaqWaaeaaciGGJb Gaai4BaiaacohacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqGHflY1 daqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGaeq OXdO2aaSbaaSqaaiaadQgaaeqaaaGccaGLhWUaayjcSdaacaGLDbaa caaISaGaaGzbVlaaywW7aaa@9C55@ (20b)

 

                 w * w 0 1 nsinϵ × MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaMf8UaaGzbVpaaemaabaGaam4Dam aaCaaaleqabaGaaGOkaaaakiabgkHiTiaadEhadaWgaaWcbaGaaGim aaqabaaakiaawEa7caGLiWoacqGHKjYOdaWcaaqaaiaaigdaaeaaca WGUbGaeyyXICTaci4CaiaacMgacaGGUbWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiqGacqWF1pG8aaGaey41aqlaaa@5365@

               × nδ+ α u r 0 cosϵ j=0 n1 cos 2 φ j + α v r 0 cosϵ j=0 n1 cos φ j sin φ j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHxdaTdaWadaqaaiaad6gacqGHfl Y1cqaH0oazcqGHRaWkdaabdaqaaiabeg7aHnaaBaaaleaacaWG1baa beaaaOGaay5bSlaawIa7aiabgwSixlaadkhadaWgaaWcbaGaaGimaa qabaGccqGHflY1ciGGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGabciab=v=aYlabgwSixpaaqahabeWcba GaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaeyye IuoakmaavacabeWcbeqaaiaaikdaaOqaaiGacogacaGGVbGaai4Caa aacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqGHRaWkdaabdaqaaiab eg7aHnaaBaaaleaacaWG2baabeaaaOGaay5bSlaawIa7aiabgwSixl aadkhadaWgaaWcbaGaaGimaaqabaGccqGHflY1ciGGJbGaai4Baiaa cohacqWF1pG8cqGHflY1daaeWbqabSqaaiaadQgacaaI9aGaaGimaa qaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaabdaqaaiGacoga caGGVbGaai4CaiabeA8aQnaaBaaaleaacaWGQbaabeaakiabgwSixl GacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGa ay5bSlaawIa7aaGaay5waiaaw2faaiaai6cacaaMf8UaaGzbVdaa@980F@ (20c)

  Применяя ту же технику замены сумм, входящих в правые части неравенств (20) на соответствующие интегральные приближения, получаем следующие соотношения:

                       j=0 n1 cos φ j 1+ 4 Δφ , j=0 n1 cos 2 φ j 1+ π Δφ , j=0 n1 sin φ j 4 Δφ , j=0 n1 sin 2 φ j π Δφ , j=0 n1 cos 3 φ j 1+ 8 3Δφ , j=0 n1 cos φ j sin φ j 2 Δφ , j=0 n1 cos 2 φ j sin φ j 4 3Δφ , j=0 n1 cos φ j sin 2 φ j 4 3Δφ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeabeaaaaaqaaaqaamaaqahabe WcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Ga eyyeIuoakmaaemaabaGaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaaGccaGLhWUaayjcSdGaeyisISRaaGymaiabgUca RmaalaaabaGaaGinaaqaaiabfs5aejabeA8aQbaacaaISaaabaGaaG zbVlaaywW7aeaadaaeWbqabSqaaiaadQgacaaI9aGaaGimaaqaaiaa d6gacqGHsislcaaIXaaaniabggHiLdGcdaqfGaqabSqabeaacaaIYa aakeaaciGGJbGaai4BaiaacohaaaGaeqOXdO2aaSbaaSqaaiaadQga aeqaaOGaeyisISRaaGymaiabgUcaRmaalaaabaGaeqiWdahabaGaeu iLdqKaeqOXdOgaaiaaiYcaaeaaaeaadaaeWbqabSqaaiaadQgacaaI 9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGcdaabda qaaiGacohacaGGPbGaaiOBaiabeA8aQnaaBaaaleaacaWGQbaabeaa aOGaay5bSlaawIa7aiabgIKi7oaalaaabaGaaGinaaqaaiabfs5aej abeA8aQbaacaaISaaabaGaaGzbVlaaywW7aeaadaaeWbqabSqaaiaa dQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaaniabggHiLd GcdaqfGaqabSqabeaacaaIYaaakeaaciGGZbGaaiyAaiaac6gaaaGa eqOXdO2aaSbaaSqaaiaadQgaaeqaaOGaeyisIS7aaSaaaeaacqaHap aCaeaacqqHuoarcqaHgpGAaaGaaGilaaqaaaqaamaaqahabeWcbaGa amOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0GaeyyeIu oakmaaemaabaWaaubiaeqaleqabaGaaG4maaGcbaGaci4yaiaac+ga caGGZbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGaay5bSlaawI a7aiabgIKi7kaaigdacqGHRaWkdaWcaaqaaiaaiIdaaeaacaaIZaGa euiLdqKaeqOXdOgaaiaaiYcaaeaacaaMf8UaaGzbVdqaamaaqahabe WcbaGaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Ga eyyeIuoakmaaemaabaGaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaS qaaiaadQgaaeqaaOGaeyyXICTaci4CaiaacMgacaGGUbGaeqOXdO2a aSbaaSqaaiaadQgaaeqaaaGccaGLhWUaayjcSdGaeyisIS7aaSaaae aacaaIYaaabaGaeuiLdqKaeqOXdOgaaiaaiYcaaeaaaeaadaaeWbqa bSqaaiaadQgacaaI9aGaaGimaaqaaiaad6gacqGHsislcaaIXaaani abggHiLdGcdaabdaqaamaavacabeWcbeqaaiaaikdaaOqaaiGacoga caGGVbGaai4CaaaacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccqGHfl Y1ciGGZbGaaiyAaiaac6gacqaHgpGAdaWgaaWcbaGaamOAaaqabaaa kiaawEa7caGLiWoacqGHijYUdaWcaaqaaiaaisdaaeaacaaIZaGaeu iLdqKaeqOXdOgaaiaaiYcaaeaacaaMf8UaaGzbVdqaamaaqahabeWc baGaamOAaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaa0Gaey yeIuoakmaaemaabaGaci4yaiaac+gacaGGZbGaeqOXdO2aaSbaaSqa aiaadQgaaeqaaOGaeyyXIC9aaubiaeqaleqabaGaaGOmaaGcbaGaci 4CaiaacMgacaGGUbaaaiabeA8aQnaaBaaaleaacaWGQbaabeaaaOGa ay5bSlaawIa7aiabgIKi7oaalaaabaGaaGinaaqaaiaaiodacqqHuo arcqaHgpGAaaGaaGOlaaaaaaa@12B6@ (21)

 Подставляя полученные асимптотические приближения (21) в неравенства (20), получим следующие асимптотические оценки для ошибок восстановления компонент вектора скорости в случае линейного изменения горизонтального ветра вдоль оси OX MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaaaa@3372@ :

          u * u 0 1 cosϵ 4 π+Δφ δ 1+ Δφ 4 + α u r 0 cosϵ 2 3 + Δφ 4 + 1 3 α v r 0 cosϵ , v * v 0 1 cosϵ 4 π δ+ 1 3 α u r 0 cosϵ+ 1 3 α v r 0 cosϵ , w * w 0 1 sinϵ δ+ α u r 0 cosϵ 1 2 + Δφ 2π + 1 π α v r 0 cosϵ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakqaabeqaamaaemaabaGaamyDamaaCaaale qabaGaaGOkaaaakiabgkHiTiaadwhadaWgaaWcbaGaaGimaaqabaaa kiaawEa7caGLiWoacaaMc8+efv3ySLgznfgDOjdaryqr1ngBPrginf gDObcv39gaiqaacqWFYjcIdaWcaaqaaiaaigdaaeaaciGGJbGaai4B aiaacohatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGqbci ab+v=aYdaacqGHflY1daWcaaqaaiaaisdaaeaacqaHapaCcqGHRaWk cqqHuoarcqaHgpGAaaWaaeWaaeaacqaH0oazdaqadaqaaiaaigdacq GHRaWkdaWcaaqaaiabfs5aejabeA8aQbqaaiaaisdaaaaacaGLOaGa ayzkaaGaey4kaSYaaqWaaeaacqaHXoqydaWgaaWcbaGaamyDaaqaba aakiaawEa7caGLiWoacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaci4y aiaac+gacaGGZbGae4x9di=aaeWaaeaadaWcaaqaaiaaikdaaeaaca aIZaaaaiabgUcaRmaalaaabaGaeuiLdqKaeqOXdOgabaGaaGinaaaa aiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIZaaaam aaemaabaGaeqySde2aaSbaaSqaaiaadAhaaeqaaaGccaGLhWUaayjc SdGaamOCamaaBaaaleaacaaIWaaabeaakiGacogacaGGVbGaai4Cai ab+v=aYdGaayjkaiaawMcaaiaaiYcaaeaadaabdaqaaiaadAhadaah aaWcbeqaaiaaiQcaaaGccqGHsislcaWG2bWaaSbaaSqaaiaaicdaae qaaaGccaGLhWUaayjcSdGaaGPaVlab=jNiioaalaaabaGaaGymaaqa aiGacogacaGGVbGaai4Caiab+v=aYdaacqGHflY1daWcaaqaaiaais daaeaacqaHapaCaaWaaeWaaeaacqaH0oazcqGHRaWkdaWcaaqaaiaa igdaaeaacaaIZaaaamaaemaabaGaeqySde2aaSbaaSqaaiaadwhaae qaaaGccaGLhWUaayjcSdGaamOCamaaBaaaleaacaaIWaaabeaakiGa cogacaGGVbGaai4Caiab+v=aYlabgUcaRmaalaaabaGaaGymaaqaai aaiodaaaWaaqWaaeaacqaHXoqydaWgaaWcbaGaamODaaqabaaakiaa wEa7caGLiWoacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaci4yaiaac+ gacaGGZbGae4x9dipacaGLOaGaayzkaaGaaGilaaqaamaaemaabaGa am4DamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadEhadaWgaaWcba GaaGimaaqabaaakiaawEa7caGLiWoacaaMc8Uae8NCIG4aaSaaaeaa caaIXaaabaGaci4CaiaacMgacaGGUbGae4x9dipaamaabmaabaGaeq iTdqMaey4kaSYaaqWaaeaacqaHXoqydaWgaaWcbaGaamyDaaqabaaa kiaawEa7caGLiWoacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaci4yai aac+gacaGGZbGae4x9di=aaeWaaeaadaWcaaqaaiaaigdaaeaacaaI YaaaaiabgUcaRmaalaaabaGaeuiLdqKaeqOXdOgabaGaaGOmaiabec 8aWbaaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiaaigdaaeaacqaH apaCaaWaaqWaaeaacqaHXoqydaWgaaWcbaGaamODaaqabaaakiaawE a7caGLiWoacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaci4yaiaac+ga caGGZbGae4x9dipacaGLOaGaayzkaaGaaGOlaaaaaa@0541@ (22)

 Переходя в (22) к пределу при Δφ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcqaHgpGAcqGHsgIRcaaIWa aaaa@378B@ , получим предельные асимптотические оценки вида

                                   max u * u 0 1 cosϵ 4 π δ+ 1 3 2 α u + α v r 0 cosϵ , max v * v 0 1 cosϵ 4 π δ+ 1 3 α u + α v r 0 cosϵ , max w * w 0 1 sinϵ δ+ 1 2 α u + 1 π α v r 0 cosϵ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakqaabeqaaiGac2gacaGGHbGaaiiEamaaem aabaGaamyDamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadwhadaWg aaWcbaGaaGimaaqabaaakiaawEa7caGLiWoacaaMc8+efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFYjcIdaWcaaqaaiaa igdaaeaaciGGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeXbfv3ySL gzG0uy0Hgip5wzaGqbciab+v=aYdaacqGHflY1daWcaaqaaiaaisda aeaacqaHapaCaaWaaeWaaeaacqaH0oazcqGHRaWkdaWcaaqaaiaaig daaeaacaaIZaaaamaabmaabaGaaGOmamaaemaabaGaeqySde2aaSba aSqaaiaadwhaaeqaaaGccaGLhWUaayjcSdGaey4kaSYaaqWaaeaacq aHXoqydaWgaaWcbaGaamODaaqabaaakiaawEa7caGLiWoaaiaawIca caGLPaaacaWGYbWaaSbaaSqaaiaaicdaaeqaaOGaci4yaiaac+gaca GGZbGae4x9dipacaGLOaGaayzkaaGaaGilaaqaaiGac2gacaGGHbGa aiiEamaaemaabaGaamODamaaCaaaleqabaGaaGOkaaaakiabgkHiTi aadAhadaWgaaWcbaGaaGimaaqabaaakiaawEa7caGLiWoacaaMc8Ua e8NCIG4aaSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbGae4x9di paaiabgwSixpaalaaabaGaaGinaaqaaiabec8aWbaadaqadaqaaiab es7aKjabgUcaRmaalaaabaGaaGymaaqaaiaaiodaaaWaaeWaaeaada abdaqaaiabeg7aHnaaBaaaleaacaWG1baabeaaaOGaay5bSlaawIa7 aiabgUcaRmaaemaabaGaeqySde2aaSbaaSqaaiaadAhaaeqaaaGcca GLhWUaayjcSdaacaGLOaGaayzkaaGaamOCamaaBaaaleaacaaIWaaa beaakiGacogacaGGVbGaai4Caiab+v=aYdGaayjkaiaawMcaaiaaiY caaeaaciGGTbGaaiyyaiaacIhadaabdaqaaiaadEhadaahaaWcbeqa aiaaiQcaaaGccqGHsislcaWG3bWaaSbaaSqaaiaaicdaaeqaaaGcca GLhWUaayjcSdGaaGPaVlab=jNiioaalaaabaGaaGymaaqaaiGacoha caGGPbGaaiOBaiab+v=aYdaadaqadaqaaiabes7aKjabgUcaRmaabm aabaWaaSaaaeaacaaIXaaabaGaaGOmaaaadaabdaqaaiabeg7aHnaa BaaaleaacaWG1baabeaaaOGaay5bSlaawIa7aiabgUcaRmaalaaaba GaaGymaaqaaiabec8aWbaadaabdaqaaiabeg7aHnaaBaaaleaacaWG 2baabeaaaOGaay5bSlaawIa7aaGaayjkaiaawMcaaiaadkhadaWgaa WcbaGaaGimaaqabaGcciGGJbGaai4BaiaacohacqGF1pG8aiaawIca caGLPaaacaaIUaaaaaa@E0FC@ (23)

 Таким образом, если компоненты горизонтальной скорости ветра имеют градиент (называемый сдвигом ветра), ошибка восстановления компонент скорости ветра увеличивается пропорционально значениям градиента. Градиент боковой составлющей скорости ветра α v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaabdaqaaiabeg7aHnaaBaaaleaaca WG2baabeaaaOGaay5bSlaawIa7aaaa@37B3@  оказывает одинаковое влияние на точность восстановления горизонтальных компонент, а градиент продольной составляющей оказывает большее влияние на ошибку ее восстановления. Таким образом, продольная составляющая скорости ветра восстанавливается с меньшей точностью при наличии градиента горизонтального ветра в продольном направлении.

Если ввести в рассмотрение параметры

                                                            Δu= α u r 0 ,Δv= α v r 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWG1bGaaGypamaaemaaba GaeqySde2aaSbaaSqaaiaadwhaaeqaaaGccaGLhWUaayjcSdGaeyyX ICTaamOCamaaBaaaleaacaaIWaaabeaakiaaiYcacaaMf8UaaGzbVl abfs5aejaadAhacaaI9aWaaqWaaeaacqaHXoqydaWgaaWcbaGaamOD aaqabaaakiaawEa7caGLiWoacqGHflY1caWGYbWaaSbaaSqaaiaaic daaeqaaaaa@501D@

 приращений горизонтальных компонент скорости ветра на дистанции r 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbWaaSbaaSqaaiaaicdaaeqaaa aa@339E@ , то соотношения (23) можно переписать в виде

                                       max u * u 0 1 cosϵ 4 π δ+ 1 3 2Δu+Δv cosϵ , max v * v 0 1 cosϵ 4 π δ+ 1 3 Δu+Δv cosϵ , max w * w 0 1 sinϵ δ+ 1 2 Δu+ 1 π Δv cosϵ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakqaabeqaaiGac2gacaGGHbGaaiiEamaaem aabaGaamyDamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadwhadaWg aaWcbaGaaGimaaqabaaakiaawEa7caGLiWoacaaMc8+efv3ySLgznf gDOjdaryqr1ngBPrginfgDObcv39gaiqaacqWFYjcIdaWcaaqaaiaa igdaaeaaciGGJbGaai4BaiaacohatuuDJXwAK1uy0HwmaeXbfv3ySL gzG0uy0Hgip5wzaGqbciab+v=aYdaacqGHflY1daWcaaqaaiaaisda aeaacqaHapaCaaWaaeWaaeaacqaH0oazcqGHRaWkdaWcaaqaaiaaig daaeaacaaIZaaaamaabmaabaGaaGOmaiabfs5aejaadwhacqGHRaWk cqqHuoarcaWG2baacaGLOaGaayzkaaGaci4yaiaac+gacaGGZbGae4 x9dipacaGLOaGaayzkaaGaaGilaaqaaiGac2gacaGGHbGaaiiEamaa emaabaGaamODamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadAhada WgaaWcbaGaaGimaaqabaaakiaawEa7caGLiWoacaaMc8Uae8NCIG4a aSaaaeaacaaIXaaabaGaci4yaiaac+gacaGGZbGae4x9dipaaiabgw SixpaalaaabaGaaGinaaqaaiabec8aWbaadaqadaqaaiabes7aKjab gUcaRmaalaaabaGaaGymaaqaaiaaiodaaaWaaeWaaeaacqqHuoarca WG1bGaey4kaSIaeuiLdqKaamODaaGaayjkaiaawMcaaiGacogacaGG VbGaai4Caiab+v=aYdGaayjkaiaawMcaaiaaiYcaaeaaciGGTbGaai yyaiaacIhadaabdaqaaiaadEhadaahaaWcbeqaaiaaiQcaaaGccqGH sislcaWG3bWaaSbaaSqaaiaaicdaaeqaaaGccaGLhWUaayjcSdGaaG PaVlab=jNiioaalaaabaGaaGymaaqaaiGacohacaGGPbGaaiOBaiab +v=aYdaadaqadaqaaiabes7aKjabgUcaRmaabmaabaWaaSaaaeaaca aIXaaabaGaaGOmaaaacqqHuoarcaWG1bGaey4kaSYaaSaaaeaacaaI XaaabaGaeqiWdahaaiabfs5aejaadAhaaiaawIcacaGLPaaaciGGJb Gaai4BaiaacohacqGF1pG8aiaawIcacaGLPaaacaaIUaaaaaa@C5E1@

 

Полученные оценки (23) позволяют также оценить влияние неточности вертикального позиционирования лидара на качество восстановления компонент скорости ветра. Действительно, пусть измерения скорости ветра выполняются на высоте h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObaaaa@32AE@ . Будем предполагать, что ось конуса сканирования отклонена от вертикальной оси в плоскости OXZ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamiwaiaadQfaaaa@3451@ . Отклонение оси конуса сканирования на угол θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH4oqCaaa@3377@  от вертикали приведет к тому, что высота j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  -й точки измерения будет отличаться от высоты точки, лежащей на оси конуса сканирования и удаленной от его вершины на расстояние h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObaaaa@32AE@ , на величину

                                                              Δ h j =hsinϵsinθcos φ j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaWGObWaaSbaaSqaaiaadQ gaaeqaaOGaaGypaiaadIgacqGHflY1ciGGZbGaaiyAaiaac6gatuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabciab=v=aYlabgw SixlGacohacaGGPbGaaiOBaiabeI7aXjabgwSixlGacogacaGGVbGa ai4CaiabeA8aQnaaBaaaleaacaWGQbaabeaakiaai6caaaa@5798@

 Если на высоте h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGObaaaa@32AE@  компоненты скорости ветра линейно изменяются с высотой

                              u(h+Δh)=u(h)+ β u (h)Δh,v(h+Δh)=v(h)+ β v (h)Δh, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIgacqGHRaWkcq qHuoarcaWGObGaaGykaiaai2dacaWG1bGaaGikaiaadIgacaaIPaGa ey4kaSIaeqOSdi2aaSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIgaca aIPaGaeuiLdqKaamiAaiaaiYcacaaMf8UaamODaiaaiIcacaWGObGa ey4kaSIaeuiLdqKaamiAaiaaiMcacaaI9aGaamODaiaaiIcacaWGOb GaaGykaiabgUcaRiabek7aInaaBaaaleaacaWG2baabeaakiaaiIca caWGObGaaGykaiabfs5aejaadIgacaaISaaaaa@5A96@

 то измеряемые в j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGQbaaaa@32B0@  -й точке компоненты скорости ветра будут равны

          u j = u 0 + β u (h)hsinϵsinθcos φ j , v j = v 0 + β v (h)hsinϵsinθcos φ j . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadQgaaeqaaO GaaGypaiaadwhadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcqaHYoGy daWgaaWcbaGaamyDaaqabaGccaaIOaGaamiAaiaaiMcacqGHflY1ca WGObGaeyyXICTaci4CaiaacMgacaGGUbWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiqGacqWF1pG8cqGHflY1ciGGZbGaaiyAai aac6gacqaH4oqCcqGHflY1ciGGJbGaai4BaiaacohacqaHgpGAdaWg aaWcbaGaamOAaaqabaGccaaISaGaaGzbVlaadAhadaWgaaWcbaGaam OAaaqabaGccaaI9aGaamODamaaBaaaleaacaaIWaaabeaakiabgUca Riabek7aInaaBaaaleaacaWG2baabeaakiaaiIcacaWGObGaaGykai abgwSixlaadIgacqGHflY1ciGGZbGaaiyAaiaac6gacqWF1pG8cqGH flY1ciGGZbGaaiyAaiaac6gacqaH4oqCcqGHflY1ciGGJbGaai4Bai aacohacqaHgpGAdaWgaaWcbaGaamOAaaqabaGccaaIUaaaaa@8733@

 Тогда неравенства (23) примут вид

                max u * (h) u 0 (h) 1 cosϵ 4 π δ+ 1 6 (2 β u (h) + β v (h) )hsinθsin2ϵ , max v * (h) v 0 (h) 1 cosϵ 4 π δ+ 1 6 ( β u (h) + β v (h) )hsinθsin2ϵ , max w * (h) w 0 (h) 1 sinϵ δ+ 1 2 1 2 β u (h) + 1 π β v (h) hsinθsin2ϵ . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakqaabeqaaiGac2gacaGGHbGaaiiEamaaem aabaGaamyDamaaCaaaleqabaGaaGOkaaaakiaaiIcacaWGObGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiAai aaiMcaaiaawEa7caGLiWoacaaMc8+efv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFYjcIdaWcaaqaaiaaigdaaeaaciGGJb Gaai4BaiaacohatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wz aGqbciab+v=aYdaacqGHflY1daWcaaqaaiaaisdaaeaacqaHapaCaa WaaeWaaeaacqaH0oazcqGHRaWkdaWcaaqaaiaaigdaaeaacaaI2aaa aiaaiIcacaaIYaWaaqWaaeaacqaHYoGydaWgaaWcbaGaamyDaaqaba GccaaIOaGaamiAaiaaiMcaaiaawEa7caGLiWoacqGHRaWkdaabdaqa aiabek7aInaaBaaaleaacaWG2baabeaakiaaiIcacaWGObGaaGykaa Gaay5bSlaawIa7aiaaiMcacaWGObGaci4CaiaacMgacaGGUbGaeqiU deNaci4CaiaacMgacaGGUbGaaGOmaiab+v=aYdGaayjkaiaawMcaai aaiYcaaeaaciGGTbGaaiyyaiaacIhadaabdaqaaiaadAhadaahaaWc beqaaiaaiQcaaaGccaaIOaGaamiAaiaaiMcacqGHsislcaWG2bWaaS baaSqaaiaaicdaaeqaaOGaaGikaiaadIgacaaIPaaacaGLhWUaayjc SdGaaGPaVlab=jNiioaalaaabaGaaGymaaqaaiGacogacaGGVbGaai 4Caiab+v=aYdaacqGHflY1daWcaaqaaiaaisdaaeaacqaHapaCaaWa aeWaaeaacqaH0oazcqGHRaWkdaWcaaqaaiaaigdaaeaacaaI2aaaai aaiIcadaabdaqaaiabek7aInaaBaaaleaacaWG1baabeaakiaaiIca caWGObGaaGykaaGaay5bSlaawIa7aiabgUcaRmaaemaabaGaeqOSdi 2aaSbaaSqaaiaadAhaaeqaaOGaaGikaiaadIgacaaIPaaacaGLhWUa ayjcSdGaaGykaiaadIgaciGGZbGaaiyAaiaac6gacqaH4oqCciGGZb GaaiyAaiaac6gacaaIYaGae4x9dipacaGLOaGaayzkaaGaaGilaaqa aiGac2gacaGGHbGaaiiEamaaemaabaGaam4DamaaCaaaleqabaGaaG OkaaaakiaaiIcacaWGObGaaGykaiabgkHiTiaadEhadaWgaaWcbaGa aGimaaqabaGccaaIOaGaamiAaiaaiMcaaiaawEa7caGLiWoacaaMc8 Uae8NCIG4aaSaaaeaacaaIXaaabaGaci4CaiaacMgacaGGUbGae4x9 dipaamaabmaabaGaeqiTdqMaey4kaSYaaSaaaeaacaaIXaaabaGaaG OmaaaadaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaWaaqWaaeaa cqaHYoGydaWgaaWcbaGaamyDaaqabaGccaaIOaGaamiAaiaaiMcaai aawEa7caGLiWoacqGHRaWkdaWcaaqaaiaaigdaaeaacqaHapaCaaWa aqWaaeaacqaHYoGydaWgaaWcbaGaamODaaqabaGccaaIOaGaamiAai aaiMcaaiaawEa7caGLiWoaaiaawIcacaGLPaaacaWGObGaci4Caiaa cMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaaGOmaiab+v=aYd GaayjkaiaawMcaaiaai6caaaaa@0B24@ (24)

 В частном случае, когда горизонтальный ветер возрастает с высотой без изменения направления, т.е. β u (h)= β v (h)=β(h) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGydaWgaaWcbaGaamyDaaqaba GccaaIOaGaamiAaiaaiMcacaaI9aGaeqOSdi2aaSbaaSqaaiaadAha aeqaaOGaaGikaiaadIgacaaIPaGaaGypaiabek7aIjaaiIcacaWGOb GaaGykaaaa@4189@ , соотношения (24) примут вид

                              max u * (h) u 0 (h) 1 cosϵ 4 π δ+ c u β(h) hsinθsin2ϵ , max v * (h) v 0 (h) 1 cosϵ 4 π δ+ c v β(h) hsinθsin2ϵ , max w * (h) w 0 (h) 1 sinϵ δ+ c w β(h) hsinθsin2ϵ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakqaabeqaaiGac2gacaGGHbGaaiiEamaaem aabaGaamyDamaaCaaaleqabaGaaGOkaaaakiaaiIcacaWGObGaaGyk aiabgkHiTiaadwhadaWgaaWcbaGaaGimaaqabaGccaaIOaGaamiAai aaiMcaaiaawEa7caGLiWoacaaMc8+efv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiqaacqWFYjcIdaWcaaqaaiaaigdaaeaaciGGJb Gaai4BaiaacohatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wz aGqbciab+v=aYdaacqGHflY1daWcaaqaaiaaisdaaeaacqaHapaCaa WaaeWaaeaacqaH0oazcqGHRaWkcaWGJbWaaSbaaSqaaiaadwhaaeqa aOWaaqWaaeaacqaHYoGycaaIOaGaamiAaiaaiMcaaiaawEa7caGLiW oacaWGObGaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGG UbGaaGOmaiab+v=aYdGaayjkaiaawMcaaiaaiYcaaeaaciGGTbGaai yyaiaacIhadaabdaqaaiaadAhadaahaaWcbeqaaiaaiQcaaaGccaaI OaGaamiAaiaaiMcacqGHsislcaWG2bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIgacaaIPaaacaGLhWUaayjcSdGaaGPaVlab=jNiioaa laaabaGaaGymaaqaaiGacogacaGGVbGaai4Caiab+v=aYdaacqGHfl Y1daWcaaqaaiaaisdaaeaacqaHapaCaaWaaeWaaeaacqaH0oazcqGH RaWkcaWGJbWaaSbaaSqaaiaadAhaaeqaaOWaaqWaaeaacqaHYoGyca aIOaGaamiAaiaaiMcaaiaawEa7caGLiWoacaWGObGaci4CaiaacMga caGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaaGOmaiab+v=aYdGaay jkaiaawMcaaiaaiYcaaeaaciGGTbGaaiyyaiaacIhadaabdaqaaiaa dEhadaahaaWcbeqaaiaaiQcaaaGccaaIOaGaamiAaiaaiMcacqGHsi slcaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIgacaaIPaaa caGLhWUaayjcSdGaaGPaVlab=jNiioaalaaabaGaaGymaaqaaiGaco hacaGGPbGaaiOBaiab+v=aYdaadaqadaqaaiabes7aKjabgUcaRiaa dogadaWgaaWcbaGaam4DaaqabaGcdaabdaqaaiabek7aIjaaiIcaca WGObGaaGykaaGaay5bSlaawIa7aiaadIgaciGGZbGaaiyAaiaac6ga cqaH4oqCciGGZbGaaiyAaiaac6gacaaIYaGae4x9dipacaGLOaGaay zkaaGaaGilaaaaaa@E4AA@

 где

                                                      c u = 1 2 , c v = 1 3 , c w = 1 2 1 2 + 1 π , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaadwhaaeqaaO GaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGilaiaaywW7caWG JbWaaSbaaSqaaiaadAhaaeqaaOGaaGypamaalaaabaGaaGymaaqaai aaiodaaaGaaGilaiaaywW7caWGJbWaaSbaaSqaaiaadEhaaeqaaOGa aGypamaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaai aaigdaaeaacaaIYaaaaiabgUcaRmaalaaabaGaaGymaaqaaiabec8a WbaaaiaawIcacaGLPaaacaaISaaaaa@4AAF@

 причем c v < c w < c u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbWaaSbaaSqaaiaadAhaaeqaaO GaaGipaiaadogadaWgaaWcbaGaam4DaaqabaGccaaI8aGaam4yamaa BaaaleaacaWG1baabeaaaaa@398E@ .

7. Заключение.

В рамках данной работы были получены аналитические асимптотические оценки точности определения компонент вектора скорости ветра по данным измерений лазерного измерителя профиля ветра в режиме сканирования VAD (Velocity Azimuth Display).

Оценки были получены для максимальной ошибки восстановления компонент вектора скорости ветра в случае однородного поля ветра и для случая неоднородного ветровогополя, когда горизонтальные компоненты линейно изменяются вдоль некоторого направления. Показано, что в случае наличия градиента скорости ветра (сдвига ветра по скорости), ошибка восстановления компонент горизонтальной скорости ветра пропорциональна значению градиента. При этом составляющая ветра, перпендикулярная направлению градиента, рассчитывается с большей точностью.

Показано, что оценки качества восстановления компонент вектора скорости ветра в случае неоднородного ветрового поля могут быть адаптированы для оценки влияния погрешности вертикального позиционирования устройства сканирования на точность восстановления характеристик профиля ветра.

Кроме того, рассмотрен случай и получены соответствующие асимптотические оценки при отсутствии измерений в некотором секторе углов азимута. Показано, что при отсутствии измерений в некотором секторе, точность определения компоненты скорости ветра, ортогональной биссектрисе этого сектора, не изменяется по сравнению со случаем полных данных. В то же время точность восстановления компоненты скорости, направленной вдоль биссектрисы сектора пропущенных данных, ухудшается.

×

About the authors

Nikolay A. Baranov

Вычислительный центр им. А. А. Дородницына ФИЦ Информатика и управление РАН

Author for correspondence.
Email: baranov@ians.aero
Russian Federation, Москва

References

  1. Бахвалов Н. С. Численные методы (анализ, алгебра, обыкновенные дифференциальные уравнения). — М.: Наука, 1975.
  2. Зорич В. А. Математический анализ. Ч. 1. — М.: Изд-во МЦНМО, 20112.
  3. Achtert P., Brooks I. M., Brooks B. J., Moat B. I., Prytherch J., Persson P. O. G., Tjernström M. Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar// Atm. Meas. Tech. — 2015. — № 8. — P. 4993–5007.
  4. Banakh V. A., Smalikho I. N. Measurements of turbulent energy dissipation rate with a CW Doppler lidar in the atmospheric boundary layer// J. Atm. Ocean. Techn. — 1999. — 16. — P. 1044–1061.
  5. Baranov N. Algorithms of 3d wind field reconstructing by lidar remote sensing data// in: Numerical Computations: Theory and Algorithms. — Crotone: Springer, 2020. — 11974. — P. 306–313.
  6. Benjamin S. G., Schwartz B. E., Szoke E. J., Koch S. E. The value of wind profiler data in U.S. Weather forecasting// Bull. Am. Meteorol. Soc. — 2004. — 85, № 12. — P. 1871–1886.
  7. Bingöl F., Mann J., Foussekis D. Conically scanning lidar error in complex terrain// Meteorol. Z. — 2009. — 18. — P. 189–195.
  8. Buzdugan L., Stefan S. A comparative study of sodar, lidar wind measurements and aircraft derived wind observations// Roman. J. Physics. — 2020. — 65. — P. 1–15.
  9. Chen C. Y., Yeh N. C., Lin C. Y. Data assimilation of Doppler wind lidar for the extreme rainfall event prediction over Northern Taiwan: A case study// Atmosphere. — 2022. — 13, № 6. — P. 987.
  10. Davies F., Collier C. G., Bozier K. E., Pearson G. N. On the accuracy of retrieved wind information from doppler lidar observations// Quart. J. Roy. Meteorol. Soc. — 2003. — 129. — P. 321–334.
  11. Filioglou M., Preissler J., Troiville A., Thobois L., Vakkari V., Auvinen M., Fortelius C., Gregow E., Hämäläinen K., Hellsten A., Järvi L., O’Connor E., Schönach D., Hirsikko A. Evaluating modelled winds over an urban area using ground-based Doppler lidar observations// Meteorol. Appl. — 2022. — 29, № 2. — P. 2052.
  12. Guo F., Schlipf D., Cheng P. W. Evaluation of lidar-assisted wind turbine control under various turbulence characteristics// Wind Energy Sci. — 2023. — 8, № 2. — P. 149–171.
  13. Kim A. A., Orlov A. V., Luginya V. S., Baranov N. A. About the methodology and tools for meteo lidar metrological support// Proc. 26 Int. Symp. on Atmospheric and Ocean Optics, Atmospheric Physics (Moscow, June29 — July 3, 2020). — SPIE, 2020. — 11560. — P. 457–467.
  14. Kumer V. M., Reuder J., Furevik B. R. A comparison of lidar and radiosonde wind measurements// Energy Proc. — 2014. — 53. — P. 214–220.
  15. Lane S. Barlow J., Wood C. An assessment of a three-beam doppler lidar wind profiling method for use in urban areas// J. Wind Eng. Industr. Aerodyn. — 2013. — 119. — P. 53–59.
  16. Lang S., McKeogh E. Lidar and sodar measurements of wind speed and direction in upland terrain for wind energy purposes// Remote Sensing. — 2011. — № 3. — P. 1871–1901.
  17. LIDAR Applications to Wind Energy Technology Assessment. — EPRI, 2011.
  18. Lin H., Sun J., Weckwerth T. M., Joseph E., Kay Assimilation of New York State Mesonet Surface and Profiler Data for the 21 June 2021 Convective Event// Mon. Weather Rev. — 2023. — 151. — P. 485–507.
  19. Lindelöw P. J. P. Upwind D1. Uncertainties in wind assessment with LIDAR. — Denmark: Danmarks Tekniske Universitet, 2009.
  20. Liu Z., Barlow J. F., Chan P. W., Fung J. C. H., Li Y., Ren C., Mak H. W. L., Ng E. A review of progress and applications of pulsed doppler wind lidars// Remote Sensing. — 2019. — 11, № 21. — P. 2522.
  21. Liu H., Yuan L., Fan C., Liu F., Zhang X., Zhu X., Liu J., Zhu X., Chen W. Performance validation on an all-fiber 1.54-µ m pulsed coherent doppler lidar for wind-profile measurement// Opt. Eng. — 2020. — 59. — P. 1–11.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Wind speed measurement scheme

Download (252KB)
3. Fig. 2. Dependencies of the parameters of estimates of the maximum recovery error

Download (346KB)
4. Fig. 3. Graph of the coefficient characterizing the accuracy of restoring the wind velocity component along the bisector of the missing data sector.

Download (264KB)

Copyright (c) 2024 Баранов Н.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».