Влияние различных факторов на прогибы и прочность профилированного настила в стадии бетонирования сталежелезобетонной плиты

Обложка

Цитировать

Полный текст

Аннотация

Целью работы являлось изучение влияния пролета, толщины плиты, марки и толщины профлиста на прогибы профилированного настила в стадии бетонирования сталежелезобетонной плиты. Объектом исследования являлись ортотропные сталежелезобетонные плиты перекрытий, выполненные по несъемной опалубке в виде профилированного настила марок Н75, Н144, Н153 по ГОСТ 24045–2016 и TRP200 по ГОСТ Р 52246, толщиной 0,7–1,5 мм. Применялся расчетно-аналитический метод исследования на основе действующих в РФ нормативных документов. По итогам исследования проанализировано влияние прогибов и прочности профнастила на применимость различных пролетов профнастила в диапазоне от 3 до 6 м в стадии бетонирования сталежелезобетонной плиты. Предложены рекомендации по ограничению применения малых толщин профлиста 0,7–1,0 мм для пролетов свыше 4 м для плит толщиной менее 250 мм при марке профлиста Н114 и Н153 по ГОСТ 24045–2016. Даны рекомендации по установке временных инвентарных опор для всех пролетов сталежелезобетонных перекрытий при использовании толщин профнастила 0,7–0,9 мм для марки Н75 по ГОСТ 24045–2016. Полученные данные могут использоваться при проектировании сталежелезобетонных плит перекрытий и при обследовании технического состояния возведенных конструкций.

Об авторах

Ю. А. Шапошникова

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: yuliatalyzova@yandex.ru
ORCID iD: 0000-0001-7740-9400
SPIN-код: 2131-2252

Список литературы

  1. Бабалич В.С., Андросов Е.Н. Сталежелезобетонные конструкции и перспектива их применения в строительной практике России // Успехи современной науки. 2017. № 4. С. 205–208.
  2. Егоров П.И., Королев С.А. Сталежелезобетонные перекрытия // Дальний Восток: проблемы развития архитектурно-строительного комплекса. 2015. № 1. С. 310–313.
  3. Hsu C.T.T., Punurai S., Punurai W., Majdi Y. New composite beams having cold-formed steel joists and concrete slab // Engineering Structures. 2014. Vol. 71. Pр. 187–200. doi: 10.1016/j.engstruct.2014.04.011
  4. Тамразян А.Г., Арутюнян С.Н. Исследование начальных напряжений и прогибов профнастила, возникающих при возведении сталежелезобетонных плит перекрытий // Безопасность строительного фонда России. Проблемы и решения. 2017. C. 139–146.
  5. Замалиев Ф.С., Биккинин Э.Г. Основные факторы, влияющие на начальное напряженно-деформированное состояние сталежелезобетонных конструкций // Известия Казанского государственного архитектурно-строительного университета. 2015. № 4 (34). C. 161–165.
  6. Шапошникова Ю.А. Анализ влияния различных факторов на прогибы профилированного настила в стадии бетонирования плиты // Инженерный вестник Дона. 2024. № 5.
  7. Тонких Г.П., Чесноков Д.А. Расчет уголковых анкерных упоров в сталежелезобетонных перекрытиях по профилированному настилу // Промышленное и гражданское строительство. 2022. № 7. С. 17–23.
  8. Kanchana D.A., Ramanjaneyulu K., Gandhi P. Shear resistance of embedded connection of composite girder with corrugated steel web // Journal of Constructional Steel Research. 2021. No. 187 (2). Р. 106994. doi: 10.1016/j.jcsr.2021.106994
  9. Гимранов Л.Р., Фаттахова А.И. Определение усилия в гибком упоре комбинированной плиты с использованием профилированного настила // Вестник МГСУ. 2021. Том 16. № 8. С. 997–1005. doi: 10.22227/1997-0935.2021.8.997-1005
  10. Замалиев Ф.С., Закиров М.А. Некоторые результаты численных исследований сталежелезобетонных перекрытий // Известия Казанского государственного архитектурно-строительного университета. 2015. No. 3 (33). Pр. 56–63.
  11. Alsharari F., El-Zohairy A., Salim H., El-Sisi A.E. Numerical investigation of the monotonic behavior of strengthened Steel-Concrete composite girders // Engineering Structures. 2021. Vol. 246. P. 113081. doi: 10.1016/j.engstruct.2021.113081
  12. Tamayo J.L.P., Franco M.I., Morsch I.B., Désir J.M., Wayar A.M.M. Some aspects of nu-merical modeling of steel-concrete composite beams with prestressed tendons // Latin American Jour-nal of Solids and Structures. 2019. Vol. 16. Issue 7. doi: 10.1590/1679-78255599
  13. Albarram A., Qureshi J. Abbas A. Effect of rib geometry in steel-concrete composite beams with deep profiled sheeting // International Journal of Steel Structures. 2020. No. 20 (3). Pр. 931–953. doi: 10.1007/s13296-020-00333-5
  14. Jurkiewiez B., Braymand S. Experimental study of a pre-cracked steel-concrete composite beam // Journal of Construc-tional Steel Research. 2007. Vol. 63. No. 1. Pр. 135–144. doi: 10.1016/j.jcsr.2006.03.013
  15. Тамразян А.Г., Арутюнян С.Н. К оценке надежности сталежелезобетонных плит перекрытий с профилированными настилами // Вестник гражданских инженеров. 2015. № 6 (53). С. 52–57.
  16. Замалиев Ф.С., Тамразян А.Г. К расчету сталежелезобетонных ребристых плит для восстанавливаемых перекрытий // Строительство и реконструкция. 2021. No. 5 (97). Pр. 3–15. doi: 10.33979/2073-7416-2021-97-5-3-15
  17. Ahmed I.M., Tsavdaridis K.D. The evolution of composite flooring systems: applications, testing, modelling and Eurocode design approaches // Journal of Constructional Steel Research. 2019. No. 155. Pр. 286–300. doi: 10.1016/j.jcsr.2019.01.007
  18. Vasdravellis G., Uy B., Tan E.L., Kirkland B. Behaviour and design of composite beams subjected to sagging bending and axial compression Original Research // Journal of Constructional Steel Research. 2015. No. 110. Pр. 29–39. doi: 10.1016/j.jcsr.2015.03.010
  19. Porter M.L., Eckberg C.E. Design Recommendations for Steel Deck Floor Slabs // ASCE Journal of the Structural Division. New York, 1976. No. 11 (102).
  20. Bedov A.I., Shaposhnikova Yu.A. Bearing capacity of steel-reinforced concrete floor elements before the operation period // Magazine of Civil Engineering. 2024. No. 17 (1). Article no. 12501. doi: 10.34910/MCE.125.1
  21. Dujmovic D., Androić B., Lukačević I. Calculation of Simply Supported Composite Beam According to the Plastic Resistance of the Cross-Section // Composite Structures According to Eurocode 4. 2015. doi: 10.1002/9783433604908.ch8

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».