放射组学与人工智能在乳腺癌患者新辅助药物治疗反应评估中的应用前景:文献综述
- 作者: Suleymanova M.M.1,2, Karmazanovsky G.G.1,3, Kondratyev E.V.1, Popov A.Y.1, Nechaev V.A.2, Ermoshchenkova M.V.2,4, Kuzmina E.S.2
-
隶属关系:
- A.V. Vishnevsky National Medical Research Center of Surgery
- Moscow City Hospital named after S.S. Yudin
- The Russian National Research Medical University named after N.I. Pirogov
- Sechenov First Moscow State Medical University (Sechenov University)
- 期: 卷 6, 编号 2 (2025)
- 页面: 331-344
- 栏目: 科学评论
- URL: https://journal-vniispk.ru/DD/article/view/310219
- DOI: https://doi.org/10.17816/DD634972
- EDN: https://elibrary.ru/UEDYHD
- ID: 310219
如何引用文章
全文:
详细
乳腺癌仍是当代肿瘤学面临的最重要问题之一,是全球女性中最常见的恶性肿瘤。乳腺癌治疗需采取多学科综合方案,包括手术、化疗、放疗、靶向治疗及内分泌治疗。在现代临床实践中,新辅助治疗作为术前干预手段具有重要地位,其目标在于缩小肿瘤体积、提高保乳手术的可行性,并评估肿瘤对药物治疗的个体敏感性。对于局部晚期、原发不可切除的浸润性乳腺癌,新辅助治疗已成为标准治疗方案。此外,对于虽具备手术适应证但呈现生物学行为高度侵袭性的乳腺癌亚型,如三阴性和HER2阳性,也推荐将新辅助治疗作为首选治疗阶段。然而,患者对新辅助治疗的反应存在显著个体差异:部分患者对治疗反应良好,显著改善预后;而另一些患者的治疗可能无效。提前预测患者对新辅助治疗的反应,有助于避免不必要的药物剂量暴露,减轻医疗系统的经济负担,并尽可能降低不良反应的发生风险。近年来,放射组学与人工智能方法得到了积极发展,可用于分析医学影像并识别与治疗反应相关的潜在生物标志物。本综述回顾了近几十年来在该领域开展的研究,这些研究提出了多种基于放射组学和人工智能的方法,用于评估患者对新辅助治疗的反应并建立预测模型。特别关注于展示机器学习和深度数据分析在乳腺癌个体化治疗中潜力的研究。此类创新方法为提高治疗效果与改善患者生存率提供了新的前景。
作者简介
Maria M. Suleymanova
A.V. Vishnevsky National Medical Research Center of Surgery; Moscow City Hospital named after S.S. Yudin
编辑信件的主要联系方式.
Email: maria.suleymanova95@gmail.com
ORCID iD: 0000-0002-5776-2693
SPIN 代码: 7193-6122
MD
俄罗斯联邦, Moscow; MoscowGrigory G. Karmazanovsky
A.V. Vishnevsky National Medical Research Center of Surgery; The Russian National Research Medical University named after N.I. Pirogov
Email: karmazanovsky@yandex.ru
ORCID iD: 0000-0002-9357-0998
SPIN 代码: 5964-2369
MD, Dr. Sci. (Medicine), Professor, academician of the Russian Academy of Sciences
俄罗斯联邦, Moscow; MoscowEvgeny V. Kondratyev
A.V. Vishnevsky National Medical Research Center of Surgery
Email: evgenykondratiev@gmail.com
ORCID iD: 0000-0001-7070-3391
SPIN 代码: 2702-6526
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowAnatoly Yu. Popov
A.V. Vishnevsky National Medical Research Center of Surgery
Email: vishnevskogo@ixv.ru
ORCID iD: 0000-0001-6267-8237
SPIN 代码: 6197-2060
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowValentin A. Nechaev
Moscow City Hospital named after S.S. Yudin
Email: dfkz2005@gmail.com
ORCID iD: 0000-0002-6716-5593
SPIN 代码: 2527-0130
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowMaria V. Ermoshchenkova
Moscow City Hospital named after S.S. Yudin; Sechenov First Moscow State Medical University (Sechenov University)
Email: ermoshchenkova_m_v@staff.sechenov.ru
ORCID iD: 0000-0002-4178-9592
SPIN 代码: 2557-7700
MD, Dr. Sci. (Medicine)
俄罗斯联邦, Moscow; MoscowEvgeniya S. Kuzmina
Moscow City Hospital named after S.S. Yudin
Email: saparts@mail.ru
ORCID iD: 0009-0007-2856-5176
SPIN 代码: 9668-5733
MD
俄罗斯联邦, Moscow参考
- Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA: A Cancer Journal for Clinicians. 2022;72(6):524–541. doi: 10.3322/caac.21754 EDN: CTOZIC
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2021;71(3):209–249. doi: 10.3322/caac.21660 EDN: MRLXRI
- Tyulyandin SA, Artamonova EV, Zhigulev AN, et al. Breast cancer. Malignant tumours. 2023;13(3S2-1):157–200. (In Russ.) doi: 10.18027/2224-5057-2023-13-3s2-1-157-200 EDN: VMPFLQ
- Shien T, Iwata H. Adjuvant and neoadjuvant therapy for breast cancer. Japanese Journal of Clinical Oncology. 2020;50(3):225–229. doi: 10.1093/jjco/hyz213EDN: THCTHG
- Nounou MI, ElAmrawy F, Ahmed N, et al. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer: Basic and Clinical Research. 2015;9:17–34. doi: 10.4137/BCBCR.S29420 EDN: VEUPUJ
- Spring LM, Bar Y, Isakoff SJ. The evolving role of neoadjuvant therapy for operable breast cancer. Journal of the National Comprehensive Cancer Network. 2022;20(6):723–734. doi: 10.6004/jnccn.2022.7016 EDN: HXCBOX
- Spring LM, Fell G, Arfe A, et al. Pathologic complete response after neoadjuvant chemotherapy and impact on breast cancer recurrence and survival: a comprehensive meta-analysis. Clinical Cancer Research. 2020;26(12):2838–2848. doi: 10.1158/1078-0432.CCR-19-3492 EDN: EGVDWS
- Wang H, Yee D. I-SPY 2: a neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Current Breast Cancer Reports. 2019;11(4):303–310. doi: 10.1007/s12609-019-00334-2 EDN: PGXZPD
- Boughey JC, McCall LM, Ballman KV, et al. Tumor biology correlates with rates of breast-conserving surgery and pathologic complete response after neoadjuvant chemotherapy for breast cancer. Annals of Surgery. 2014;260(4):608–616. doi: 10.1097/SLA.0000000000000924 EDN: UOPXUR
- Murphy BL, Day CN, Hoskin TL, et al. Neoadjuvant chemotherapy use in breast cancer is greatest in excellent responders: triple-negative and HER2+ subtypes. Annals of Surgical Oncology. 2018;25(8):2241–2248. doi: 10.1245/s10434-018-6531-5 EDN: YIOYKL
- Bossuyt V, Provenzano E, Symmans WF, et al. Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration. Annals of Oncology. 2015;26(7):1280–1291. doi: 10.1093/annonc/mdv161 EDN: VETAZF
- Pesapane F, Rotili A, Agazzi GM, et al. Recent radiomics advancements in breast cancer: lessons and pitfalls for the next future. Current Oncology. 2021;28(4):2351–2372. doi: 10.3390/curroncol28040217 EDN: YCIMNC
- Pesapane F, De Marco P, Rapino A, et al. How radiomics can improve breast cancer diagnosis and treatment. Journal of Clinical Medicine. 2023;12(4):1372. doi: 10.3390/jcm12041372 EDN: KNQSSO
- Szilágyi L, Kovács L. Special issue: artificial intelligence technology in medical image analysis. Applied Sciences. 2024;14(5):2180. doi: 10.3390/app14052180 EDN: XKFDCF
- Saltybaeva N, Tanadini-Lang S, Vuong D, et al. Robustness of radiomic features in magnetic resonance imaging for patients with glioblastoma: multi-center study. Physics and Imaging in Radiation Oncology. 2022;22:131–136. doi: 10.1016/j.phro.2022.05.006 EDN: YAXEPH
- Madabhushi A, Udupa JK. New methods of MR image intensity standardization via generalized scale. Medical Physics. 2006;33(9):3426–3434. doi: 10.1118/1.2335487
- Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. European Radiology Experimental. 2018;2(1):1–8. doi: 10.1186/s41747-018-0068-z EDN: FCYFNJ
- Baeßler B, Weiss K, Pinto dos Santos D. Robustness and reproducibility of radiomics in magnetic resonance imaging. Invest Radiol. 2019;54(4):221–228. doi: 10.1097/RLI.0000000000000530
- van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging. 2020;11(1):91. doi: 10.1186/s13244-020-00887-2
- Zanca F, Brusasco C, Pesapane F, et al. Regulatory aspects of the use of artificial intelligence medical software. Seminars in Radiation Oncology. 2022;32(4):432–441. doi: 10.1016/j.semradonc.2022.06.012 EDN: WHHHQD
- Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. Annals of Internal Medicine. 2015;162(1):55–63. doi: 10.7326/M14-0697
- Coleman C. Early detection and screening for breast cancer. Seminars in Oncology Nursing. 2017;33(2):141–155. doi: 10.1016/j.soncn.2017.02.009
- Prasad SN, Houserkova D. The role of various modalities in breast imaging. Biomedical Papers. 2007;151(2):209–218. doi: 10.5507/bp.2007.036
- Katzen J, Dodelzon K. A review of computer aided detection in mammography. Clinical Imaging. 2018;52:305–309. doi: 10.1016/j.clinimag.2018.08.014
- Shin HK, Kim WH, Kim HJ, et al. Prediction of pathological complete response to neoadjuvant chemotherapy using multi-scale patch learning with mammography. Lecture Notes in Computer Science. 2021;12928 LNCS:192–200. doi: 10.1007/978-3-030-87602-9_18 EDN: RSETVX
- Skarping I, Larsson M, Förnvik D. Analysis of mammograms using artificial intelligence to predict response to neoadjuvant chemotherapy in breast cancer patients: proof of concept. European Radiology. 2021;32(5):3131–3141. doi: 10.1007/s00330-021-08306-w EDN: GHBHYP
- Bhimani C, Matta D, Roth RG, et al. Contrast-enhanced spectral mammography. Academic Radiology. 2017;24(1):84–88. doi: 10.1016/j.acra.2016.08.019
- Patel BK, Lobbes MBI, Lewin J. Contrast enhanced spectral mammography: a review. Seminars in Ultrasound, CT and MRI. 2018;39(1):70–79. doi: 10.1053/j.sult.2017.08.005
- Richter V, Hatterman V, Preibsch H, et al. Contrast-enhanced spectral mammography in patients with MRI contraindications. Acta Radiologica. 2017;59(7):798–805. doi: 10.1177/0284185117735561
- Mann RM, Balleyguier C, Baltzer PA, et al. Breast MRI: EUSOBI recommendations for women’s information. European Radiology. 2015;25(12):3669–3678. doi: 10.1007/s00330-015-3807-z EDN: NQYZQI
- Sorin V, Sklair-Levy M. Dual-energy contrast-enhanced spectral mammography (CESM) for breast cancer screening. Quantitative Imaging in Medicine and Surgery. 2019;9(11):1914–1917. doi: 10.21037/qims.2019.10.13
- Xing D, Mao N, Dong J, et al. Quantitative analysis of contrast enhanced spectral mammography grey value for early prediction of pathological response of breast cancer to neoadjuvant chemotherapy. Scientific Reports. 2021;11(1):5892. doi: 10.1038/s41598-021-85353-9 EDN: KGOWWC
- Wang Z, Lin F, Ma H, et al. Contrast-enhanced spectral mammography-based radiomics nomogram for the prediction of neoadjuvant chemotherapy-insensitive breast cancers. Frontiers in Oncology. 2021;11(APR):605230. doi: 10.3389/fonc.2021.605230 EDN: JZIGEN
- Mao N, Shi Y, Lian C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography. European Radiology. 2022;32(5):3207–3219. doi: 10.1007/s00330-021-08414-7 EDN: KUXMIN
- Tadayyon H, Sannachi L, Gangeh M, et al. Quantitative ultrasound assessment of breast tumor response to chemotherapy using a multi-parameter approach. Oncotarget. 2016;7(29):45094–45111. doi: 10.18632/oncotarget.8862 EDN: WSJOFB
- Tadayyon H, Sadeghi-Naini A, Czarnota GJ. Noninvasive characterization of locally advanced breast cancer using textural analysis of quantitative ultrasound parametric images. Translational Oncology. 2014;7(6):759–767. doi: 10.1016/j.tranon.2014.10.007 EDN: UTKPBJ
- Jiang M, Li CL, Luo XM, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. European Journal of Cancer. 2021;147:95–105. doi: 10.1016/j.ejca.2021.01.028 EDN: ZEWDBI
- Byra M, Dobruch-Sobczak K, Piotrzkowska-Wroblewska H, et al. Prediction of response to neoadjuvant chemotherapy in breast cancer with recurrent neural networks and raw ultrasound signals. Physics in Medicine & Biology. 2022;67(18):185007. doi: 10.1088/1361-6560/ac8c82 EDN: IJMZEF
- Sadeghi-Naini A, Sannachi L, Pritchard K, et al. Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture. Oncotarget. 2014;5(11):3497–3511. doi: 10.18632/oncotarget.1950
- Sannachi L, Gangeh M, Tadayyon H, et al. Breast cancer treatment response monitoring using quantitative ultrasound and texture analysis: comparative analysis of analytical models. Translational Oncology. 2019;12(10):1271–1281. doi: 10.1016/j.tranon.2019.06.004
- DiCenzo D, Quiaoit K, Fatima K, et al. Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from multi-institutional study. Cancer Medicine. 2020;9(16):5798–5806. doi: 10.1002/cam4.3255 EDN: ZMGGKI
- Tadayyon H, Sannachi L, Gangeh MJ, et al. A priori prediction of neoadjuvant chemotherapy response and survival in breast cancer patients using quantitative ultrasound. Scientific Reports. 2017;7(1):45733. doi: 10.1038/srep45733
- Ma Y, Zhang S, Zang L, et al. Combination of shear wave elastography and Ki-67 index as a novel predictive modality for the pathological response to neoadjuvant chemotherapy in patients with invasive breast cancer. European Journal of Cancer. 2016;69:86–101. doi: 10.1016/j.ejca.2016.09.031 EDN: XTWRWB
- Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS. Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. Insights into Imaging. 2018;9(5):791–814. doi: 10.1007/s13244-018-0642-1 EDN: BRVYAJ
- Fernandes J, Sannachi L, Tran WT, et al. Monitoring breast cancer response to neoadjuvant chemotherapy using ultrasound strain elastography. Translational Oncology. 2019;12(9):1177–1184. doi: 10.1016/j.tranon.2019.05.004
- Gu J, Polley EC, Denis M, et al. Early assessment of shear wave elastography parameters foresees the response to neoadjuvant chemotherapy in patients with invasive breast cancer. Breast Cancer Research. 2021;23(1):1–13. doi: 10.1186/s13058-021-01429-4 EDN: JJUKQT
- Fusco R, Sansone M, Filice S, et al. Pattern recognition approaches for breast cancer DCE-MRI classification: a systematic review. Journal of Medical and Biological Engineering. 2016;36(4):449–459. doi: 10.1007/s40846-016-0163-7
- Pesapane F, Agazzi GM, Rotili A, et al. Prediction of the pathological response to neoadjuvant chemotherapy in breast cancer patients with mri-radiomics: a systematic review and meta-analysis. Current Problems in Cancer. 2022;46(5):100883. doi: 10.1016/j.currproblcancer.2022.100883 EDN: QQBBCI
- Jimenez JE, Abdelhafez A, Mittendorf EA, et al. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. European Journal of Radiology. 2022;149:110220. doi: 10.1016/j.ejrad.2022.110220 EDN: WEMAMC
- Jahani N, Cohen E, Hsieh MK, et al. Prediction of treatment response to neoadjuvant chemotherapy for breast cancer via early changes in tumor heterogeneity captured by DCE-MRI registration. Scientific Reports. 2019;9(1):12114. doi: 10.1038/s41598-019-48465-x EDN: NCWAXK
- Sutton EJ, Onishi N, Fehr DA, et al. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. Breast Cancer Research. 2020;22(1):1–11. doi: 10.1186/s13058-020-01291-w EDN: SKNHGS
- Fan M, Chen H, You C, et al. Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer. Frontiers in Molecular Biosciences. 2021;8(APR):622219. doi: 10.3389/fmolb.2021.622219 EDN: KRRZTI
- Hussain L, Huang P, Nguyen T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response. BioMedical Engineering OnLine. 2021;20(1):63. doi: 10.1186/s12938-021-00899-z EDN: XODCOF
- Cho N, Im SA, Park IA, et al. Breast cancer: early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging. Radiology. 2014;272(2):385–396. doi: 10.1148/radiol.14131332 EDN: UUBLDJ
- Drisis S, El Adoui M, Flamen P, et al. Early prediction of neoadjuvant treatment outcome in locally advanced breast cancer using parametric response mapping and radial heterogeneity from breast MRI. Journal of Magnetic Resonance Imaging. 2019;51(5):1403–1411. doi: 10.1002/jmri.26996
- Comes MC, Fanizzi A, Bove S, et al. Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs. Scientific Reports. 2021;11(1):14123. doi: 10.1038/s41598-021-93592-z EDN: IFRRXB
- Peng Y, Cheng Z, Gong C, et al. Pretreatment DCE-MRI-Based deep learning outperforms radiomics analysis in predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. Frontiers in Oncology. 2022;12:846775. doi: 10.3389/fonc.2022.846775 EDN: ERVNRP
- Li Y, Chen Y, Zhao R, et al. Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer. European Radiology. 2021;32(3):1676–1687. doi: 10.1007/s00330-021-08291-0 EDN: MWHPGI
补充文件
