A Method for Balancing Latency and Data Loss in High-Density Heterogeneous Internet of Things Networks
- Авторлар: Hoang P.N.1, Paramonov A.I.1
-
Мекемелер:
- The Bonch-Bruevich Saint Petersburg State University of Telecommunications
- Шығарылым: Том 3, № 2 (2025)
- Беттер: С5
- Бөлім: Articles
- URL: https://journal-vniispk.ru/3034-2201/article/view/352479
- EDN: https://elibrary.ru/BBAFJR
- ID: 352479
Дәйексөз келтіру
Толық мәтін
Аннотация
Problem statement. The growing number of devices in heterogeneous Internet of Things networks creates an additional load on limited radio resources, which complicates ensuring stability and quality of data transmission. Heterogeneous communication subchannels have different characteristics that require effective load balancing mechanisms. The development of methods to minimize data transmission delay and reduce the likelihood of packet loss is especially relevant for high-density Internet of Things networks, where resource management becomes critical. The aim of the work is to improve the efficiency of data transmission in a high-density heterogeneous Internet of Things network. Methods used. The work uses optimization methods, the gray wolf pack algorithm, queuing theory and probabilistic analysis. Novelty. The method proposed in the article takes into account the individual characteristics of subchannels and provides dynamic load distribution. This allows adapting the solution to different types of heterogeneous networks, reducing delay and data loss. Result. A mathematical model describing data transmission through several communication subchannels and an objective function combining the average data transmission delay and the probability of packet loss have been developed. Analytical expressions for key network characteristics, such as the probability of loss and average delay, have been derived. Practical significance. The developed model and method can be used in the design of devices and networks of high-density heterogeneous Internet of Things networks in order to improve their efficiency.
Авторлар туралы
Ph. Hoang
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Хат алмасуға жауапты Автор.
Email: khoang.fn@sut.ru
Postgraduate Student at the Department of Communication Networks and Data Transmission St. Petersburg, 193232
A. Paramonov
The Bonch-Bruevich Saint Petersburg State University of Telecommunications
Email: paramonov@sut.ru
Holder of an Advanced Doctorate in Technical Sciences, Associate Professor, Professor at the Department of Communication Networks and Data Transmission St. Petersburg, 193232
Әдебиет тізімі
- Al-Sarawi S., Anbar M., Abdullah R., Al Hawariet A. B. Internet of Things Market Analysis Forecasts, 2020–2030 // Proceedings of Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4,27–28 July 2020, London, UK). IEEE, 2020. PP. 449–453. doi: 10.1109/WorldS450073.2020.9210375
- Vlasenko M., Khlaponin Yu. The Internet of Things (IoT) in World Practice: Review and Analysis // Pidvodni Tehnologii. 2024. Iss. 13. PP. 21–27. doi: 10.32347/uwt.2023.13.1202. EDN: OYEIHQ
- Noaman M., Khan M. S., Abrar M. F., Ali S., Alvi A., et al. Challenges in integration of Heterogeneous Internet of Things // Scientific Programming. 2022. P. 8626882. doi: 10.1155/2022/8626882. EDN: KXZSPZ
- Paramonov A., Koucheryavy A., Tonkikh E., Tatarnikova T. M. High Density Internet of Things Network Analysis // Internet of Things, Smart Spaces, and Next Generation Networks and Systems: Proceedings of the 20th International Conference NEW2AN 2020, and 13th Conference ruSMART 2020 (St. Petersburg, Russia, 26–28 August 2020). Part I. (Lecture Notes in Computer Science. 2020. Vol. 12525). PP. 307–316. doi: 10.1007/978-3-030-65726-0_27. EDN: FGGLAB
- Парамонов А. И., Бушеленков С. Н. Модель сети доступа Интернета вещей на основе решетчатой структуры // Информационные технологии и телекоммуникации. 2021. Т. 9. № 1. С. 37–46. doi: 10.31854/2307-1303-2021-9-1-37-46. EDN: VJDKGX
- Бушеленков С. Н., Парамонов А. И. Метод выбора маршрутов в беспроводной сети Интернета вещей высокой плотности // Электросвязь. 2021. № 12. С. 14–20. doi: 10.34832/ELSV.2021.25.12.001. EDN: YJVLGZ
- Ateya A. A., Bushelenkov S., Muthanna A., Paramonov A., Koucheryavy A., et al. Multipath Routing Scheme for Optimum Data Transmission in Dense Internet of Things // Mathematics. 2023. Vol. 11. Iss. 19. P. 4168. doi: 10.3390/math11194168. EDN: ZQDDWQ
- Парамонов А. И., Бушеленков С. Н. Анализ методов повышения эффективности сетей IoT // Информационные технологии и телекоммуникации. 2022. Т. 10. № 2. С. 36–52. doi: 10.31854/2307-1303-2022-10-2-36-52. EDN: JNZPDL
- Бушеленков С. Н., Парамонов А. И. Анализ и формирование структуры сети Интернета вещей на основе моделей решеток // Электросвязь. 2021. № 7. С. 23–28. doi: 10.34832/ELSV.2021.20.7.002. EDN: JIBLHT
- Qiu T., Chen N., Li K., Atiquzzaman M., Zhao W. How Can Heterogeneous Internet of Things Build Our Future: A Survey // IEEE Communications Surveys & Tutorials. 2018. Vol. 20. Iss. 3. PP. 2011–2027. doi: 10.1109/COMST.2018.2803740. EDN: YFGIPJ
- Кучерявый А. Е., Окунева Д. В., Парамонов А. И., Хоанг Н. Ф. Методы распределения трафика в гетерогенной сети Интернета вещей высокой плотности // Труды учебных заведений связи. 2024. Т. 10. № 2. С. 67–74. doi: 10.31854/1813-324X-2024-10-2-67-74. EDN: RTNVEU
- Зелигер Н. Б., Чугреев О. С., Яновский Г. Г. Проектирование сетей и систем передачи дискретных сообщений. М.: Радио и связь, 1984. 173 с.
- Little J. D. C. OR FORUM ‒ Little’s Law as Viewed on Its 50th Anniversary // Operations Research. 2011. Vol. 59. Iss. 3. PP. 536–549. doi: 10.1287/opre.1110.0940
- Mirjalili S., Mirjalili S. M., Lewis A. Grey Wolf Optimizer // Advances in Engineering Software. 2014. Vol. 69. PP. 46–61. doi: 10.1016/j.advengsoft.2013.12.007
Қосымша файлдар
