The problem of megafloods and catafluvial deposits in understanding the quaternary History of northern Eurasia (Editorial)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Deev

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the RAS

Хат алмасуға жауапты Автор.
Email: deevev1@yandex.ru
Ресей, Novosibirsk

I. Zolnikov

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS

Email: zol@igm.nsc.ru
Ресей, Novosibirsk

R. Kurbanov

Institute of Geography RAS; Lomonosov Moscow State University

Email: roger.kurbanov@gmail.com

Faculty of Geography

Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Agatova A.R., Nepop R.K., Moska P. et al. (2023). Recent data of multidisciplinary studies of the major pleistocene climatic events: glaciations, formation of ice-dammed lakes, and their catastrophic drainage in Altai (mountains of southern Siberia). Doklady Earth Sci. V. 510. Iss. 2. P. 459–464. (in Russ.) https://doi.org/10.1134/S1028334X23600305
  2. Arzhannikov S., Arzhannikova A., Braucher R., Komatsu G. (2023). Darhad megaflood (southern Siberia): Cause, age and consequence. Quat. Int. V. 643. P. 1–21. https://doi.org/10.1016/j.quaint.2022.10.002
  3. Arzhannikov S.G., Arzhannikova A.V., Braucher R. (2024). Darhad paleolake and Darhad glacial megafloods in the context of catafluvial events in North Asia in the Late Pleistocene. Geomorfologiya i Paleogeografiya. V. 55. № 4. P. 78–110. (in Russ.) https://doi.org/10.31857/S2949178924040069
  4. Arzhannikova A.V., Arzhannikov S.G., Akulova V.V. et al. (2014). The origin of sand deposits in the South Minusa Basin. Russian Geology and Geophysics. V. 55 (10). P. 1183–1194. (in Russ.) https://doi.org/10.1016/j.rgg.2014.09.004
  5. Astakhov V.I. (2006). Evidence of Late Pleistocene ice-dammed lakes in West Siberia. Boreas. V. 35. P. 607–621. https://doi.org/10.1111/j.1502-3885.2006.tb01167.x
  6. Astakhov V.I. (2020). Chetvertichnaya geologiya sushi (Quaternary geology of land). St. Petersburg: Publishing house of St. Petersburg State University. 434 p. (in Russ.)
  7. Baker V.R. (Ed.). (1981). Catastrophic Flooding: The Origin of the Channeled Scabland. Stroudsburg, PA: Hutchinson Ross. 360 p.
  8. Baker V.R. (2013). Global Late Quaternary fluvial paleohydrology: with special emphasis on paleofloods and megafloods. Wohl E.E. (Ed.). In: Fluvial Geomorphology. Treatise in Geomorphology. V. 9. San Diego: Academic Press. Elsevier. P. 511–527.
  9. Baker V.R. (2002). High-energy megafloods: Planetary settings and sedimentary dynamics. Martini I.P., Baker V.R., Garzon G. (Eds.). In: Flood and Megaflood Deposits: Recent and Ancient Examples. International Association of Sedimentologist Special Publication. V. 32. P. 3–15.
  10. Baker V.R., Benito G., Rudoy A.N. (1993). Paleohydrology of late Pleistocene superflooding, Altay Mountains, Siberia. Science. V. 259. P. 348–350. https://doi.org/10.1126/science.259.5093.348
  11. Baker V.R., Bunker R.C. (1985). Cataclysmic late Pleistocene flooding from glacial Lake Missoula: A review. Quat. Sci. Rev. V. 4. P. 1–41. https://doi.org/10.1016/0277-3791(85)90027-7
  12. Batbaatar J., Gillespie A.R. (2016a). Outburst floods of the Maly Yenisei. Part I. Int. Geology Rev. V. 58. Iss. 14. P. 1723–1752. https://doi.org/10.1080/00206814.2015.1114908
  13. Batbaatar J., Gillespie A.R. (2016b). Outburst floods of the Maly Yenisei. Part II. Int. Geology Rev. V. 58. Iss. 14. P. 1753–1779. https://doi.org/10.1080/00206814.2016.1193452
  14. Baryshnikov G., Agatova A., Carling P. et al. (2015). Russian Altai in the Late Pleistocene and the Holocene: Geomorphological Catastrophes and Landscape Rebound. Fieldtrip Guide. Barnaul: Publishing House of Altai State University. 137 p.
  15. Baryshnikov G., Panin A., Adamiec G. (2016). Geochronology of the late Pleistocene catastrophic Biya debris flow and the Lake Teletskoye formation, Altai Region, Southern Siberia. Int. Geology Rev. V. 58. Iss. 14. P. 1780–1794. https://doi.org/10.1080/00206814.2015.1062733
  16. Bohorquez P., Carling P.A., Herget J. (2016). Dynamic simulation of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia. Int. Geology Rev. V. 58. Iss. 14. P. 1795–1817. https://doi.org/10.1080/00206814.2015.1046956
  17. Bohorquez P., Jimenez-Ruiz P.J., Carling P.A. (2019). Revisiting the dynamics of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia. Earth-Science Rev. V. 197. P. 102892. https://doi.org/10.1016/j.earscirev.2019.102892
  18. Bretz J.H. (1923). The Channeled Scabland of the Columbia plateau. J. of Geology. V. 31. P. 617–649.
  19. Butvilovskii V.V. (1993). Paleogeografiya poslednego oledeneniya i golotsena Altaya: sobytiino-katastroficheskaya model′ (The Late Glacial and Holocene paleogeography of Altai: an event-catastrophic model). Tomsk: TGU (Publ.). 253 p. (in Russ.)
  20. Carling P.A. (1996). Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology. V. 43. P. 647–664. https://doi.org/10.1111/sed.1996.43.issue-4
  21. Carling P.A. (2013). Freshwater megaflood sedimentation: what can we learn about generic processes? Earth-Science Rev. V. 125. P. 87–113. https://doi.org/10.1016/j.earscirev.2013.06.002
  22. Carling P.A., Kirkbride A.D., Parnachov S. et al. (2002). Late Quaternary catastrophic flooding in the Altai Mountains of south-central Siberia: a synoptic overview and introduction to flood deposit sedimentology. Martini I.P., Baker V.R., Garzon G. (Eds.). In: Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. Special Publication 32 of the IAS. Oxford: Blackwell Science. P. 17–35. https://doi.org/10.1002/9781444304299.ch2
  23. Deev E., Turova I., Borodovskiy A. et al. (2019). Large earthquakes in the Katun Fault zone (Gorny Altai): Paleoseismological and archaeoseismological evidence. Quat. Sci. Rev. V. 203. P. 68–89. https://doi.org/10.1016/j.quascirev.2018.11.009
  24. Deev E.V., Zolnikov I.D., Bortodovsky A.P., Goltsova S.V. (2012). Neotectonics and paleoseismicity of the lower Katun’ valley (Gorny Altai). Russian Geology and Geophysics. V. 53. Iss. 9. P. 883–894. https://doi.org/10.1016/j.rgg.2012.07.004
  25. Deev E.V., Zolnikov I.D., Goltsova S.V. et al. (2013). Traces of paleoearthquakes in the Quaternary deposits of intermontane basins in central Gorny Altai. Russian Geology and Geophysics. V. 58. Iss. 3. P. 312–323. https://doi.org/10.1016/j.rgg.2013.02.006
  26. Deev E.V., Zolnikov I.D., Turova I.V. et al. (2018). Paleoearthquakes in the Uimon basin (Gorny Altai). Russian Geology and Geophysics. V. 59. P. 437–452. https://doi.org/10.1016/j.rgg.2017.07.011
  27. Grosswald M.G., Rudoy A.N. (1996). Quaternary glacier‐dammed lakes in the mountains of Siberia. Polar Geography. V. 20. Iss. 3. P. 180–198. https://doi.org/10.1080/10889379609377599
  28. Herget J. (2005). Reconstruction of Pleistocene ice-dammed lake outburst floods in the Altai Mountains, Siberia. Special Paper of the Geological Society of America. V. 386. P. 1–118. https://doi.org/10.1130/0-8137-2386-8.1
  29. Herget J., Agatova A.R., Carling P.A., Nepop R.K. (2020). Altai megafloods – the temporal context. Earth-Science Reviews. V. 200. 102995. https://doi.org/10.1016/j.earscirev.2019.102995
  30. Ivanov A.V., Demonterova E.I., Reznitskii L.Z. et al. (2016). Catastrophic outburst and tsunami flooding of Lake Baikal: U-Pb detrital zircon provenance study of the Palaeo-Manzurka megaflood sediments. Int. Geology Rev. V. 58. Iss. 14. P. 1818–1830. https://doi.org/10.1080/00206814.2015.1064329
  31. Komatsu G., Arzhannikov S.G., Arzhannikova A.V., Ori G.G. (2007). Origin of glacial-fluvial landforms in the Azas plateau volcanic field, the Tuva Republic, Russia: Role of ice-magma interaction. Geomorphology. V. 88. P. 352–366. https://doi.org/10.1016/j.geomorph.2006.12.003
  32. Komatsu G., Arzhannikov S., Gillespie A. et al. (2009). Quaternary paleolake formation and cataclysmic flooding along the upper Yenisei River. Geomorphology. V. 104. P. 143–164. https://doi.org/10.1016/j.geomorph.2008.08.009
  33. Komatsu G., Baker V.R., Arzhannikov S.G. et al. (2016). Catastrophic flooding, palaeolakes and late Quaternary drainage reorganization in northern Eurasia. Int. Geology Rev. V. 58. P. 1693–1722. http://dx.doi.org/10.1080/00206814.2015.1048314
  34. Krivonogov S., Zolnikov I., Novikov I., Deev E. (2017). Giant glaciogenic floods in Altai: geomorphological, geological and hydrological aspects: Guidebook for field excursion at the 14th International Workshop on Present Earth Surface Processes and Longterm Environmental Changes in East Eurasia, September 15–21, 2017. Novosibirsk: Novosibirsk State University. 110 p.
  35. Margold M., Jansen J.D., Codilean A.T. et al. (2018). Repeated megafloods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60,000 years. Quat. Sci. Rev. V. 187. P. 41−46. https://doi.org/10.1016/j.quascirev.2018.03.005
  36. Novikov I.S. (2024). Geomorphological formations of the south of Western Siberia and adjacent territories. Geomorfologiya i Paleogeografiya. V. 55. № 4. P. 26–41. (in Russ.) https://doi.org/10.31857/S2949178924040037
  37. Panin A.V., Astakhov V.I., Lotsari E. et al. (2020). Middle and Late Quaternary glacial lake-outburst floods, drainage diversions and reorganization of fluvial systems in northwestern Eurasia. Earth-Science Rev. V. 201. P. 103069. https://doi.org/10.1016/j.earscirev.2019.103069
  38. Reuther A., Herget J., Ivy-Ochs S. et al. (2006). Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altay Mountains, Siberia, using cosmogenic in-situ ¹⁰Be. Geology. V. 34. P. 913–916. https://doi.org/10.1130/G22755A.1
  39. Rudoy A.N. (2002). Glacier-dammed lakes and geological work of glacial superfloods in the late Pleistocene, southern Siberia, Altai mountains. Quat. Int. V. 87. Iss. 1. P. 119–140. https://doi.org/10.1016/S1040-6182(01)00066-0
  40. Rudoy A.N., Baker V.R. (1993). Sedimentary effects of cataclysmic late Pleistocene glacial outburst flooding, Altay Mountains, Siberia. Sedimentary Geology. V. 85. Iss. 1-4. P. 53–62. https://doi.org/10.1016/0037-0738(93)90075-G
  41. Rusanov G.G., Deev E.V., Shpansky A.V. (2024). Determining the age of the megaflood event in the Biya River valley (Altai) through the study of high terrace deposits near Karabinka village. Geomorfologiya i Paleogeografiya. V. 55. № 4. P. 42–57. (in Russ.) https://doi.org/10.31857/S2949178924040044
  42. Semikolennykh D.V., Cunningham A.C., Kurbanov R.N. et al. (2022). Dating of megaflood deposits in the Russian Altai using rock surface luminescence. Quat. Geochronology. V. 73. 101373. https://doi.org/10.1016/j.quageo.2022.101373
  43. Svistunov M.I., Kurbanov R.N., Murray A.S. et al. (2022). Constraining the age of Quaternary megafloods in the Altai Mountains (Russia) using luminescence. Quat. Geochronology. V. 73. 101399. https://doi.org/10.1016/j.quageo.2022.101399
  44. Tomasson H. (1996). The jokulhlaup from Katla in 1918. Annals of Glaciology. V. 22. P. 249–254. https://doi.org/10.3189/1996AoG22-1-249-254
  45. Zolnikov I.D. (2008). Stratotypes of quaternary deposits of the Yaloman-Katun’ zone (Gorny Altai). Russian Geology and Geophysics. V. 49. No. 9. P. 682–691. https://doi.org/10.1016/j.rgg.2007.09.021
  46. Zolnikov I.D., Deev E.V. (2013). Quaternary glacial superfloods at the Gorny Altai: formation conditions and geological features. Earth Cryosphere. V. XVII. № 4. P. 74–82. (in Russ.)
  47. Zolnikov I.D., Deev E.V., Kotler S.A. et al. (2016). New results of OSL dating of Quaternary sediments in the Upper Katun’ valley (Gorny Altai) and adjacent area. Russian Geology and Geophysics. V. 57. P. 933–943. https://doi.org/10.1016/j.rgg.2015.09.022
  48. Zolnikov I.D., Filatov E.A., Novikov I.S. et al. (2024a). Megaflood deposits in the middle Yenisei River valley. Geomorfologiya i Paleogeografiya. V. 55. № 4. P. 58–77. (in Russ.) https://doi.org/10.31857/S2949178924040053
  49. Zolnikov I.D., Filatov E.A., Shpansky A.V. et al. (2024). Geological evidence of megafloods in the Upper Ob Region. Geomorfologiya i Paleogeografiya. V. 55. № 4. P. 13–25. (in Russ.) https://doi.org/10.31857/S2949178924040023
  50. Zolnikov I.D., Guskov S.A., Martysevich U.V. (2004). On the probability of the formation of a part of Quaternary paleovreezes in the north of Siberia by thermoerosion processes. Earth Cryosphere. V. VIII. Iss. 3. P. 3–10.
  51. Zolnikov I.D., Novikov I.S., Deev E.V. et al. (2021). Facies composition and stratigraphic position of the Quaternary Upper Yenisei sequence in the Tuva and Minusa depressions. Russian Geology and Geophysics. V. 62. Iss. 10. P. 1127–1138.https://doi.org/10.2113/RGG20204183

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».