Paragenetic analysis of the recent fault network in Central Altai

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Geomorphological survey revealed a network of the recently active faults that control the formation of main features of the modern relief in the central part of the Altai Mountains. A paragenetic analysis of the identified latest faults has been performed. The result of the paragenetic analysis with reconstruction of three stress fields turned out to satisfy the formal reliability criteria. In general, the results of the paragenetic analysis confirm the preliminary conclusion about the formation of the fault network of the Central Altai in three dynamic settings made after the implementation of the first stage. They made it possible to construct schemes of faults active in each of the three reconstructed stress fields. Judging by the results of the analysis, the rock massif of the central part of the Altai Mountains is at the third stage of destruction, when individual faults are connected into a complete fault network with a characteristic structural pattern, and the earth’s crust is broken into a system of blocks contacting along faults. The block subdivision of the Central Altai is formed by a system of faults forming an ensemble of a right-lateral strike-slip dislocation. As the scale of the studies increases, the number of identified faults increases as well. On the regional neotectonics maps of 1:1,000,000 scale only major ridges and depressions are expressed in the relief as boundaries of large blocks. A network of faults outlining blocks within the ridges and depressions is identified on neotectonic maps of 1:50,000 scale. In the central part of the Altai Mountains, the fault network follows the lower-level hierarchical structural patterns and orographic structure of the Greater Altai, e. g., northwestern right-lateral strike-slip faults, sublatitudinal reverse faults, and extension zones with a predominant submeridional extension. Paragenetic analysis resulted in a reliable reconstruction of the kinematic characteristics of the most recent faults of the Central Altai based on their position in the structural ensemble. The obtained schemes and settings of the recent faults can serve as a foundation for further discussion about the nature and mechanisms of crustal destruction in the region using seismological, GPS-geodetic and other materials.

About the authors

I. S. Novikov

Sobolev Institute of Geology and Mineralogy SB RAS

Author for correspondence.
Email: novikov@igm.nsc.ru
Novosibirsk, Russia

K. Z. Seminsky

Institute of the Earth’s Crust SB RAS

Email: seminsky@crust.irk.ru
Irkutsk, Russia

A. A. Krivov

Novosibirsk Higher Military Command School of the Ministry of Defense of the Russian Federation

Email: krivov_ka@mail.ru
Novosibirsk, Russia

References

  1. Bondarenko P.M. (1976) Modelirovanie nadvigovykh dislokatsii v skladchatykh oblastyakh (na primere aktashskikh struktur Gornogo Altaya) (Modeling of thrust dislocations in folded areas (using the example of the Aktash structures of the Altai Mountains)). Novosibirsk: Nauka. Sibirskoe otdelenie (Publ.). 118 p. (in Russ).
  2. Burzunova Yu.P. (2011) Angles between conjugate systems of near-fault cracks in idealized and natural parageneses formed in different dynamic environments. Litosfera. No. 2. P. 94–110 (in Russ).
  3. Calais E., Dong L., Wang M. et al. (2006) Continental deformation in Asia from a combined GPS-solution. Geophys. Res. Lett. Vol. 33. L24319. https://doi.org/10.1029/2006GL028433.2006
  4. Cunningham W.D., Windley B.F., Dorjnamjaa D. et al. (1996) A structural transect across the Mongolian Western Altai: Active transpressional mountain building in central Asia. Tectonics. Vol. 15. Iss. 1. P. 142–156. https://doi.org/10.1029/95TC02354
  5. Dergunov A.B. (1972) Structures of compression and extension in the east of Altai in Quaternary time. Geotectonika. No. 3. P. 99–110 (in Russ).
  6. Ding Guoyu. (1984) Active faults in China. In: A collection of papers of International Symposium on continental seismicity and earthquake prediction (ISCSEP). Beijing: Seismol. Press. P. 225–242.
  7. England P., Molnar P. (1997) The field of crustal velocity in Asia calculated from Quaternary rates of slip-on faults. Geophysics J. Int. Vol. 130. Iss. 3. P. 551–582. https://doi.org/10.1111/j.1365-246X.1997.tb01853.x
  8. England P., Molnar P. (2005) Late Quaternary to decadal velocity fields in Asia. J. Geophys. Res. Vol. 110. Iss. B12. B12401. https://doi.org/10.1029/2004JB003541
  9. Hancock P.L. (1985) Brittle microtectonics: Principles and practice. J. Struct. Geol. Vol. 7. No. 3-4. P. 437–457. https://doi.org/10.1016/0191-8141(85)90048-3
  10. Harding T.P. (1974) Petroleum traps associated with wrench faults. AAPG Bull. Vol. 58. P. 365–378. https://doi.org/10.1306/83D91669-16C7-11D7-8645000102C1865D
  11. Khilko S.D., Kurushin R.A., Kochetkov V.M. et al. (1985) Earthquakes and fundamentals of seismic zoning of Mongolia. Moscow: Nauka (Publ.). 225 p. (in Russ).
  12. Kim Y.S., Peacock D.C.P., Sanderson D.J. (2004) Fault damage zones. J. of Struct. Geology. Vol. 26. Iss. 3. P. 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
  13. Naylor M.A., Mandl G., Superteijn C.H.K. (1986) Fault geometries in basement-induced wrench faulting under different initial stress states. J. Struct. Geology. Vol. 8. No. 7. P. 737–752.
  14. Novikov I.S. (1996) Geomorphological Effects of Intracontinental Collision on the Example of Gorny Altay. Russian Geology and Geophysics. Vol. 37. No. 11. Р. 51–58.
  15. Novikov I.S. (2001) Сenozoic Strike-slip Tectonics in Altai. Russian Geology and Geophysics. Vol. 42. No. 9. Р. 1311–1321.
  16. Novikov I.S. (2013) Reconstructing the stages of orogeny around the Junggar basin from the lithostratigraphy of Late Paleozoic, Mesozoic, and Cenozoic sediments. Russian Geology and Geophysics. Vol. 54. No. 2. P. 138–152. https://doi.org/10.1016/j.rgg.2013.01.002
  17. Novikov I.S. (2004) Morfotektonika Altaya (Morphotectonics of Altai). Novosibirsk: SB RAS. GEO (Publ.). 313 p. (in Russ).
  18. Novikov I.S., Dyad’kov P.G., Kozlova M.P. et al. (2014) Recent tectonics and seismicity of the western Altai–Sayan mountainous region, Junggar basin, and Chinese Tien Shan. Russian Geology and Geophysics. Vol. 55. No. 12. P. 1441–1451. https://doi.org/10.1016/j.rgg.2014.11.008
  19. Novikov I.S., Sokol E.V. (2007) Combustion metamorphic events as age markers of orogenic movements in Central Asia. Acta Petrologica Sinica. Vol. 23. No. 7. P. 1561–1572.
  20. Novikov I.S., Vysotsky E.M., Agatova A.R. (2004) Neotectonic Type Structure of Contraction, Shear, and Extension of the Northern Part of Great Altai. Russian Geology and Geophysics. Vol. 45. No. 11. Р. 1248–1258.
  21. Novikov I.S., Zolnikov I.D., Glushkova N.V. et al. (2023) The relationship between fault ensembles of Paleozoic and Cenozoic age in the western part of the Altai-Sayan folded region. Geodinamika i tektonofizika. Vol. 14. No. 3. P. 1–12 (in Russ). https://doi.org/10.5800/GT-2023-14-3-0705
  22. Obruchev V.A. (1915) Altai sketches (second sketch). On the tectonics of Russian Altai. Zemlevedenie. No. 3. P. 1–71. (in Russ).
  23. Seminsky K. Zh. (1994) Principles and stages of special mapping of a fault-block structure based on the study of fracturing. Geologia i geofizika. No. 9. P. 112–130 (in Russ).
  24. Seminsky K. Zh. (2003) Vnutrennyaya struktura kontinental’nykh razlomnykh zon. Tektonofizicheskii aspekt (Internal structure of continental fault zones. Tectonophysical aspect). Novosibirsk: SB RAS. GEO (Publ.). 243 p. (in Russ).
  25. Seminsky K. Zh. (2014) Special mapping of fault zones of the earth’s crust. Article 1: Theoretical foundations and principles. Geodinamika i tektonofizika. Vol. 5. No. 2. P. 445–467 (in Russ).
  26. Seminsky K. Zh. (2015) Special mapping of fault zones of the earth’s crust. Article 2: Main stages and prospects. Geodinamika i tektonofizika. Vol. 6. No. 1. P. 1–43 (in Russ).
  27. Sherman S.I., Bornyakov S.A., Buddo V.Yu. (1983) Oblasti dinamicheskogo vliyaniya razlomov (rezul’taty modelirovaniya) (Areas of dynamic influence of faults (modeling results)). Novosibirsk: Nauka (Publ.). 112 p. (in Russ).
  28. Shi Jianbang, Feng Xianyue, Ge Shumo et al. (1984) The Fuyun earthquake fault zone in Xinjiang, China. In: A collection of papers of International Symposium on continental seismicity and earthquake prediction (ISCSEP). Beijing: Seismol. Press. P. 225–242.
  29. Sylvester A.G. (1988) Strike-slip faults. GSA Bull. Vol. 100. No. 11. P. 1666–1703. https://doi.org/10.1130/0016-7606(1988)100<1666: SSF>2.3.CO;2
  30. Tchalenko J.S. (1970) Similarities between shear zones of different magnitudes. GSA Bull. Vol. 81. No. 6. P. 1625–1640. https://doi.org/10.1130/0016-7606(1970)81[1625: SBSZOD]2.0.CO;2
  31. Timofeev V. Yu., Ardyukov V.G., Timofeev A.V., Boyko E.V. (2019) Modern movements of the earth’s surface in Gorny Altai according to GPS observations. Geodinamika i tektonofizika. Vol. 10. No. 1. P. 123–146 (in Russ). https://doi.org/10.5800/GT-2019-10-1-0407
  32. Trifonov V.G. (1985) Features of the development of active faults. Geotectonika. No. 2. P. 16–26 (in Russ).
  33. Trifonov V.G. Makarov V.I. (1988) Active faults (Mongolia). In: Neotektonika i sovremennaya geodinamika podvizhnykh poyasov. Moscow: Nauka (Publ.). P. 239–272.
  34. Vysotsky E.M., Novikov I.S., Lunina O.V. et al. (2021) Coseismic surface ruptures of the 2003 Chuya earthquake (Gorny Altai): slip geometry and spatial patterns. Russian Geology and Geophysics. Vol. 62. No. 3. Р. 781–792. https://doi.org/10.2113/RGG20194133
  35. Wilcox R.E., Harding T.P., Seely D.R. (1973) Basic wrench tectonics. AAPG Bull. Vol. 57. P. 74–96. https://doi.org/10.1306/819A424A-16C5-11D7-8645000102C1865D
  36. Yang S.-M., Wang Q., You X.-Z. (2005) Numerical analysis of contemporary horizontal tectonic deformation fields in China from GPS data. Acta Seismologica Sinica. Vol. 18. P. 135–146. https://doi.org/10.1007/s11589-005-0060-6
  37. Zhao B., Huang Y., Zhang C. et al. (2015) Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geodesy and geodynamics. Vol. 6. No. 1. P. 7–15. https://doi.org/10.1016/j.geog.2014.12.006уу
  38. Zhimulev F.I., Vetrov E.V., Novikov I.S. et al. (2021) Mesozoic Intracontinental Orogeny in the Tectonic History of the Kolyvan’– Tomsk Folded Zone (Southern Siberia): a Synthesis of Geological Data and results of Apatite Fission Track Analysis. Russian Geology and Geophysics. Vol. 62. No. 4. P. 1006–1020. https://doi.org/10.2113/RGG20204172

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».