Special uniform Vinberg cones and their applications
- Authors: Alekseevskii D.V.1,2
-
Affiliations:
- Институт проблем передачи информации им. А. А. Харкевича РАН
- University of Hradec Kr´alov´e
- Issue: Vol 215 (2022)
- Pages: 3-17
- Section: Статьи
- URL: https://journal-vniispk.ru/2782-4438/article/view/269974
- DOI: https://doi.org/10.36535/0233-6723-2022-215-3-17
- ID: 269974
Cite item
Full Text
Abstract
In this paper, we present basic facts of Vinberg’s theory of homogeneous convex cones, primarily the special Vinberg cones associated with Clifford modules, and their generalization. Applications of the cone theory to differential geometry, physics (including supergravity), information geometry, convex programming, and differential equations are briefly discussed.
Keywords
About the authors
D. V. Alekseevskii
Институт проблем передачи информации им. А. А. Харкевича РАН; University of Hradec Kr´alov´e
Author for correspondence.
Email: dalekseevsky@iitp.ru
Russian Federation, Москва; Czech Republic
References
- Винберг Э. Б. Теория однородных выпуклых конусов// Тр. Моск. мат. о-ва. — 1963. — 12. — С. 303–358.
- Кульбак С. Теория информации и статистика. — М.: Наука, 1967.
- Ченцов Н. Н. Избранные труды. — М.: Ин-т прикл. мат. им. М. В. Келдыша РАН, 2002.
- Алексеевский Д. В. Классификация кватернионных пространств с транзитивной разрешимой группой движений// Изв. АН СССР. Сер. мат. — 1975. — 39, № 2. — С. 315–362.
- Alekseevsky D. V., Cortes V. Classification of N-(super)-extended Poincare algebras and bilinear invariants of the spinor representation of Spin(p, q)// Commun. Math. Phys. — 1997. — 183, № 3. — P. 477–510.
- Alekseevsky D. V., Cortes V. Geometric construction of the r-map: from affine special real to special Kähler manifolds// Commun. Math. Phys. — 2009. — 291, № 2. — P. 579–590.
- Alekseevsky D. V., Cortes V., Mohaupt T. Conification of Kähler and hyper-Kähler manifolds// Commun. Math. Phys. — 2013. — 324, № 2. — P. 637–655.
- Alekseevsky D. V., Cortes V., Dyckmanns M., Mohaupt T., Quaternionic Kähler metrics associated with special Kähler manifolds// J. Geom. Phys. — 2015. — 92. — P. 271–287.
- Amari S. Information Geometry and Its Applications. — Springer, 2016.
- Andreson S. A., Wojnar G. G. Wishard distributions on homogeneous cones// J. Theor. Probab. — 2004.— 17. — P. 781–818.
- Atiah M. F., Bott R., Shapiro A. Clifford modules// Topology. — 1964. — 3. — P. 3–38.
- Boyd S., Vandenberghe L. Convex Optimization. — Cambridge: Cambridge Univ. Press, 2004.
- Cheng C.-Y., Yau S. T. Complete affine hypersurfaces. I. The completeness of affine metrics// Commun. Pure Appl. Math. — 1986. — 34. — P. 839–866.
- Cortés V. Alekseevskian spaces// Differ. Geom. Appl. — 1996. — 6, № 2. — P. 129–168.
- Cortés V. Homogeneous special geometry// Transform. Groups. — 1996. — 1, № 4. — P. 337–373.
- Cortés V., Dyckmanns M., Ju¨ngling M., Lindemann D. A class of cubic hypersurfaces and quaternionic Kahler manifolds of co-homogeneity one/ arXiv: 1701.07882 [math.DG].
- de Wit B., Van Proeyen A. Special geometry, cubic polynomials and homogeneous quaternionic spaces//Commun. Math. Phys. — 1992. — 149. — P. 307–333.
- [F-A]Felice D., Ay N. Divergence functions in information geometry/ arXiv: 1903.02379 [math.DG].
- Felice D., Mancini S., Ay N. Canonical divergence for measuring classical and quantum complexity/ arXiv: 1903.09797 [math.ph] ArXiv 1903.09797, p17.
- Forrester P. J. Octonions in random matrix theory// Proc. Roy. Soc. A. Math. Phys. Eng. Sci. — 2017. —A473. — 2016080.
- Freedman D. Z., van Proeyen A. Supergravity. — Cambridge: Cambridge Univ. Press, 2012.
- Ishi H. Homogeneous cones and their applications to statistics// in: Modern Methods of Multivariate Statistics. — Paris: Hermann, 2014. — P. 135–154.
- Lovrić M., Min-Oo M., Ruh E. A. Multivariate normal distributions parametrized as a Riemannian symmetric space// J. Multivar. Anal. — 2000. — 74, № 1. — P. 36–48.
- Nielsen F., Garcia V. Statistical exponential families: A digest with flash cards/ arXiv: 0911.4863v2 [cs.LG].
- Ohara A. Geodesics for dual connections and means on symmetric cone// Integral Equations Operator Theory. — 2004. — 50. — P. 537–548.
Supplementary files
