Multi-targeted molecular docking, pharmacokinetic analysis, and drug-likeness evaluation of alkaloids for anti-diabetic drug development
- Авторы: Meressa A.1, Girma B.1, Negassa T.1, Nigussie G.1, Kasahun M.1, Abdisa N.1, Ashenef S.1, Taye S.1, Belitibo D.B.1, Animaw Z.1, Wakene W.1, Akele B.1, Endale M.1
-
Учреждения:
- Выпуск: Том 2, № 1 (2025)
- Страницы: 53-68
- Раздел: Статьи
- URL: https://journal-vniispk.ru/3034-4700/article/view/303895
- DOI: https://doi.org/10.47093/3034-4700.2025.2.1.53-68
- ID: 303895
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
A. Meressa
Email: asfawmeresa03@gmail.com
B. Girma
T. Negassa
G. Nigussie
M. Kasahun
N. Abdisa
S. Ashenef
S. Taye
D. B. Belitibo
Z. Animaw
W. Wakene
B. Akele
M. Endale
Список литературы
- Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843.
- Dunachie S, Chamnan P. The double burden of diabetes and global infection in low and middle-income countries. Trans R Soc Trop Med Hyg. 2019;113(2):56-64. doi: 10.1093/trstmh/try124.
- Liu J, Bai R, Chai Z, et al. Lowand middle-income countries demonstrate rapid growth of type 2 diabetes: an analysis based on Global Burden of Disease 19902019 data. Diabetologia. 2022;65(8):1339-1352. doi: 10.1007/s00125-022-05713-6.
- Azevedo MJ. The State of Health System(s) in Africa: Challenges and Opportunities. In: Azevedo MJ. Historical Perspectives on the State of Health and Health Systems in Africa, Volume II. Palgrave Macmillan Cham. 2017;1-73.
- Zekewos A, Loha E, Egeno T, et al. Prevalence of Diabetes Mellitus and Associated Factors in Southern Ethiopia: A Community Based Study. Ethiop J Health Sci. 2018;28(4):451-460. doi: 10.4314/ejhs.v28i4.11.
- Papatheodorou K, Banach M, Bekiari E, et al. Complications of Diabetes 2017. J Diabetes Res. 2018;2018:3086167. doi: 10.1155/2018/3086167.
- Ganesan K, Rana MBM, Sultan S. Oral Hypoglycemic Medications. In: StatPearls. Treasure Island (FL): StatPearls. 2023.
- Adachi T, El-Hattab AW, Jain R, et al. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. Int J Environ Res Public Health. 2023;20(6):4732. doi: 10.3390/ijerph20064732.
- Hameed I, Masoodi SR, Mir SA, et al. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes. 2015;6(4):598-612. doi: 10.4239/wjd.v6.i4.598.
- Damián-Medina K, Salinas-Moreno Y, Milenkovic D, et al. In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon. 2020;6(3):e03632. doi: 10.1016/j.heliyon.2020.e03632.
- Elkhalifa AEO, Al-Shammari E, Adnan M, et al. Development and Characterization of Novel Biopolymer Derived from Abelmoschus esculentus L. Extract and Its Antidiabetic Potential. Molecules. 2021;26(12):3609. doi: 10.3390/molecules26123609.
- Amssayef A, Eddouks M. Alkaloids as Promising Agents for the Management of Insulin Resistance: A Review. Curr Pharm Des. 2023;29(39):3123-3136. doi: 10.2174/0113816128270340231121043038.
- Gutiérrez-Grijalva EP, Contreras L, Emus-Medina A, Heredia JB. Plant Alkaloids with Antidiabetic Potential. In: Chen H, Zhang M. Structure and Health Effects of Natural Products on Diabetes Mellitus. Springer Singapore; 2021:251-266.
- Blahova J, Martiniakova M, Babikova M, et al. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel). 2021;14(8):806. doi: 10.3390/ph14080806.
- Shanmugam KR, Shanmugam B, Subbaiah GV, et al. Medicinal Plants and Bioactive Compounds for Diabetes Management: Important Advances in Drug Discovery. Curr Pharm Des. 2021;27(6):763-774. doi: 10.2174/1381612826666200928160357.
- Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev. 2013;66(1):334-95. doi: 10.1124/pr.112.007336.
- Wu F, Zhou Y, Li L, et al. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front Chem. 2020;8:726. doi: 10.3389/fchem.2020.00726.
- Agu PC, Afiukwa CA, Orji OU, et al. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023;13(1):13398. doi: 10.1038/s41598-023-40160-2.
- Behl T, Gupta A, Albratty M, et al. Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules. 2022;27(18):5851. doi: 10.3390/molecules27185851.
- Sharma S, Sharma A, Gupta U (2021) Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against Mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1.0.0. Ann Antivir Antiretrovir. 2021;5(1):028-032. doi: 10.17352/aaa.000013
- Rahman N, Muhammad I; Gul-E-Nayab; et al. Molecular Docking of Isolated Alkaloids for Possible -Glucosidase Inhibition. Biomolecules. 2019;9(10):544. doi: 10.3390/biom9100544.
- Ragab FA, Yahya TA, El-Naa MM, Arafa RK. Design, synthesis and structure-activity relationship of novel semi-synthetic flavonoids as antiproliferative agents. Eur J Med Chem. 2014;82:506-20. doi: 10.1016/j.ejmech.2014.06.007.
- O'Boyle NM, Banck M, James CA, et al. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33.
- Tiong SH, Looi CY, Hazni H, et al. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013;18(8):9770-84. doi: 10.3390/molecules18089770.
- Alam S, Sarker MMR, Sultana TN, et al. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne). 2022;13:800714. doi: 10.3389/fendo.2022.800714.
- Salehi B, Ata A, V Anil Kumar N, et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules. 2019;9(10):551. doi: 10.3390/biom9100551.
- Aba, PE, Asuzu, IU. Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. Indian Journal of Natural Products and Resources. 2018; 9:85-96.
- Sharma R, Bolleddu R, Maji JK, et al. In-Vitro α-amylase, α-glucosidase Inhibitory Activities and In-Vivo Anti-Hyperglycemic Potential of Different Dosage Forms of Guduchi (Tinospora CordifoliaMiers) Prepared With Ayurvedic Bhavana Process. Front Pharmacol. 2021;12:642300. doi: 10.3389/fphar.2021.642300.
- Seal S, Kar S, Pal S, et al., Alkaloids of Natural Origin with Promising Anti-Diabetic Properties. In: Odoh UE, Tijani H, Egbuna C. Advances in Pharmacognosy and Phytochemistry of Diabetes. Intelligentsia publishing service; 2024:61-83.
- Meng FC, Wu ZF, Yin ZQ, et al. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med. 2018;13:13. doi: 10.1186/s13020-018-0171-3.
- Gao H, Huang YN, Gao B, et al J. Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chem. 2008;108(3):965-72. doi: 10.1016/j.foodchem.2007.12.002.
- Abd El-Wahab AE, Ghareeb DA, Sarhan EE, et al. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetyl-cholinesterase, anti-diabetic and anticancer effects. BMC Complement Altern Med. 2013;13:218. doi: 10.1186/1472-6882-13-218.
- Bonaccini C, Chioccioli M, Parmeggiani C et al., Synthesis, biological evaluation and docking studies of casuarine analogues: effects of structural modifications at ring B on inhibitory activity towards glucoamylase. Eur. J. Org. Chem. 2010: 5574-5585. https://doi.org/10.1002/ejoc.201000632.
- Muema FW, Nanjala C, Oulo MA, Wangchuk P. Phytochemical Content and Antidiabetic Properties of Most Commonly Used Antidiabetic Medicinal Plants of Kenya. Molecules. 2023;28(20):7202. doi: 10.3390/molecules28207202.
- Dineshkumar B, Mitra A, Mahadevappa M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigi (rutaceae) leaves. Int J of Phytomed. 2010;2(1):22-30.
- Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev. 2022;21(4):1049-1079. doi: 10.1007/s11101-021-09773-1.
- Goel S, Singh R, Singh V, et al. Metformin: Activation of 5' AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet. 2022;13:1022739. doi: 10.3389/fgene.2022.1022739.
- Madeswaran A, Umamaheswari M, Asokkumar K, et al., Discovery of potential aldose reductase inhibitors using in silico docking studies. Orient Pharm Exp Med. 2012;12:157-161. doi: 10.1007/s13596-012-0065-3
- Jhong CH, Riyaphan J, Lin SH, et al. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Biofactors. 2015;41(4):242-51. doi: 10.1002/biof.1219.
- Müller A, Neukam M, Ivanova A, et al. A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags. Sci Rep. 2017;7(1):23. doi: 10.1038/s41598-017-00033-x.
- Olaokun OO, Manonga SA, Zubair MS, et al. Molecular Docking and Molecular Dynamics Studies of Antidiabetic Phenolic Compound Isolated from Leaf Extract of Englerophytum magalismontanum (Sond.) T.D.Penn. Molecules. 2022;27(10):3175. doi: 10.3390/molecules27103175.
- Sulaiman NAS, Azman MFSN, Aluwi MFFM, et al. Stereospecific α-glucosidase inhibition, kinetics, and molecular docking studies on isolated diastereomeric alkaloids from Uncaria longiflora. Results Chem. 2025;13:101926. doi: 10.1016/j.rechem.2024.101926
- Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-W263. doi: 10.1093/nar/gky318.
- Demir C, İstifli ES. Docking-based virtual screening, ADMET, and network pharmacology prediction of anthocyanidins against human alpha-amylase and alpha-glucosidase enzymes as potential antidiabetic agents. International Journal of Plant Based Pharmaceuticals, 2022;2(2):271-283.
- Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58(9):4066-72. doi: 10.1021/acs.jmedchem.5b00104.
- Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022;12(7):3049-3062. doi: 10.1016/j.apsb.2022.02.002.
- Dulsat J, López-Nieto B, Estrada-Tejedor R, Borrell JI. Evaluation of Free Online ADMET Tools for Academic or Small Biotech Environments. Molecules. 2023;28(2):776. doi: 10.3390/molecules28020776.
- Suhandi C, Wilar G, Narsa AC, et al. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther. 2024;18:4723-4748. doi: 10.2147/DDDT.S478388.
- Venkatraman V. FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J Cheminform. 2021;13(1):75. doi: 10.1186/s13321-021-00557-5.
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64(Supplement):4-17.
- Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 2004;1(4):337-341.
- Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89-98. doi: 10.1016/j.addr.2016.05.007.
- Tafreshi NK, Kil H, Pandya DN, et al. Lipophilicity Determines Routes of Uptake and Clearance, and Toxicity of an Alpha-Particle-Emitting Peptide Receptor Radiotherapy. ACS Pharmacol Transl Sci. 2021;4(2):953-965. doi: 10.1021/acsptsci.1c00035.
- Morak-Młodawska B, Jeleń M, Martula E, Korlacki R. Study of Lipophilicity and ADME Properties of 1,9-Diazaphenothiazines with Anticancer Action. Int J Mol Sci. 2023;24(8):6970. doi: 10.3390/ijms24086970.
- Kadela-Tomanek M, Jastrzębska M, Marciniec K, et al. Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-CoV-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone. Pharmaceutics. 2021;13(6):781. doi: 10.3390/pharmaceutics13060781.
- Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-23. doi: 10.1021/jm020017n.
- Martin JL, Esmaeili H, Manuel RC, et al. Pharmacokinetics/Pharmacodynamics of Dabigatran 75 mg Twice Daily in Patients With Nonvalvular Atrial Fibrillation and Severely Impaired Renal Function. J Cardiovasc Pharmacol Ther. 2018;23(5):399-406. doi: 10.1177/1074248418769167.
- Asano D, Takakusa H, Nakai D. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics. 2023;16(1):47. doi: 10.3390/pharmaceutics16010047.
- Arnott JA, Planey SL. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012;7(10):863-75. doi: 10.1517/17460441.2012.714363.
Дополнительные файлы
