Полиномиальные автоморфизмы, квантование и задачи вокруг гипотезы Якобиана. V. Гипотеза Якобиана и проблемы типа Шпехта и Бернсайда

Обложка

Цитировать

Полный текст

Аннотация

Работа является завершающей частью обзора результатов, касающихся квантового подхода к некоторым классическим аспектам некоммутативных алгебр. Первая часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2022. — 213. — С. 110-144. Вторая часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2022. — 214. — С. 107-126. Третья часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2022. — 215. — С. 95-128. Четвертая часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2022. — 216. — С. 153-171.

Об авторах

Андрей Михайлович Елишев

Московский физико-технический институт (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: ame1511@mail.ru
Россия, Москва

Алексей Яковлевич Канель-Белов

Московский физико-технический институт (национальный исследовательский университет)

Email: kanelster@gmail.com
Россия, Москва

Ф. Разавиния

Московский физико-технический институт (национальный исследовательский университет)

Email: farrokh.razavinia@gmail.com
Россия, Москва

Ц.-Т. Юй

Шэньчженьский университет

Email: yujt@hkucc.hku.hk
Китай, Шэньчжень

В. Чжан

Школа математики и статистики, Университет Хуэйчжоу

Email: zhangwc@hzu.edu.cn
Китай, Хуэйчжоу

Список литературы

  1. Abdesselam A. The Jacobian conjecture as a problem of perturbative quantum field theory// Ann. H. Poincare. — 2003. — 4, № 2. — P. 199-215.
  2. Abhyankar S., Moh T. Embedding of the line in the plane// J. Reine Angew. Math. — 1975. — 276. — P. 148-166.
  3. Amitsur S. A. Algebras over infinite fields// Proc. Am. Math. Soc. — 1956. — 7. — P. 35-48.
  4. Amitsur S. A. A general theory of radicals, III. Applications// Am. J. Math. — 1954. — 75. — P. 126-136.
  5. Alev J., Le Bruyn L. Automorphisms of generic 2 by 2 matrices// in: Perspectives in Ring Theory. — Springer, 1988. — P. 69-83.
  6. Amitsur A. S., Levitzki J. Minimal identities for algebras// Proc. Am. Math. Soc. — 1950. — 1.— P. 449-463.
  7. Amitsur A. S., Levitzki J. Remarks on minimal identities for algebras// Proc. Am. Math. Soc. — 1951. — 2. — P. 320-327.
  8. Anick D. J. Limits of tame automorphisms of k [x 1,..., xn]// J. Algebra. — 1983. — 82, № 2. — P. 459-468.
  9. Artamonov V. A. Pro jective metabelian groups and Lie algebras// Izv. Math. — 1978. — 12,№2.— С. 213-223.
  10. Artamonov V. A. Pro jective modules over universal enveloping algebras// Math. USSR Izv. — 1985. — 25, № 3. — С. 429.
  11. Artamonov V. A. Nilpotence, projectivity, decomposability// Sib. Math. J. — 1991. — 32, № 6. — С. 901909.
  12. Artamonov V. A. The quantum Serre problem// Russ. Math. Surv. — 1998. — 53, № 4. — С. 3-77.
  13. Artamonov V. A. Automorphisms and derivations of quantum polynomials// in: Recent Advances in Lie Theory (Bajo I., Sanmartin E., eds.). — Heldermann Verlag, 2002. — P. 109-120.
  14. Artamonov V. A. Generalized derivations of quantum plane// J. Math. Sci. — 2005. — 131,№5.— С. 5904-5918.
  15. Artamonov V. A. Quantum polynomials in: Advances in Algebra and Combinatorics. — Singapore: World Scientific, 2008. — P. 19-34.
  16. Artin M. Noncommutative Rings. — Preprint, 1999.
  17. Arzhantsev I., Kuyumzhiyan K., Zaidenberg M. Infinite transitivity, finite generation, and Demazure roots// Adv. Math. — 2019. — 351. — P. 1-32.
  18. Asanuma T. Non-linearizable algebraic k*-actions on affine spaces. — Preprint, 1996.
  19. Backelin E. Endomorphisms of quantized Weyl algebras// Lett. Math. Phys. — 2011. — 97, № 3. — P. 317-338.
  20. Bass H. A non-triangular action of Ga on A3// J. Pure Appl. Algebra. — 1984. — 33, № 1. — P. 1-5.
  21. Bass H., Connell E. H., Wright D. The Jacobian conjecture: reduction of degree and formal expansion of the inverse// Bull. Am. Math. Soc. — 1982. — 7, № 2. — P. 287-330.
  22. Bavula V. V. A question of Rentschler and the Dixmier problem// Ann. Math. (2). — 2001. — 154, № 3. — P. 683-702.
  23. Bavula V. V. Generalized Weyl algebras and diskew polynomial rings/ arXiv: 1612.08941 [math.RA].
  24. Bavula V. V. The group of automorphisms of the Lie algebra of derivations of a polynomial algebra// J. Alg. Appl. — 2017. — 16, № 5. — 1750088.
  25. Bavula V. V. The groups of automorphisms of the Lie algebras of formally analytic vector fields with constant divergence// C. R. Math. — 2014. — 352, № 2. — P. 85-88.
  26. Bavula V. V. The inversion formulae for automorphisms of Weyl algebras and polynomial algebras// J. Pure Appl. Algebra. — 2007. — 210. — P. 147-159.
  27. Bavula V. V. The inversion formulae for automorphisms of polynomial algebras and rings of differential operators in prime characteristic// J. Pure Appl. Algebra. — 2008. — 212, № 10. — P. 2320-2337.
  28. Bavula V. V. An analogue of the conjecture of Dixmier is true for the algebra of polynomial integrodifferential operators// J. Algebra. — 2012. — 372. — P. 237-250.
  29. Bavula V. V. Every monomorphism of the Lie algebra of unitriangular polynomial derivations is an au- thomorphism// C. R. Acad. Sci. Paris. Ser. 1. — 2012. — 350, № 11-12. — P. 553-556.
  30. Bavula V. V. The Jacobian conjecture2n implies the Dixmier problemn / arXiv: math/0512250[math.RA].
  31. Beauville A., Colliot-Thelene J.-L., Sansuc J.-J., and Swinnerton-Dyer P. Varietes stablement rationnelles non rationnelles// Ann. Math. — 1985. — 121. — P. 283-318.
  32. Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D. Deformation theory and quantization. I. Deformations of symplectic structures// Ann. Phys. — 1978. — 111, № 1. — P. 61-110.
  33. Belov A. Linear recurrence equations on a tree// Math. Notes. — 2005. — 78, № 5. — С. 603-609.
  34. Belov A. Local finite basis property and local representability of varieties of associative rings.// Izv. Math. — 2010. — 74. — С. 1-126.
  35. Belov A., Bokut L., Rowen L., Yu J.-T. The Jacobian conjecture, together with Specht and Burnside-type problems// in: Automorphisms in Birational and Affine Geometry. — Springer, 2014. — P. 249-285.
  36. Belov A., Makar-Limanov L., Yu J. T. On the generalised cancellation conjecture// J. Algebra. — 2004. — 281. — P. 161-166.
  37. Belov A., Rowen L. H., Vishne U. Structure of Zariski-closed algebras// Trans. Am. Math. Soc. — 2012. — 362. — P. 4695-4734.
  38. Belov-Kanel A., Yu J.-T. On the lifting of the Nagata automorphism// Selecta Math. — 2011. — 17.— P. 935-945.
  39. Kanel-Belov A., Berzins A., Lipyanski R. Automorphisms of the semigroup of endomorphisms of free associative algebras// Int. J. Algebra Comp. — 2007. — 17, № 5/6. — P. 923-939.
  40. Belov-Kanel A., Elishev A. On planar algebraic curves and holonomic D-modules in positive characteris- tic// J. Algebra Appl. — 2016. — 15, № 8. — 1650155.
  41. Belov-Kanel A., Kontsevich M. Automorphisms of the Weyl algebra// Lett. Math. Phys. — 2005. — 74, № 2. — P. 181-199.
  42. Belov-Kanel A., Kontsevich M. The Jacobian conjecture is stably equivalent to the Dixmier conjecture// Moscow Math. J. — 2007. — 7, № 2. — С. 209-218.
  43. Belov-Kanel A., Lipyanski R. Automorphisms of the endomorphism semigroup of a polynomial algebra// J. Algebra. — 2011. — 333, № 1. — P. 40-54.
  44. Belov-Kanel A., Yu J.-T. Stable tameness of automorphisms of F(x, y, z) fixing z// Selecta Math. — 2012. — 18. — P. 799-802.
  45. Bergman G. M. Centralizers in free associative algebras// Trans. Am. Math. Soc. — 1969. — 137. — P. 327-344.
  46. Bergman G. M. The diamond lemma for ring theory// Adv. Math. — 1978. — 29, № 2. — P. 178-218.
  47. Berson J., van den Essen A., Wright D. Stable tameness of two-dimensional polynomial automorphisms over a regular ring// Adv. Math. — 2012. — 230. — P. 2176-2197.
  48. Birman J. An inverse function theorem for free groups// Proc. Am. Math. Soc. — 1973. — 41. — P. 634638.
  49. Bonnet P., Venereau S. Relations between the leading terms of a polynomial automorphism// J. Algebra. — 2009. — 322, № 2. — P. 579—599.
  50. Berzins A. The group of automorphisms of semigroup of endomorphisms of free commutative and free associative algebras/ arXiv: abs/math/0504015 [math.AG].
  51. Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, I// Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. — 1966. — 14. — P. 177-181.
  52. Bialynicki-Birula A. Remarks on the action of an algebraic torus on kn, II// Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. — 1967. — 15. — P. 123-125.
  53. Bialynicki-Birula A. Some theorems on actions of algebraic groups// Ann. Math. — 1973. — 98, № 3. — P. 480-497.
  54. Bitoun T. The p-support of a holonomic D-module is lagrangian, for p large enough/ arXiv: 1012.4081 [math.AG].
  55. Bodnarchuk Yu. Every regular automorphism of the affine Cremona group is inner// J. Pure Appl. Algebra. — 2001. — 157. — P. 115-119.
  56. Bokut L., Zelmanov E. Selected works of A. I. Shirshov. — Springer, 2009.
  57. Bokut L. A. Embedding Lie algebras into algebraically closed Lie algebras// Algebra Logika. — 1962. — 1. — С. 47-53.
  58. Bokut L. A. Embedding of algebras into algebraically closed algebras// Dokl. Akad. Nauk. — 1962. — 145, № 5. — С. 963-964.
  59. Bokut L. A. Theorems of embedding in the theory of algebras// Colloq. Math. — 1966. — 14. — P. 349353.
  60. Bresar M., Procesi C., Spenko S. Functional identities on matrices and the Cayley-Hamilton polynomial/ arXiv: 1212.4597 [math.RA].
  61. Campbell L. A. A condition for a polynomial map to be invertible// Math. Ann. — 1973. — 205, № 3. — P. 243-248.
  62. Cohn P. M. Subalgebras of free associative algebras// Proc. London Math. Soc. — 1964. — 3, № 4. — P. 618-632.
  63. Cohn P. M. Progress in free associative algebras// Isr. J. Math. — 1974. — 19, № 1-2. — P. 109-151.
  64. Cohn P. M. A brief history of infinite-dimensional skew fields// Math. Sci. — 1992. — 17. — P. 1-14.
  65. Cohn P. M. Free Rings and Their Relations. — Academic Press, 1985.
  66. Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. I// Trans. Am. Math. Soc. — 1971. — 160. — P. 393-401.
  67. Czerniakiewicz A. J. Automorphisms of a free associative algebra of rank 2. II// Trans. Am. Math. Soc. — 1972. — 171. — P. 309-315.
  68. Danielewski W. On the cancellation problem and automorphism groups of affine algebraic varieties. — Warsaw: Preprint, 1989.
  69. De Bondt M., van den Essen A. The Jacobian conjecture for symmetric Druzkowski mappings. — University of Nijmegen, 2004.
  70. De Bondt M., van den Essen A. A reduction of the Jacobian conjecture to the symmetric case// Proc. Am. Math. Soc. — 2005. — 133, № 8. — P. 2201-2205.
  71. De Concini C., Procesi C. A characteristic free approach to invariant theory// in: Young Tableaux in Combinatorics, Invariant Theory, and Algebra. — Elsevier, 1982. — P. 169-193.
  72. Deserti J. Sur le groupe des automorphismes polynomiaux du plan affine// J. Algebra. — 2006. — 297. — P. 584-599.
  73. Dicks W. Automorphisms of the free algebra of rank two// Contemp. Math. — 1985. — 43. — P. 63-68.
  74. Dicks W., Lewin J. Jacobian conjecture for free associative algebras// Commun. Algebra. — 1982. — 10, № 12. — P. 1285-1306.
  75. Dixmier J. Sur les algebres de Weyl// Bull. Soc. Math. France. — 1968. — 96. — P. 209-242.
  76. Dodd C. The p-cycle of holonomic D-modules and auto-equivalences of the Weyl algebra/ arXiv: 1510.05734 [math.OC].
  77. Donkin S. Invariants of several matrices// Inv. Math. — 1992. — 110, № 1. — P. 389-401.
  78. Donkin S. Invariant functions on matrices// Math. Proc. Cambridge Phil. Soc. — 1993. — 113, № 1. — P. 23-43.
  79. Drensky V., Yu J.-T. A cancellation conjecture for free associative algebras// Proc. Am. Math. Soc. — 2008. — 136, № 10. — P. 3391-3394.
  80. Drensky V., Yu J.-T. The strong Anick conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2006. — 103. — P. 4836-4840.
  81. Drensky V., Yu J.-T. Coordinates and automorphisms of polynomial and free associative algebras of rank three// Front. Math. China. — 2007. — 2, № 1. — P. 13-46.
  82. Drensky V., Yu J.-T. The strong Anick conjecture is true// J. Eur. Math. Soc. — 2007. — 9. — P. 659-679.
  83. Druzkowski L. An effective approach to Keller’s Jacobian conjecture// Math. Ann. — 1983. — 264, № 3. — P. 303-313.
  84. Druzkowski L. The Jacobian conjecture: symmetric reduction and solution in the symmetric cubic linear case// Ann. Polon. Math. — 2005. — 87, № 1. — P. 83-92.
  85. Druzkowski L. M. New reduction in the Jacobian conjecture// in: Effective Methods in Algebraic and Analytic Geometry. — Krakow: Univ. lagel. Acta Math., 2001. — P. 203-206.
  86. Elishev A. Automorphisms of polynomial algebras, quantization and Kontsevich conjecture/ PhD Thesis — Moscow Institute of Physics and Technology, 2019.
  87. Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Noncommutative Bialynicki-Birula theo- rem./ arXiv: 1808.04903 [math.AG].
  88. Elishev A., Kanel-Belov A., Razavinia F., Yu J.-T., Zhang W. Torus actions on free associative algebras, lifting and Bialynicki-Birula type theorems/ arXiv: 1901.01385 [math.AG].
  89. van den Bergh M. On involutivity of p-support// Int. Math. Res. Not. — 2015. — 15. — P. 6295-6304.
  90. van den Essen A. The amazing image conjecture/ arXiv: 1006.5801 [math.AG].
  91. van den Essen A., de Bondt M. Recent progress on the Jacobian conjecture// Ann. Polon. Math. — 2005. — 87. — P. 1-11.
  92. van den Essen A., de Bondt M. The Jacobian conjecture for symmetric Druzkowski mappings// Ann. Polon. Math. — 2005. — 86, № 1. — P. 43-46.
  93. van den Essen A., Wright D., Zhao W. On the image conjecture// J. Algebra. — 2011. — 340. — P. 211— 224.
  94. Fox R. H. Free differential calculus, I. Derivation in the free group ring// Ann. Math. (2). — 1953. — 57. — P. 547-560.
  95. Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, I// Izv. Math. — 1975. — 9,№3.— С. 493-534.
  96. Gizatullin M. Kh., Danilov V. I. Automorphisms of affine surfaces, II// Izv. Math. — 1977. — 11,№1.— С. 51-98.
  97. Gorni G., Zampieri G. Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse// Polon. Math. — 1996. — 64. — P. 285-290.
  98. Fedosov B. A simple geometrical construction of deformation quantization// J. Differ. Geom. — 1994. — 40, № 2. — P. 213-238.
  99. Frayne T., Morel A. C., Scott D. S. Reduced direct products// J. Symb. Logic.. — 31, № 3. — P. 1966.
  100. Fulton W., Harris J. Representation Theory. A First Course. — Springer-Verlag, 1991.
  101. Furter J.-P., Kraft H. On the geometry of the automorphism groups of affine varieties/ arXiv: 1809.04175 [math.AG].
  102. Gutwirth A. The action of an algebraic torus on the affine plane// Trans. Am. Math. Soc. — 1962. — 105, № 3. — P. 407-414.
  103. Jung H. W. E. Uber ganze birationale Transformationen der Ebene// J. Reine Angew. Math. — 1942. — 184. — P. 161-174.
  104. Kaliman S., Koras M., Makar-Limanov L., Russell P. C*-actions on C3 are linearizable// Electron. Res. Announc. Am. Math. Soc. — 1997. — 3. — P. 63-71.
  105. Kaliman S., Zaidenberg M. Families of affine planes: the existence of a cylinder// Michigan Math. J. — 2001. — 49. — P. 353-367.
  106. Kuroda S. Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism// Tohoku Math. J. — 2010. — 62. — P. 75-115.
  107. Kuzmin E., Shestakov I. P. Nonassociative structures// Itogi Nauki Tekhn. Sovr. Probl. Mat. Fundam. Napr. — 1990. — 57. — С. 179-266.
  108. Karas’ M. Multidegrees of tame automorphisms of Cn// Dissert. Math. — 2011. — 477.
  109. Khoroshkin A., Piontkovski D. On generating series of finitely presented operads/ arXiv: 1202.5170 [math.QA].
  110. Kambayashi T. Pro-affine algebras, Ind-affine groups and the Jacobian problem// J. Algebra. — 1996. — 185, № 2. — P. 481-501.
  111. Kambayashi T. Some basic results on pro-affine algebras and Ind-affine schemes// Osaka J. Math. — 2003. — 40, № 3. — P. 621-638.
  112. Kambayashi T., Russell P. On linearizing algebraic torus actions// J. Pure Appl. Algebra. — 1982. — 23, № 3. — P. 243-250.
  113. Kanel-Belov A., Borisenko V., Latysev V. Monomial algebras// J. Math. Sci. — 1997. — 87,№3.— С. 3463-3575.
  114. Kanel-Belov A., Elishev A. On planar algebraic curves and holonomic D-modules in positive characteristic/ arXiv: 1412.6836 [math.AG].
  115. Kanel-Belov A., Elishev A., Yu J.-T. Independence of the B-KK isomorphism of infinite prime/ arXiv: 1512.06533 [math.AG].
  116. Kanel-Belov A., Elishev A., Yu J.-T. Augmented polynomial symplectomorphisms and quantization/// arXiv: 1812.02859 [math.AG].
  117. Kanel-Belov A., Grigoriev S., Elishev A., Yu J.-T., Zhang W. Lifting of polynomial symplectomorphisms and deformation quantization// Commun. Algebra. — 2018. — 46, № 9. — P. 3926-3938.
  118. Kanel-Belov A., Malev S., Rowen L. The images of noncommutative polynomials evaluated on 2 x 2 matrices// Proc. Am. Math. Soc. — 2012. — 140. — P. 465-478.
  119. Kanel-Belov A., Malev S., Rowen L. The images of multilinear polynomials evaluated on 3 x 3 matrices// Proc. Am. Math. Soc. — 2016. — 144. — P. 7-19.
  120. Kanel-Belov A., Razavinia F., Zhang W. Bergman’s centralizer theorem and quantization// Commun. Algebra. — 2018. — 46, № 5. — P. 2123-2129.
  121. Kanel-Belov A., Razavinia F., Zhang W. Centralizers in free associative algebras and generic matrices/ arXiv: 1812.03307 [math.RA].
  122. Kanel-Belov A., Rowen L. H., Vishne U. Full exposition of Specht’s problem// Serdica Math. J. — 2012. — 38. — P. 313-370.
  123. Kanel-Belov A., Yu J.-T., Elishev A. On the augmentation topology of automorphism groups of affine spaces and algebras// Int. J. Algebra Comput. * — 2018. — 28, № 08. — P. 1449-1485.
  124. Keller B. Notes for an Introduction to Kontsevich’s Quantization Theorem, 2003.
  125. Keller O. H. Ganze Cremona Transformationen// Monatsh. Math. Phys. — 1939. — 47, № 1. — P. 299-306.
  126. Kolesnikov P. S. The Makar-Limanov algebraically closed skew field// Algebra Logic. — 2000. — 39,№6. — С. 378-395.
  127. Kolesnikov P. S. Different definitions of algebraically closed skew fields// Algebra Logic. — 2001. — 40, № 4. — С. 219-230.
  128. Kontsevich M. Deformation quantization of Poisson manifolds// Lett. Math. Phys. — 2003. — 66, № 3. — P. 157-216.
  129. Kontsevich M. Holonomic D-modules and positive characteristic// Jpn. J. Math. — 2009. — 4, № 1. — P. 1-25.
  130. Koras M., Russell P. C*-actions on C3: The smooth locus of the quotient is not of hyperbolic type// J. Alg. Geom. — 1999. — 8, № 4. — P. 603-694.
  131. Kovalenko S., Perepechko A., Zaidenberg M. On automorphism groups of affine surfaces// in: Algebraic Varieties and Automorphism Groups. — Math. Soc. Jpn., 2017. — P. 207-286.
  132. Kraft H., Regeta A. Automorphisms of the Lie algebra of vector fields// J. Eur. Math. Soc. — 2017. — 19, № 5. — P. 1577-1588.
  133. Kraft H., Stampfli I. On automorphisms of the affine Cremona group// Ann. Inst. Fourier. — 2013. — 63, № 3. — P. 1137-1148.
  134. Kulikov V. S. Generalized and local Jacobian problems// Izv. Math. — 1993. — 41, № 2. — С. 351-365.
  135. Kulikov V. S. The Jacobian conjecture and nilpotent maps// J. Math. Sci. — 2001. — 106, № 5. — С. 33123319.
  136. Levy R., Loustaunau P., Shapiro J. The prime spectrum of an infinite product of copies of Z// Fundam. Math. — 1991. — 138. — P. 155-164.
  137. Li Y.-C., Yu J.-T. Degree estimate for subalgebras// J. Algebra. — 2012. — 362. — P. 92-98.
  138. Gaiotto D., Witten E. Probing quantization via branes/ arXiv: 2107.12251 [hep-th].
  139. Lothaire M. Combinatorics on Words. — Cambridge Univ. Press, 1997.
  140. Makar-Limanov L. A new proof of the Abhyankar-Moh-=Suzuki theorem/ arXiv: 1212.0163 [math.AC].
  141. Makar-Limanov L. Automorphisms of a free algebra with two generators// Funct. Anal. Appl. — 1970. — 4, № 3. — С. 262-264.
  142. Makar-Limanov L. On automorphisms of Weyl algebra// Bull. Soc. Math. France. — 1984. — 112. — P. 359-363.
  143. Makar-Limanov L., Yu J.-T. Degree estimate for subalgebras generated by two elements// J. Eur. Math. Soc. — 2008. — 10. — P. 533-541.
  144. Makar-Limanov L. Algebraically closed skew fields// J. Algebra. — 1985. — 93, № 1. — P. 117-135.
  145. Makar-Limanov L., Turusbekova U., Umirbaev U. Automorphisms and derivations of free Poisson algebras in two variables// J. Algebra. — 2009. — 322, № 9. — P. 3318-3330.
  146. Markl M., Shnider S., Stasheff J. Operads in Algebra, Topology, and Physics. — Providence, Rhode Island: Am. Math. Soc., 2002.
  147. Miyanishi M., Sugie T. Affine surfaces containing cylinderlike open sets// J. Math. Kyoto Univ. — 1980. — 20. — P. 11-42.
  148. Nagata M. On the automorphism group of k[x, y]. — Tokyo: Kinokuniya, 1972.
  149. Nielsen J. Die Isomorphismen der allgemeinen, undendlichen Gruppen mit zwei Eerzeugenden// Math. Ann. — 1918. — 78. — P. 385-397.
  150. Nielsen J. Die Isomorphismengruppe der freien Gruppen// Math. Ann. — 1924. — 91. — P. 169-209.
  151. Ol’shanskij A. Yu. Groups of bounded period with subgroups of prime order// Algebra and Logic. — 1983. — 21. — С. 369-418.
  152. Peretz R. Constructing polynomial mappings using non-commutative algebras// in: Affine Algebraic Geometry. — Providence, Rhode Island: Am. Math. Soc., 2005. — P. 197-232.
  153. Piontkovski D. Operads versus Varieties: a dictionary of universal algebra. — Preprint, 2011.
  154. Piontkovski D. On Kurosh problem in varieties of algebras// J. Math. Sci. — 2009. — 163, № 6. — С. 743-750.
  155. Razmyslov Yu. P. Algebras satisfying identity relations of Capelli type// Izv. Akad. Nauk SSSR. Ser. Mat. — 1981. — 45. — С. 143-166, 240.
  156. Razmyslov Yu. P. Identities of Algebras and Their Representations. — Providence, Rhode Island: Am. Math. Soc., 1994.
  157. Razmyslov Yu. P., Zubrilin K. A. Nilpotency of obstacles for the representability of algebras that satisfy Capelli identities, and representations of finite type// Russ. Math. Surveys — 1993. — 48. — С. 183-184.
  158. Reutenauer C. Applications of a noncommutative Jacobian matrix// J. Pure Appl. Algebra. — 1992. — 77. — P. 634-638.
  159. Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
  160. Moh T.-T. On the global Jacobian conjecture for polynomials of degree less than 100. — Preprint, 1983.
  161. Moh T.-T. On the Jacobian conjecture and the configurations of roots// J. Reine Angew. Math. — 1983. — 340. — P. 140-212.
  162. Moyal J. E. Quantum mechanics as a statistical theory// Math. Proc. Cambridge Philos. Soc. — 1949. — 45, № 1. — P. 99-124.
  163. Orevkov S. Yu. The commutant of the fundamental group of the complement of a plane algebraic curve// Russ. Math. Surv. — 1990. — 45, № 1. — С. 221-222.
  164. Orevkov S. Yu. An example in connection with the Jacobian conjecture// Math. Notes. — 1990. — 47, № 1. — С. 82-88.
  165. Orevkov S. Yu. The fundamental group of the complement of a plane algebraic curve// Sb. Math. — 1990. — 65, № 1. — С. 267-267.
  166. Plotkin B. Varieties of algebras and algebraic varieties// Israel J. Math. — 1996. — 96, № 2. — P. 511-522.
  167. Plotkin B. Algebras with the same (algebraic) geometry/ arXiv: math/0210194 [math.GM].
  168. Popov V. L. Around the Abhyankar-Sathaye conjecture/ arXiv: 1409.6330 [math.AG].
  169. Procesi C. Rings with Polynomial Identities. — Marcel Dekker, 1973.
  170. Procesi C. The invariant theory of n x n matrices// Adv. Math. — 1976. — 19, № 3. — P. 306-381.
  171. Razar M. Polynomial maps with constant Jacobian// Israel J. Math. — 1979. — 32, № 2-3. — P. 97-106.
  172. Robinson A. Non-Standard Analysis. — Princeton Univ. Press, 2016.
  173. Rosset S. A new proof of the Amitsur-Levitzki identity// Israel J. Math. — 1976. — 23, № 2. — P. 187-188.
  174. Rowen L. H. Graduate Algebra: Noncommutative View. — Providence, Rhode Island: Am. Math. Soc., 2008.
  175. Schofield A. H. Representations of Rings over Skew Fields. — Cambridge: Cambridge Univ. Press, 1985.
  176. Schwarz G. Exotic algebraic group actions// C. R. Acad. Sci. Paris — 1989. — 309. — P. 89-94.
  177. Shafarevich I. R. On some infinite-dimensional groups, II// Izv. Ross. Akad. Nauk. Ser. Mat. — 1981. — 45, № 1. — С. 214-226.
  178. Sharifi Y. Centralizers in Associative Algebras/ Ph.D. thesis, 2013.
  179. Shestakov I. P. Finite-dimensional algebras with a nil basis// Algebra Logika. — 1971. — 10. — С. 87-99.
  180. Shestakov I. P., Umirbaev U. U. Degree estimate and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17. — P. 181-196.
  181. Shestakov I., Umirbaev U. The Nagata automorphism is wild// Proc. Natl. Acad. Sci. — 2003. — 100, № 22. — P. 12561-12563.
  182. Shestakov I., Umirbaev U. Poisson brackets and two-generated subalgebras of rings of polynomials// J. Am. Math. Soc. — 2004. — 17, № 1. — P. 181-196.
  183. Shestakov I. P., Umirbaev U. U. The tame and the wild automorphisms of polynomial rings in three variables// J. Am. Math. Soc. — 2004. — 17. — P. 197-220.
  184. Umirbaev U., Shestakov I. Subalgebras and automorphisms of polynomial rings// Dokl. Ross. Akad. Nauk — 2002. — 386, № 6. — С. 745-748.
  185. Shpilrain V. On generators of L/R2 Lie algebras// Proc. Am. Math. Soc. — 1993. — 119. — P. 1039-1043.
  186. Singer D. On Catalan trees and the Jacobian conjecture// Electron. J. Combin. — 2001. — 8, № 1. — 2.
  187. Shpilrain V., Yu J.-T. Affine varieties with equivalent cylinders// J. Algebra. — 2002. — 251, № 1. — P. 295-307.
  188. Shpilrain V., Yu J.-T. Factor algebras of free algebras: on a problem of G. Bergman// Bull. London Math. Soc. — 2003. — 35. — P. 706-710.
  189. Suzuki M. Propietes topologiques des polynomes de deux variables complexes, et automorphismes algebraique de l’espace C2// J. Math. Soc. Jpn. — 1974. — 26. — P. 241-257.
  190. Tsuchimoto Y. Preliminaries on Dixmier conjecture Mem. Fac. Sci. Kochi Univ. Ser. A. Math. — 2003. — 24. — P. 43-59.
  191. Tsuchimoto Y. Endomorphisms of Weyl algebra and p-curvatures// Osaka J. Math. — 2005. — 42, № 2. — P. 435-452.
  192. Tsuchimoto Y. Auslander regularity of norm based extensions of Weyl algebra/// arXiv: 1402.7153 [math.AG].
  193. Umirbaev U. On the extension of automorphisms of polynomial rings// Sib. Math. J. — 1995. — 36,№4. — С. 787-791.
  194. Umirbaev U. U. On Jacobian matrices of Lie algebras// в кн.: Proc. 6 All-Union Conf. on Varieties of Algebraic Systems. — Magnitogorsk, 1990. — С. 32-33.
  195. Umirbaev U. U. Shreer varieties of algebras// Algebra Logic. — 1994. — 33. — С. 180-193.
  196. Umirbaev U. U. Tame and wild automorphisms of polynomial algebras and free associative algebras. — Preprint MPIM 2004-108..
  197. Umirbaev U. The Anick automorphism of free associative algebras// J. Reine Angew. Math. — 2007. — 605. — P. 165-178.
  198. Umirbaev U. U. Defining relations of the tame automorphism group of polynomial algebras in three vari- ables// J. Reine Angew. Math. — 2006. — 600. — P. 203-235.
  199. Umirbaev U. U. Defining relations for automorphism groups of free algebras// J. Algebra. — 2007. — 314. — P. 209-225.
  200. Umirbaev U. U., Yu J.-T. The strong Nagata conjecture// Proc. Natl. Acad. Sci. U.S.A. — 2004. — 101. — P. 4352-4355.
  201. Urech C., Zimmermann S. Continuous automorphisms of Cremona groups/ arXiv: 1909.11050 [math.AG].
  202. van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. — Birkhauser, 2012.
  203. van der Kulk W. On polynomial rings in two variables// Nieuw Arch. Wisk. (3) — 1953. — 1. — P. 33-41.
  204. Vitushkin A. G. A criterion for the representability of a chain of ст-processes by a composition of triangular chains// Math. Notes — 1999. — 65, № 5-6. — С. 539-547.
  205. Vitushkin A. G. On the homology of a ramified covering over C2// Math. Notes. — 1998. — 64,№5.— С. 726-731.
  206. Vitushkin A. G. Evaluation of the Jacobian of a rational transformation of C2 and some applications// Math. Notes — 1999. — 66, № 2. — С. 245-249.
  207. Wedderburn J. H. M. Note on algebras// Ann. Math. — 1937. — 38. — P. 854-856.
  208. Wright D. The Jacobian conjecture as a problem in combinatorics/ arXiv: math/0511214 [math.CO].
  209. Wright D. The Jacobian conjecture: Ideal membership questions and recent advances// Contemp. Math. — 2005. — 369. — P. 261-276.
  210. Yagzhev A. V. Finiteness of the set of conservative polynomials of a given degree// Math. Notes. — 1987. — 41, № 2. — С. 86—88.
  211. Yagzhev A. V. Nilpotency of extensions of an abelian group by an abelian group// Math. Notes. — 1988. — 43, № 3-4. — С. 244-245.
  212. Yagzhev A. V. Locally nilpotent subgroups of the holomorph of an abelian group// Mat. Zametki — 1989. — 46, № 6. — С. 118.
  213. Yagzhev A. V. A sufficient condition for the algebraicity of an automorphism of a group// Algebra Logic. — 1989. — 28, № 1. — С. 83-85.
  214. Yagzhev A. V. The generators of the group of tame automorphisms of an algebra of polynomials// Sib. Mat. Zh. — 1977. — 18, № 1. — P. 222-225.
  215. Wang S. A Jacobian criterion for separability// J. Algebra. — 1980. — 65, № 2. — P. 453-494.
  216. Wright D. On the Jacobian conjecture// Ill. J. Math. — 1981. — 25, № 3. — P. 423-440.
  217. Yagzhev A. V. Invertibility of endomorphisms of free associative algebras// Math. Notes. — 1991. — 49, № 3-4. — С. 426—430.
  218. Yagzhev A. V. Endomorphisms of free algebras// Sib. Math. J. — 1980. — 21, № 1. — С. 133—141.
  219. Yagzhev A. V. On the algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank// Sib. Math. J. — 1980. — 21, № 1. — С. 142-146.
  220. Yagzhev A. V. Keller’s problem// Sib. Math. J. — 1980. — 21, № 5. — С. 747-754.
  221. A. V. Yagzhev Engel algebras satisfying Capelli identities// в кн.: Proceedings of Shafarevich Seminar. — Moscow: Steklov Math. Inst., 2000. — С. 83-88 (in Russian).
  222. A. V. Yagzhev Endomorphisms of polynomial rings and free algebras of different varieties// в кн.: Proceedings of Shafarevich Seminar. — Moscow: Steklov Math. Inst., 2000. — С. 15-47 (in Russian).
  223. Yagzhev A. V. Invertibility criteria of a polynomial mapping. — Unpublished (in Russian).
  224. Zaks A. Dedekind subrings of K[x1,...,xn] are rings of polynomials// Israel J. Math. — 1971. — 9.— P. 285-289.
  225. Zelmanov E. On the nilpotence of nilalgebras// Lect. Notes Math. — 1988. — 1352. — P. 227-240.
  226. Zhao W. New proofs for the Abhyankar-Gurjar inversion formula and the equivalence of the Jacobian conjecture and the vanishing conjecture// Proc. Am. Math. Soc. — 2011. — 139. — P. 3141-3154.
  227. Zhao W. Mathieu subspaces of associative algebras// J. Algebra. — 2012. — 350. — P. 245-272.
  228. Zhevlakov K. A., Slin’ko A. M., Shestakov I. P., Shirshov A. I. Nearly Associative Rings. — Moscow: Nauka, 1978 (in Russian).
  229. Zubrilin K. A. Algebras that satisfy the Capelli identities// Sb. Math. — 1995. — 186, № 3. — С. 359-370.
  230. Zubrilin K. A. On the class of nilpotence of obstruction for the representability of algebras satisfying Capelli identities// Fundam. Prikl. Mat. — 1995. — 1, № 2. — С. 409-430.
  231. Zubrilin K. A. On the Baer ideal in algebras that satisfy the Capelli identities// Sb. Math. — 1998. — 189. — С. 1809-1818.
  232. Zaidenberg M. G. On exotic algebraic structures on affine spaces// in: Geometric Complex Analysis. — World Scientific, 1996. — P. 691-714.
  233. Zhang W. Alternative proof of Bergman’s centralizer theorem by quantization/ Master thesis — Bar-Ilan University, 2017.
  234. Zhang W. Polynomial automorphisms and deformation quantization/ Ph.D. thesis — Bar-Ilan University, 2019.
  235. Zubkov A. N. Matrix invariants over an infinite field of finite characteristic// Sib. Math. J. — 1993. — 34, № 6. — С. 1059-1065.
  236. Zubkov A. N. A generalization of the Razmyslov-Procesi theorem// Algebra Logic. — 1996. — 35,№4.— С. 241-254.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Елишев А.М., Канель-Белов А.Я., Разавиния Ф., Юй Ц., Чжан В., 2022

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).