Some tensor invariants of geodesic, potential, and dissipative systems on the tangent bundles of two-dimensional manifolds

Cover Page

Cite item

Full Text

Abstract

In this paper, we construct tensor invariants (differential forms) of homogeneous dynamical systems on the tangent bundles of smooth two-dimensional manifolds. We establish the relationship between the presence of such invariants and the existence of complete sets of first integrals, which are necessary for integrating geodesic, potential, and dissipative systems. Due to force fields, systems considered are dissipative; they are generalizations of systems considered earlier.

About the authors

M. V. Shamolin

Московский государственный университет имени М. В. Ломоносова

Author for correspondence.
Email: shamolin.maxim@yandex.ru
Russian Federation, Москва

References

  1. Бурбаки Н. Интегрирование. Меры, интегрирование мер. — М.: Наука, 1967.
  2. Бурбаки Н. Интегрирование. Меры на локально компактных пространствах. Продолжение меры. Интегрирование мер. Меры на отделимых пространствах. — М.: Наука, 1977.
  3. Вейль Г. Симметрия. — М.: URSS, 2007.
  4. Георгиевский Д. В., Шамолин М. В. Кинематика и геометрия масс твердого тела с неподвижной точкой в Rn// Докл. РАН. — 2001. — 380, № 1. — С. 47–50.
  5. Георгиевский Д. В., Шамолин М. В. Обобщенные динамические уравнения Эйлера для твердого тела с неподвижной точкой в Rn// Докл. РАН. — 2002. — 383, № 5. — С. 635–637.
  6. Георгиевский Д. В., Шамолин М. В. Первые интегралы уравнений движения обобщенного гироскопа в Rn// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 2003. — 5. — С. 37–41.
  7. Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. — М.: Наука, 1979.
  8. Ерошин В. А., Самсонов В. А., Шамолин М. В. Модельная задача о торможении тела в сопротивляющейся среде при струйном обтекании// Изв. РАН. Мех. жидк. газа. — 1995. — № 3. — С. 23–27.
  9. Иванова Т. А. Об уравнениях Эйлера в моделях теоретической физики// Мат. заметки. — 1992. — 52,№ 2. — С. 43–51.
  10. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. — М.: Наука, 1971.
  11. Клейн Ф. Неевклидова геометрия. — М.: URSS, 2017.
  12. Козлов В. В. Интегрируемость и неинтегрируемость в гамильтоновой механике// Усп. мат. наук. —1983. — 38, № 1. — С. 3–67.
  13. Козлов В. В. Рациональные интегралы квазиоднородных динамических систем// Прикл. мат. мех. —2015. — 79, № 3. — С. 307–316.
  14. Козлов В. В. Тензорные инварианты и интегрирование дифференциальных уравнений// Усп. мат. наук. — 2019. — 74, № 1 (445). — С. 117–148.
  15. Колмогоров А. Н. О динамических системах с интегральным инвариантом на торе// Докл. АН СССР.— 1953. — 93, № 5. — С. 763–766.
  16. Походня Н. В., Шамолин М. В. Новый случай интегрируемости в динамике многомерного тела//Вестн. СамГУ. Естественнонауч. сер. — 2012. — 9, № 100. — С. 136–150.
  17. Походня Н. В., Шамолин М. В. Некоторые условия интегрируемости динамических систем в транс-цендентных функциях// Вестн. СамГУ. Естественнонауч. сер. — 2013. — 9/1, № 110. — С. 35–41.
  18. Походня Н. В., Шамолин М. В. Интегрируемые системы на касательном расслоении к многомерной сфере// Вестн. СамГУ. Естественнонауч. сер. — 2014. — 7, № 118. — С. 60–69.
  19. Самсонов В. А., Шамолин М. В. К задаче о движении тела в сопротивляющейся среде// Вестн. Моск. ун-та. Сер. 1. Мат. мех. — 1989. — № 3. — С. 51–54.
  20. Трофимов В. В. Уравнения Эйлера на конечномерных разрешимых группах Ли// Изв. АН СССР. Сер. мат. — 1980. — 44, № 5. — С. 1191–1199.
  21. Трофимов В. В. Симплектические структуры на группах автоморфизмов симметрических пространств// Вестн. Моск. ун-та. Сер. 1. Мат. Мех. — 1984. — № 6. — С. 31–33.
  22. Трофимов В. В., Фоменко А. Т. Методика построения гамильтоновых потоков на симметрических пространствах и интегрируемость некоторых гидродинамических систем// Докл. АН СССР. — 1980.— 254, № 6. — С. 1349–1353.
  23. Трофимов В. В., Шамолин М. В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем// Фундам. прикл. мат. — 2010. — 16, № 4. — С. 3–229.
  24. Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1987.
  25. Шамолин М. В. Об интегрируемости в трансцендентных функциях// Усп. мат. наук. — 1998. — 53,№ 3. — С. 209-–210.
  26. Шамолин М. В. Новые интегрируемые по Якоби случаи в динамике твердого тела, взаимодействую-щего со средой// Докл. РАН. — 1999. — 364, № 5. — С. 627–629.
  27. Шамолин М. В. Интегрируемость по Якоби в задаче о движении четырехмерного твердого тела в сопротивляющейся среде// Докл. РАН. — 2000. — 375, № 3. — С. 343–346.
  28. Шамолин М. В. Об интегрировании некоторых классов неконсервативных систем// Усп. мат. наук. —2002. — 57, № 1. — С. 169–170.
  29. Шамолин М. В. Об одном интегрируемом случае уравнений динамики на so(4) ×R4// Усп. мат. наук.— 2005. — 60, № 6. — С. 233–234.
  30. Шамолин М. В. Сопоставление интегрируемых по Якоби случаев плоского и пространственного движения тела в среде при струйном обтекании// Прикл. мат. мех. — 2005. — 69, № 6. — С. 1003–1010.
  31. Шамолин М. В. Случай полной интегрируемости в динамике на касательном расслоении двумерной сферы// Усп. мат. наук. — 2007. — 62, № 5. — С. 169–170.
  32. Шамолин М. В. Новые случаи полной интегрируемости в динамике динамически симметричного четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2009. — 425, № 3. — С. 338–342.
  33. Шамолин М. В. Случай полной интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Усп. мат. наук. — 2010. — 65, № 1. — С. 189–190.
  34. Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле// Докл. РАН. — 2011. — 437, № 2. — С. 190–193.
  35. Шамолин М. В. Полный список первых интегралов в задаче о движении четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2011. — 440,№ 2. — С. 187–190.
  36. Шамолин М. В. Новый случай интегрируемости в динамике четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2012. — 444, № 5. — С. 506–509.
  37. Шамолин М. В. Новый случай интегрируемости в пространственной динамике твердого тела, взаимодействующего со средой, при учете линейного демпфирования// Докл. РАН. — 2012. — 442,№4.— С. 479—481.
  38. Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсер-вативном поле// Докл. РАН. — 2013. — 453, № 1. — С. 46–49.
  39. Шамолин М. В. Новый случай интегрируемости уравнений динамики на касательном расслоении к трехмерной сфере// Усп. мат. наук. — 2013. — 68, № 5 (413). — С. 185–186.
  40. Шамолин М. В. Полный список первых интегралов динамических уравнений движения четырехмерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН.— 2013. — 449, № 4. — С. 416–419.
  41. Шамолин М. В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования// Докл. РАН. — 2014. — 457, № 5. — С. 542–545.
  42. Шамолин М. В. Интегрируемые системы с переменной диссипацией на касательном расслоении к многомерной сфере и приложения// Фундам. прикл. мат. — 2015. — 20, № 4. — С. 3–231.
  43. Шамолин М. В. Полный список первых интегралов динамических уравнений движения многомерного твердого тела в неконсервативном поле// Докл. РАН. — 2015. — 461, № 5. — С. 533–536.
  44. Шамолин М. В. Полный список первых интегралов уравнений движения многомерного твердого тела в неконсервативном поле при наличии линейного демпфирования// Докл. РАН. — 2015. — 464,№6.— С. 688–692.
  45. Шамолин М. В. Интегрируемые неконсервативные динамические системы на касательном расслоении к многомерной сфере// Диффер. уравн. — 2016. — 52, № 6. — С. 743–759.
  46. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. — 2017. — 475, № 5. — С. 519–523.
  47. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении к многомерной сфере// Докл. РАН. — 2017. — 474, № 2. — С. 177–181.
  48. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении трех-мерного многообразия// Докл. РАН. — 2017. — 477, № 2. — С. 168–172.
  49. Шамолин М. В. Интегрируемые динамические системы с конечным числом степеней свободы с диссипацией// Пробл. мат. анал. — 2018. — № 95. — С. 79–101.
  50. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении многомерного многообразия// Докл. РАН. — 2018. — 482, № 5. — С. 527–533.
  51. Шамолин М. В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия// Докл. РАН. — 2018. — 479, № 3. — С. 270–276.
  52. Шамолин М. В. Новые случаи интегрируемых систем девятого порядка с диссипацией// Докл. РАН.— 2019. — 489, № 6. — С. 592–598.
  53. Шамолин М. В. Новые случаи интегрируемых систем пятого порядка с диссипацией// Докл. РАН. —2019. — 485, № 5. — С. 583–587.
  54. Шамолин М. В. Новые случаи интегрируемых систем седьмого порядка с диссипацией// Докл. РАН.— 2019. — 487, № 4. — С. 381–386.
  55. Шамолин М. В. Новые случаи интегрируемых систем нечетного порядка с диссипацией// Докл. РАН. Мат. информ. процессы управл. — 2020. — 491, № 1. — С. 95–101.
  56. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении двумерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 494,№ 1. — С. 105–111.
  57. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении трехмерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2020. — 495,№ 1. — С. 84–90.
  58. Шамолин М. В. Новые случаи однородных интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2021. —497, № 1. — С. 23–30.
  59. Шамолин М. В. Новые случаи интегрируемости геодезических, потенциальных и диссипативных систем на касательном расслоении конечномерного многообразия// Докл. РАН. Мат. информ. процессы управл. — 2021. — 500, № 1. — С. 78–86.
  60. Poincar´eH.Calcul des probabilit´es. — Paris: Gauthier-Villars, 1912.
  61. Shamolin M. V. Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium// J. Math. Sci. — 2002. — 110, № 2. — P. 2528–2557.
  62. Tikhonov A. A., Yakovlev A. B. On dependence of equilibrium characteristics of the space tethered system on environmental parameters// Int.J.PlasmaEnv.Sci.Techn..—13, № 1. — P. 49–52.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Шамолин М.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».