Spontaneous clustering in Markov chains. II. Mesofractal model

Cover Page

Cite item

Full Text

Abstract

In the second part of the review, we apply theoretical principles developed in the first part to analysing statistical characteristics of clustering the observed distribution of galaxies in the visible part of the Universe. In contrast to the standard approach to solving the dynamic problem of clustering gravitational plasma based on systems of differential equations that describe the plasma as a continuous medium, we use the Ornstein–Zernike integral equation for a system of randomly distributed points whose interaction is described by an appropriate choice of the kernel of the Ornstein–Zernike equation for the two-particle correlation function. Within the framework of this “mesofractal” model, we find a 4-parameter representation of the spectrum of fluctuation power, which allows one to determine statistical parameters of the medium from the observed data. The first part of this work: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2023. — 220. — P. 125–144.

About the authors

V. V. Uchaikin

Ульяновский государственный университет

Author for correspondence.
Email: vuchaikin@gmail.com
Russian Federation, Ульяновск

References

  1. Вейнберг С. Гравитация и космология. — М.: Мир, 1975.
  2. Кольчужкин А. И., Учайкин В. В. Введение в теорию прохождения частиц через вещество. — М.: Атомиздат, 1978.
  3. Учайкин В. В. Спонтанная кластеризация в марковских цепях I. Фрактальная пыль// Итоги науки техн. Совр. мат. прилож. Темат. обзоры. — 2023. — 220. — С. 125–144.
  4. Учайкин В. В., Коробко Д. А., Гисмятов И. Ф. Модифицированный алгоритм Мандельброта стоха-стического моделирования распределения галактик фрактального типа// Изв. вузов. Физ. — 1997.— 8. — С. 7–13.
  5. Altenberger A. R., Dahler J. S. On the galactic pair correlation function for a gravitational plasma//Astrophys. J. — 1994. — 421. — P. L9–L12.
  6. Balian R., Schaeffer R. Scale-invariant matter distribution in the Universe// Astron. Astrophys. — 1989.— 226. — P. 373–414.
  7. Baryshev Y. V., Labini F., Montuori M., Pietronero L. Facts and ideas in modern cosmology// Vistas Astron. — 1994. — 38. — P. 419–500.
  8. Borgani S. Scaling in the Universe// Phys. Rep. — 1995. — 251. — P. 1–152.
  9. Cole S., Percival W. J., et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications// Month. Not. Roy. Astron. Soc. — 2005. — 362. — P. 505–534.
  10. Coleman P. H., Pietronero L. Fractal structure of the Universe// Phys. Rep. — 1992. — 213. — P. 311–389.
  11. Coles P., Moscardini L., Plionis M. et al. Topology in 2D. IV. CDM Models with Non-Gaussian Initial conditions// Month. Not. Roy. Astron. Soc. — 1993. — 260. — P. 572.
  12. Davis M., Meiksin A., Strauss M. et al. On the universality of the two-point galaxy correlation function//Astron. J. — 1988. — 333. — P. L9–L12.
  13. Einasto J., Klypin A. A., Saar E. Structure ofsuperclusters and supercluster formation. V. Spatial corre-lation and voids// Month. Not. Roy. Astron. Soc. — 1986. — 219. — P. 457–478.
  14. Fry J. N. Gravity, bias, and the Galaxy three-point correlation function// Phys. Rev. Lett. — 1994. —73, № 2. — P. 215–219.
  15. Jones B. J., Martinez V. J., Saar E., Trimble V. Scaling laws in the distribution of galaxies// Rev. Mod. Phys. — 2005. — 76. — P. 1211–1266.
  16. Gaite J. Halos and voids in a multifractal model of cosmic structure// Astrophys. J. — 2007. — 658.— P. 11–24.
  17. Geller M. The large-scale distribution of galaxies// in: Astronomy, Cosmology and Fundamental Physics (Caffo M., Fanti R., Giacomelli G., Renzini A., eds.). — Dordrecht: Springer, 1989. — P. 83–103.
  18. Grassberger P., Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal// Phys. Rev. A.— 1983. — 28, № 4. — P. 2591–2593.
  19. Guth A. Inflationary universe: A possible solution to the horizon and flatness problems// Phys. Rev. D.— 1981. — 23. — P. 347–356.
  20. Linde A. The inflationary Universe// Rep. Prog. Phys. — 1984. — 47. — P. 925–986.
  21. Mandelbrot B. B. Fonctions aléatoires pluri-temporelles: approximation poissonienne du cas brownien et généralisations// C. R. Acad. Sci. Paris. Sér. A. — 1975. — 280. — P. 1075–1078.
  22. Mandelbrot B. B. The Fractal Geometry of Nature. — New York: W. H. Freeman, 1983.
  23. Martinez V. J., Jones B. J. T., Dominguez-Tenreir R. Clustering paradigms and multifractal measures//Astrophys. J. — 1990. — 357. — P. 50–61.
  24. Mezzetti M. et al. Large Scale Structure and Motions in the Universe. — Dordrecht: Springer, 1989.
  25. Pietronero L. The fractal structure of the universe: Correlations of galaxies and clusters and the average mass density// Physica A. — 1987. — 144, № 2-3. — P. 257–284.
  26. Pietronero L., Montuori M., Sylos Labini F. On the fractal structure of the visible universe/ arXiv: astro-ph/9611197.
  27. Peebles P. J. E. The Large-Scale Structure of the Universe. — Princeton, New Jersey: Princeton Univ. Press, 1980.
  28. Percival W. J. et al. The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe// Month. Not. Roy. Astron. Soc. — 2001. — 327, № 4. — P. 1297–1306.
  29. Percival W. J. et al. The 2dF Galaxy Redshift Survey: Spherical harmonics analysis of fluctuations in the final catalogue// Month. Not. Roy. Astron. Soc. — 2004. — 353, № 4. — P. 1201–1220.
  30. Ribeiro M. B., Miguelote A. Y. Fractals and the distribution of galaxies// Brazil. J. Phys. — 1998. — 28,№ 2. — P. 132-160.
  31. Saunders W. et al. The density field of the local Universe// Nature. — 1991. — 349. — P. 32–38.
  32. Takayasu H. Stable distribution and Lévy process in fractal turbulence// Progr. Theor. Phys. — 1984. — 72.— P. 471–478.
  33. Uchaikin V. V. The mesofractal universe driven by Rayleigh–Levy walk// Gen. Relat. Grav. — 2004. —36, № 7. — P. 1689–1718.
  34. Uchaikin V., Gismjatov I., Gusarov G., Svetukhin V. Paired Lévy–Mandelbrot trajectory as a homogeneous fractal// Int. J. Bifurcation Chaos. — 1998. — 8, № 5. — P. 977–984.
  35. Uchaikin V.V., Gusarov G.G.Levy flight applied to random media problems// J. Math. Phys. — 1997.— 38. — P. 2453–2464.
  36. Uchaikin V. V., Litvinov V. A., Kozhemyakina E. V., Kozhemyakin I. I. A random walk model for spatial galaxy distribution// Mathematics. — 2021. — 9, № 1. — P. 1–17.
  37. Uchaikin V. V., Zolotarev V. M. Chance and stability. Stable distributions and their applications. —Utrecht, The Netherlands: VSP, 1999.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Учайкин В.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».