THE METHOD FOR CO-REGISTRATION OF DIGITAL TERRAIN DATA TO OBTAIN HYDROLOGICALLY CORRECT MODEL OF THE EARTH’S SURFACE1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There are problems with the co-registration of digital terrain models which were created by drones to obtain useful data for a numerical hydrological or erosional modeling. The different surveys can be produced at different time of a day, in various seasons or even years, making it difficult spatially reference the data. Many co-registration algorithms usually perform the statistical fitting of point clouds or raster models. Such approach violates the hydrological correctness of the final data, it makes artifacts appearing, such as various escarps and visible joints. The search for the contour of “zero error” on the raster of elevations difference is the bases of presented algorithm. This contour is used for the stitching of original elevation models together. As criteria for the quality assessment of the final elevation models are used: 1) the statistical distributions of slope gradient, i.e. parameter that affects the results of modeling the water and sediment flows, slope stability, etc., 2) the constancy of the microcatchments geometric structure. The algorithm was tested on three sites located in plain, low-mountain and mid-mountain zones. In all examples, the high efficiency of the method was shown. At the same time, the technique was constructed for keeping the significant features of terrain morphology in data. The average slope does not deviate by more than 1° in comparison with the original data. The Spearman rank correlation of the slope varies in different cases at 0.9–0.99 (with an average value of 0.96). The coefficients of geometric similarity of microcatchment patterns on the final models in all cases show even larger values (1.09) than on the original data without any correction (0.98) in the areas their overlap.

About the authors

S. V. Kharchenko

Lomonosov Moscow State University, Faculty of Geography; Institute of Geography RAS

Author for correspondence.
Email: xar4enkkoff@yandex.ru
Russia, Moscow; Russia, Moscow

References

  1. Beyer R.A., Alexandrov O., Moratto Z.M. (2014). Aligning terrain model and laser altimeter point clouds with the Ames Stereo Pipeline. Lunar and Planetary Science Conference. No. 1777. P. 2902.
  2. Debella-Gilo M., Kääb A. (2011). Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sensing of Environment. Vol. 115. No. 1. P. 130–142. https://doi.org/10.1016/j.rse.2010.08.012
  3. Gafurov A. (2021). The methodological aspects of constructing a high-resolution DEM of large territories using low-cost UAVs on the example of the Sarycum aeolian complex, Dagestan, Russia. Drones. Vol. 5. No. 1. P. 7. https://doi.org/10.3390/drones5010007
  4. Hackney C., Clayton A. (2015). Unmanned Aerial Vehicles (UAVs) and their application in geomorphic mapping. Geomorphological Techniques (Eds. Clarke L., Nield J.M.). London, GB: British Society of Geomorphology. P. 1–12.
  5. Hargrove W.W., Hoffman F.M., Hessburg P.F. (2006). Mapcurves: a quantitative method for comparing categorical maps. Journal of Geographical Systems. Vol. 8. No. 2. P. 187–208. https://doi.org/10.1007/s10109-006-0025-x
  6. James M.R., Chandler J.H., Eltner A. et al. (2019). Guidelines on the use of structure-from-motion photogrammetry in geomorphic research. Earth Surface Processes and Landforms. Vol. 44 (10). P. 2081–2084. https://doi.org/10.1002/esp.4637
  7. Kaiser A., Erhardt A., Eltner A. (2018). Addressing uncertainties in interpreting soil surface changes by multitemporal high-resolution topography data across scales. Land degradation & development. Vol. 29 (8). P. 2264–2277. https://doi.org/10.1002/ldr.2967
  8. Kenward T., Lettenmaier D.P., Wood E.F., Fielding E. (2000). Effects of digital elevation model accuracy on hydrologic predictions. Remote Sensing of Environment. Vol. 74 (3). P. 432–444. https://doi.org/10.1016/S0034-4257(00)00136-X
  9. Leitão J.P., De Vitry M.M., Scheidegger A., Rieckermann J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences. Vol. 20. No. 4. P. 1637–1653. http://dx.doi.org/10.5194/hess-20-1637-2016
  10. Li H., Deng Q., Wang L. (2017). Automatic co-registration of digital elevation models based on centroids of subwatersheds. IEEE Transactions on Geoscience and Remote Sensing. Vol. 55. No. 11. P. 6639–6650. https://doi.org/10.1109/TGRS.2017.2731048
  11. Niitsuma H., Maruyama T. (2010). Sum of absolute difference implementations for image processing on FPGAs. 2010 International Conference on Field Programmable Logic and Applications. P. 167–170.
  12. Nuth C., Kääb A. (2011). Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere. Vol. 5. P. 271–290. https://doi.org/10.5194/tc-5-271-2011
  13. Psarakis E., Evangelidis G. (2005). An Enhanced Correlation-Based Method for Stereo Correspondence with Sub-Pixel Accuracy. 10th IEEE International Conference on Computer Vision (ICCV), Oct 2005, Beijing, China. P. 907–912. https://doi.org/ff10.1109/ICCV.2005.33f
  14. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [Electronic data]. Access way: https://www.r-project.org (access date: 01.01.2022)
  15. Revuelto J., López-Moreno J.I., Alonso-González E. (2021). Light and shadow in mapping alpine snowpack with unmanned aerial vehicles in the absence of ground control points. Water Resources Research. Vol. 57. No. 6. P. e2020WR028980. http://dx.doi.org/10.1029/2020WR028980
  16. Sergeikharchenko/rhydrodemcoreg: The R tool for DEMs coregistration with keeping of hydrologically correctness [Electronic Data]. Access way: https://github.com/sergeikharchenko/rhydrodemcoreg (access date: 01.04.2022).
  17. Shean D.E., Alexandrov O., Moratto Z.M. et al. (2016). An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. Vol. 116. P. 101–117. https://doi.org/10.1016/j.isprsjprs.2016.03.012
  18. Śledź S., Ewertowski M.W., Piekarczyk J. (2021). Applications of unmanned aerial vehicle (UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial geomorphology. Geomorphology. Vol. 378. P. 107620. http://dx.doi.org/10.1016/j.geomorph.2021.107620
  19. Walker J.P., Willgoose G.R. (1999). On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research. Vol. 35 (7). P. 2259–2268. https://doi.org/10.1029/1999WR900034
  20. Woodrow K., Lindsay J.B., Berg A.A. (2016). Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. Journal of hydrology. Vol. 540. P. 1022–1029. https://doi.org/10.1016/j.jhydrol.2016.07.018
  21. Zhengyou Zh. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision. No. 13 (12). P. 119–152.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (359KB)
4.

Download (2MB)
5.

Download (623KB)
6.

Download (1MB)
7.

Download (1MB)

Copyright (c) 2023 С.В. Харченко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».