MosMedData: COVID-19疫情期间进行的1110 次胸部CT扫描数据集

封面

如何引用文章

详细

在COVID-19大流行和雪崩式增加肺部计算机断层扫描的数量背景下,图像分析过程的自动化方法特别重要,使用这种方法将提高生产率并减少错误。高质量数据集的创建是人工智能技术发展的必要条件。人工智能算法对COVID-19的诊断具有足够的准确性。该数据集1包含有COVID-19征象的患者的匿名肺部CT图像和正常的胸部检查。一些研究使用感兴趣区域的二元像素遮罩进行标记(例如,肺结节整合和磨砂玻璃结节)。获取2020年3月1日至2020年4月25日期间的CT数据,提供给莫斯科市医院(俄罗斯)2。建议的数据集由Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported授权(CC BY-NC-ND 3.0)。

作者简介

Sergey Morozov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: morozov@npcmr.ru
ORCID iD: 0000-0001-6545-6170
SPIN 代码: 8542-1720

MD, PhD, Professor

俄罗斯联邦, Moscow

Anna Andreychenko

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: a.andreychenko@npcmr.ru
ORCID iD: 0000-0001-6359-0763
SPIN 代码: 6625-4186

MD

俄罗斯联邦, Moscow

Ivan Blokhin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: i.blokhin@npcmr.ru
ORCID iD: 0000-0002-2681-9378
SPIN 代码: 3306-1387

MD

俄罗斯联邦, Moscow

Pavel Gelezhe

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: gelezhe.pavel@gmail.com
ORCID iD: 0000-0003-1072-2202
SPIN 代码: 4841-3234

MD, PhD

俄罗斯联邦, Moscow

Anna Gonchar

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: a.gonchar@npcmr.ru
ORCID iD: 0000-0001-5161-6540
SPIN 代码: 3513-9531

MD

俄罗斯联邦, Moscow

Alexander Nikolaev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: a.e.nikolaev@yandex.ru
ORCID iD: 0000-0001-5151-4579
SPIN 代码: 1320-1651

MD

俄罗斯联邦, Moscow

Nikolay Pavlov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: n.pavlov@npcmr.ru
ORCID iD: 0000-0002-4309-1868
SPIN 代码: 9960-4160

MD, MPA

俄罗斯联邦, Moscow

Valeria Chernina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

Email: v.chernina@npcmr.ru
ORCID iD: 0000-0002-0302-293X
SPIN 代码: 8896-8051

MD

俄罗斯联邦, Moscow

Victor Gombolevskiy

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies, Department of Health Care of Moscow

编辑信件的主要联系方式.
Email: g_victor@mail.ru
ORCID iD: 0000-0003-1816-1315
SPIN 代码: 6810-3279

MD, PhD, MPH

俄罗斯联邦, Moscow

参考

  1. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in Coronavirus Disease 2019 (COVID19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–E40. doi: 10.1148/radiol.2020200642
  2. Handbook of COVID-19 Prevention and Treatment. Ed. by T. Liang. Zhejiang University School of Medicine; 2020. 68 p.
  3. Huang Z, Zhao S, Li Z, et al. The battle against Coronavirus Disease 2019 (COVID-19): emergency management and infection control in a Radiology Department. J Am Coll Radiol. 2020;17(6):710–716. doi: 10.1016/j.jacr.2020.03.011
  4. Morozov SP, Gombolevskiy VA, Cherninа VY, et al. Prediction of lethal outcomes in COVID-19 cases based on the results chest computed tomography. Tuberculosis and Lung Diseases. 2020;98(6):7–14. (In Russ.) doi: 10.21292/2075-1230-2020-98-6-7-14
  5. Morozov S, Guseva E, Ledikhova N, et al. Telemedicine-based system for quality management and peer review in radiology. Insights Imaging. 2018;9(3):337–341. doi: 10.1007/s13244-018-0629-y
  6. Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020;296(2):E65–E71. doi: 10.1148/radiol.2020200905
  7. Ucar F, Korkmaz D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med Hypotheses. 2020;140:109761. doi: 10.1016/j.mehy.2020.109761
  8. Vremennye metodicheskie rekomendatsii “Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 9” (utv. Ministerstvom zdravookhraneniya RF 26 oktyabrya 2020). Available from: https://base.garant.ru/74810808/
  9. Morozov SP, Protsenko DN, Smetanina SV, editors. Radiation diagnostics of coronavirus disease (COVID-19): organization, methodology, interpretation of results: guidelines. Series “Best practices of radiation and instrumental diagnostics”. Issue 65. Moscow; 2020.
  10. Morozov SP, Vladzymyrskyy AV, Klyashtornyy VG, et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). Series “Best practices in medical imaging”. Moscow; 2019. Issue 57.
  11. Cohen JP, Morrison P, Dao L. COVID-19 Image Data Collection [Internet]. 2020 [cited 2020 Mar 25]. Available from: https://arxiv.org/abs/2003.11597
  12. Jun M, Cheng G, Yixin W, et al. COVID-19 CT lung and infection segmentation dataset. Verson 1.0. 2020. doi: 10.5281/zenodo.3757476

补充文件

附件文件
动作
1. JATS XML
2. 图 1数据集的形成顺序。 注:CT—计算机断层摄影

下载 (212KB)
3. 图 2不同严重程度COVID-19患者胸部器官计算机断层标记示例 注:上一行,从左至右:COVID-19患者的CT轴向切片,从轻度(CT-1)到极重度(CT-4)。从左到右,下一行:打标后相同的CT数据。

下载 (304KB)
4. 图 3数据集中的数据存储结构。

下载 (350KB)

版权所有 © Morozov S., Andreychenko A., Blokhin I., Gelezhe P., Gonchar A., Nikolaev A., Pavlov N., Chernina V., Gombolevskiy V., 2020

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».