Nonlocal problem for a fractional-order mixed-type equation with involution
- Authors: Kadirkulov B.Z.1, Kayumova G.A.2
-
Affiliations:
- Ташкентский государственный университет востоковедения
- Каршинский инженерно-экономический институт
- Issue: Vol 210 (2022)
- Pages: 55-65
- Section: Статьи
- URL: https://journal-vniispk.ru/2782-4438/article/view/270725
- DOI: https://doi.org/10.36535/0233-6723-2022-210-55-65
- ID: 270725
Cite item
Full Text
Abstract
In this paper, we examine the unique solvability of a nonlocal problem for a nonlocal analog of a mixed parabolic-hyperbolic equation with a generalized Riemann-Liouville operator and involution with respect to the space variable. A criterion for the uniqueness of the solution is established and sufficient conditions for the unique solvability of the problem are determined. By the method of separation of variables, a solution is constructed in the form of an absolutely and uniformly convergent series with respect to eigenfunctions of the corresponding one-dimensional spectral problem. The stability of the solution of the problem under consideration under a nonlocal condition is established.
About the authors
B. Z. Kadirkulov
Ташкентский государственный университет востоковедения
Author for correspondence.
Email: kadirkulovbj@gmail.com
Uzbekistan, Ташкент
G. A. Kayumova
Каршинский инженерно-экономический институт
Email: gavhar88@mail.ru
Uzbekistan, Карши
References
- Джрбашян М. М. Интегральные преобразования и представления функций в комплексной области. — М.: Наука, 1966.
- Линьков А. В. Обоснование метода Фурье для краевых задач с инволютивным отклонением// Вестн. Самар. ун-та. — 1999. — 12, № 2. — С. 60-66.
- Сабитов К. Б., Гущина В. А. Задача А. А. Дезина для неоднородного уравнения Лаврентьева— Бицадзе// Изв. вузов. Мат. — 2017. — № 3. — С. 37-50.
- Сабитов К. Б., Мартемьянова Н. В. К вопросу о корректности обратных задач для неоднородного уравнения Гельмгольца// Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. — 2018. — 22,№2.— С. 269-292.
- Исломов Б. И., Абдуллаев О. Х. Задачи типа Геллерстедта для нагруженного уравнения параболо-гиперболического типа с операторами Капуто и Эрдейли—Кобера дробного порядка// Изв. вузов. Мат. — 2020. — № 10. — С. 33-46.
- Agarwal P., Abdullaev O. Kh. A nonlocal problem with integral gluing condition for a third-order loaded equation with parabolic-hyperbolic operator involving fractional derivatives// Math. Meth. Appl. Sci. — 2020. — 43, № 6. — P. 3716-3726.
- Al-Salti N., Kerbal S., Kirane M. Initial-boundary value problems for a time-fractional differential equation with involution perturbation// Math. Model. Nat. Phenom. — 2019. — 14, № 3. — P. 1-15.
- Ashyralyev A., Sarsenbi A. Well-posedness of a parabolic equation with involution// Num. Funct. Anal. Optim. — 2017. — 38, № 10. — P. 1295-1304.
- Cabada A, Tojo F. A. F. On linear differential equations and systems with reflection// Appl. Math. Comput. — 2017. — 305. — P. 84-102.
- Tenreiro Machado J. A. (ed.). Handbook of Fractional Calculus with Applications. — Berlin-Boston: De Gruyter, 2019.
- Hilfer R. (ed.). Applications of Fractional Calculus in Physics. — Singapore: World Scientific, 2000.
- Hilfer R., Luchko Y., Tomovski Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives// Fract. Calc. Appl. Anal. — 2009. — 12, № 3. — P. 299-318.
- Karimov E., Mamchuev M., Ruzhansky M. Non-local initial problem for second order time-fractional and space-singular equation// Hokkaido Math. J. — 2020. — 49. — P. 349-361.
- Kilbas A. A., Srivastava H. M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. — Amsterdam: Elsevier, 2006.
- Kirane M., Sadybekov M. A., Sarsenbi A. A. On an inverse problem of reconstructing a subdiffusion process from nonlocal data// Math. Meth. Appl. Sci. — 2019. — 42, № 6. — P. 2043-2052.
- Kirane M., Turmetov B. Kh., Torebek B. T.A nonlocal fractional Helmholtz equation// Fract. Differ. Calc. — 2017. — 7, № 2. — P. 225-234.
- Kumar D., Baleanu D. Editorial: Fractional calculus and its applications in physics// Front. Phys. — 2019. — 7. — 81.
- Kim Myong-Ha, Ri Guk-Chol, O Hyong-Chol Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives// Fract. Calc. Appl. Anal. — 2014. — 17, № 1. — P. 79-95.
- Сабитов К. Б. Нелокальная задача для уравнения параболо-гиперболического типа в прямоугольной области// Мат. заметки. — 2011. — 89, № 4. — С. 596-602.
- Sandev T., Tomovski Z. Fractional Equations and Models: Theory and Applications. — Switzerland: Springer Nature, 2019.
- Salakhitdinov M. S., Karimov E. T. Direct and inverse source problems for two-term time-fractional diffusion equation with Hilfer derivative// Uzbek. Math. J. — 2017. — 4. — P. 140-149.
- Sun H., Chang A., Zhang Y., Chen W. A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications// Fract. Calc. Appl. Anal. — 2019. — 22. — P. 27-59.
- Torebek B. T., Tapdigoglu R. Some inverse problems for the nonlocal heat equation with Caputo fractional derivative// Math. Meth. Appl. Sci. — 2017. — 40. — P. 6468-6479.
- Turmetov B. Kh, Torebek B. T. On a class of fractional elliptic problems with an involution perturbation// AIP Conf. Proc. — 2016. — 1759. — 020070.
- Yuldashev T. K., Kadirkulov B. J. Boundary-value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator// Axioms. — 2020. — 9, № 2. — 68.
- Yuldashev T. K., Kadirkulov B. J. Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator// Ural Math. J. — 2020. — 6, № 1. — P. 153-167.
- Yuldashev T. K., Karimov E. Inverse problem for a mixed type integro-differential equation with fractional- order Caputo operators and spectral parameters// Axioms. — 2020. — 9. — 121.
Supplementary files
