Spontaneous clustering in markov chains. I. Fractal dust
- Authors: Uchaikin V.V.1
-
Affiliations:
- Ульяновский государственный университет
- Issue: Vol 220 (2023)
- Pages: 125-144
- Section: Статьи
- URL: https://journal-vniispk.ru/2782-4438/article/view/269960
- DOI: https://doi.org/10.36535/0233-6723-2023-220-125-144
- ID: 269960
Cite item
Full Text
Abstract
The review is devoted to the description of the statistical properties of a set of isolated points randomly distributed in space, which are nodes of one (or a family of independent) realizations of a Markov chain. The purpose of the analysis of this model is to study the conditions for the emergence of clusters in the set of these nodes and to describe their characteristics. This (first) part of the review introduces the basic concepts of statistics of point distributions: generating functionals, many-particle densities, factorial moments, Markov chains, correlation functions. The part ends with a description of one-dimensional self-similar (in the statistical sense) sets generated by a Poisson-fractional random process and a demonstration of the clustering phenomenon.
About the authors
V. V. Uchaikin
Ульяновский государственный университет
Author for correspondence.
Email: vuchaikin@gmail.com
Russian Federation
References
- Барышев Ю. В., Теерикорпи П. Фрактальная структура Вселенной. — Нижний Архыз: CAO РАН, 2005.
- Кейз К., Цвайфель П. Линейная теория переноса. — М.: Мир, 1972.
- Невё Ж. Математические основы теории вероятностей. — М.: Мир, 1969.
- Пайтген Х.-О., Рихтер П. Х. Красота фракталов. Образы комплексных динамических систем. — М.: Мир, 1993.
- Репин О. Н., Саичев А. И. Дробный закон Пуассона// Изв. вузов. Радиофизика. — 2000. — 43,№9. — С. 823-826.
- Севастьянов Б. А. Ветвящиеся процессы. — М.: Наука, 1971.
- Пьетронеро Л. (ред.) Фракталы в физике. — М.: Мир, 1988.
- Федер Е. Фракталы. — М.: Мир, 1991.
- Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. — Москва-Ижевск: РХД, 2001.
- Balescu R. Equilibrium and Nonequilibrium Statistical Mechanics. — New York-London-Sydney-Toronto: Wiley, 1975.
- Harris T. E. The Theory of Branching Processe. — Berlin-Göttingen-Heidelberg: Springer-Verlag, 1963.
- Isichenko M. B. Percolation, statistical topography, and transport in random media// Rev. Mod. Phys. — 1992. — 64. — P. 961-1043.
- Jumarie G. Fraction l master equation: non-standard analysis and Liouville-Riemann derivative// Chaos, Solitons and Fractals. — 2001. — 12. — P. 2577-2587.
- Laskin N. Fractional Poisson processes// Commun. Nonlin. Sci. Numer. Simul. — 2003. — 8. — P. 201-213.
- Mandelbrot B. B. Fractals: Form, Chance and Dimension. — San Francisco: W. H. Freeman, 1977.
- Mandelbrot B. B. The Fractal Geometry of Nature. — New York: W. H. Freeman, 1983.
- Stell G. Statistical Mechanics Applied to Random-Media Problems// AMS Lect. Appl. Math. — 1991. — 27. — P. 109-137.
- Takayasu H. Stable distribution and Levy process in fractal turbulence// Progr. Theor. Phys. — 1984. — 72. — P. 471-478.
- Uchaikin V. V. Fractional Derivatives for Physicists and Engineers. Vol. 1. — Berlin-Heidelberg: SpringerVerlag, 2013.
- Uchaikin V., Cahoy D., Sibatov R. Fractional processes: From Poisson to branching one// Int. J. Bifurcation Chaos. — 2008. — 18, № 09. — P. 2717-2725.
- Uchaikin V. V., Zolotarev V. M. Chance and Stability. Stable Distributions and Their Applications. — Netherlands, Utrecht: VSP, 1999.
- Wang Xiao-Tian, Wen Zhi-Xiong Poisson fractional processes// Chaos, Solitons and Fractals. — 2003. — 18, № 1. — P. 169-177.
- Wang Xiao-Tian, Wen Zhi-Xiong, Zhang Shi-Ying Poisson fractional processes, II// Chaos, Solitons and Fractals. — 2006. — 28, № 1. — P. 143-147.
Supplementary files
