Fractal properties of binary matrices constructed using the generalized Pascal’s triangle and applications
- Authors: Starkov B.A.1
-
Affiliations:
- Иркутский государственный университет
- Issue: Vol 214 (2022)
- Pages: 69-75
- Section: Статьи
- URL: https://journal-vniispk.ru/2782-4438/article/view/271756
- DOI: https://doi.org/10.36535/0233-6723-2022-214-69-75
- ID: 271756
Cite item
Full Text
Abstract
In this paper, we describe a method for composing binary matrices based on the generalization of Pascal’s triangle. The method of parameterization of these binary matrices by choosing certain generatrices is discussed and the properties of this construction are examined. We also present a well-known method for constructing a binary matrix by reducing the Pascal triangle by a simple or composite modulus and compare it with the method proposed in this paper. The fractal properties of these binary matrices are considered, and possible applications of fractal properties are presented.
About the authors
B. A. Starkov
Иркутский государственный университет
Author for correspondence.
Email: stsibrus@gmail.com
Russian Federation, Иркутск
References
- Бондаренко Б. А. Обобщенные треугольники и пирамиды Паскаля, их фрактали, графы и приложения. — Ташкент: Фан, 1990.
- Доррер Г. А. Математические модели динамики лесных пожаров. — М.: Лесная промышленность, 1979.
- Ким Й., Джаггард Д. Л. Фрагментарно-самоподобные (фрактальные) случайные решетки// Тр. Инта инж. электротехн. электрон. — 1986. — 74. — С. 124-126.
- Кузьмин О. В. Обобщенные пирамиды Паскаля и их приложения. — Новосибирск: Наука, 2000.
- Нигматулин P. Н. Основы механики гетерогенных сред. — М.: Наука, 1978.
- Шур А. М. Комбинаторика слов. — Екатеринбург: Изд-во Уральского ун-та, 2003.
- Al-Kadi O.S, Watson D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images// IEEE Trans. Biomed. Eng. — 2008. — 55, № 7. — P. 1822-1830.
- Balagura A. A., Kuzmin O. V. Generalised Pascal pyramids and their reciprocals// Discr. Math. Appl. — 2007. — 17, № 6. — P. 619-628.
- DubucB., Quiniou J., Roques-Carmes C, Tricot C., Zucker S. Evaluating the fractal dimension of profiles// Phys. Rev. A. — 1989. — 39, № 3. — P. 1500-1512.
- Fulkerson D. R. Zero-one matrices with zero trace// Pac. J. Math. — 1960. — 10. — P. 831-836.
- King R. D. Characterization of atrophic changes in the cerebral cortex using fractal dimensional analysis// Brain Imaging Behav. — 2009. — 3, № 2. — P. 154-166.
- Kuzmin O. V., Balagura A. A., Kuzmina V. V., Khudonogov I. A. Partially ordered sets and combinatory objects of the pyramidal structure// Adv. Appl. Discr. Math. — 2019. — 20, № 2. — P. 229-236.
- Kuzmin O. V., Seregina M. V. Plane sections of the generalized Pascal pyramid and their interpretations// Discr. Math. Appl. — 2010. — 20, № 4. — P. 377-389.
- Kuzmin O. V., Starkov B. A. Application of hierarchical structures based on binary matrices with the generalized arithmetic of Pascal’s triangle in route building problems// J. Phys. Conf. Ser. — 2021. — 1847. — 012030.
- Mandelbrot B. B. Fractals: Form, Chance and Dimension. — Echo Point Books & Media, 2020.
- Richardson L. F. The problem of contiguity: an appendix to statistics of deadly quarrels// Gen. Syst. Yearbook. — 1961. — 6. — P. 139-187.
- Ryser H. J. Matrices of zeros and ones// Bull. Am. Math. Soc. — 1960. — 66. — P. 442-464.
- Wolfram S. Geometry of binomial coefficients// Am. Math. Month. — 1984. — 91. — P. 566-571.
Supplementary files
